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Abstract

A scheme, the so-called “projection”, for handling singularities in the processes such as
that in the process ete™ — the~ i (or e*e™ — ude™ D), is proposed. In the scheme, with the
help of the gauge invariance, the large power quantities ('—n‘!-e;)“ (n > 1;8 = co) are removed
from the calculation totally, while in usual schemes the large quantities appear and only
will be cancelled at last only. The advantages of the scheme in numerical calculations
are obvious, thus we focus our discussions mainly on the advantages of the scheme in
the special case, where the absorptive part for some propagators relevant to the process
could not be ignored, and a not-satisfactory but widely adopted approximation is made
i.e. a finite constant "width” is introduced to approximate the absorptive part of the
propagators phenomenologically even though the QED gauge invariance is violated.

!This work is partly supported by the National Science Foundation of China (NSFC).

I. Introduction.

Since the top quark mass has been measured in Fermilab [1][2] and the Higgs
mass seems to possess some constraints {3], at present there is better ground to
precisely testify the validity of the Standard Model. The LEP II of 200 GeV and
NLC of about 500 GeV probably can do the job further in the near future.

Of the possible reactions, e¥e~ — the™i7 is an interesting one. It is asserted that
of the Feynman diagrams, the four associated with a t-channel photon exchange
shown in Fig. 1, being gauge invariant themselves, are dominant over others as
V3 > 250 GeV {4]. The propagator of the photon is proportional to 1/k? where
k% = (p1 —p)? and p; and p are the momenta of the outgoing and incoming electrons.
The kinematics tells us

K = (p-p)® =2m? - 2E,E + 2|\||f] cos b,
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as 0., the angle between §, and § approaches to zero, k? — 0, if m, — 0 ie.
the‘phot,on approaches to mass shell, i.e. the propagator becomes singular. This
singularity is essential, because even after the final state phase space integration it
still survives. One can divide the integration over 8, into two parts:

(0e)eue :
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where (0.)a is a small angle, and may be related to experimental measurements
as one like. For the second integral, being regular m, can be safely set zero
approximately, whereas in general up to the first order of (0,)eyt, the first integration
may be written as
s . 3
— biln—=) +--]- A#, 3
[a(mf) + (nmg)+ ] . (3)

where n > 1 and A#, is a small angle equivalent to (8,)q.

Since the small-angle electron which finally scatters into the beam tube (i.e.
6. being very small), cannot be detected, the phase space integration for final state
should always start from the small angle instead of zero if the electron is ‘exclusively’
measured, so the (0,). in eq.(2) has physical meaning. However if the clectron in
the reaction ete™ — the™ 7 is detected inclusively, the smali 8, contribution cannot
be negligible.




Note that in eq.(3) the power terms (s/m?)" x Af being very large even for very
small Af and the logarithmic terms In(s/m?) x A8 being of much milder divergent
behavior at 8 ~ 0, all of the terms may be suppressed if there is some symmetry e.g.
the gauge symmetry for the concerned process. Many authors have investigated
this process. Raidal et al. (5], Panella et al. [6] had obtained quite different
conclusions, then Boos et al. [4] pointed out that due to an extravagant destructive
interference among the four diagrams, the unexpected large contributions disappear
after summing up the contributions with the large number cancellation at last.

It is proved that due to the gauge invariance playing roles in the process the
troublesome power terms (5/m?)" do not exist at the final cross section but only the
well-known logarithmic term as In(s/m?), that also forms the basis of the Weisziker-
Williams approximation [7]. In principle, a straightforward calculation can give the
correct final result as done in literature [4] as long as the numerical calculation
keeps all the large nmmbers being accurate enough. Even though the troublesome
power terms (s/m?)", generating large quantities, would be killed the large quantities
greatly and retain much smaller ones are retained due to the destructive interference
nature, in practice, such a cancellations may cause 6 to 8 magnitude orders reduction
(see ref.[4}), so it very often causes problem i.e. it can lead to totally wrong result
for numerical computation, at least, it becomes very difficult to estimate the errors
of the computation.

Formulating the above statement, one can write the amplitude contributed by
each individual of the four diagrams as

M; = a; +b; cos @ (4)

where 0 is the angle between the 3-momenta of the incoming and outgoing electrons.
The troublesome photon propagator contributes a factor 1/x + Bsin?(8/2)}* to the
differential cross section. « is proportional to m? and / is related to the energy, so as
6 — 0 and m, — 0, this is a singular term. The final state phase space integration
includes a part over the solid angle dsin?(6/2), therefore it alleviate the singular
degree. When we take the integration of | T M;{? over dsin?(/2), we have
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It is easy to be rewritten as
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where z = sin®0/2.

It is easy to see that the first term is completely benign as m, — 0, and the second
term gives a logarithmic term {nm? while the last one produces an extravagantly
singular term proportional to 1/m? at @ — 0. Therefore as we discussed above, the

gauge invariance demands vanishing of the last term, namely one should expect

A+ %ﬁl - 3[1‘3 =0 (7
where
A = | Y(@+b)f (8)
B = - ‘_2(41,;1;, +2a}b; + 2a;5}) (9)
Cc = 4§b;bj. (10)
5]

Furthermore, a very interesting and important issue is addressed recently i.e.
some authors [8] [9][10][12} pointed out that to get rid of the singularity at the W-

boson propagator ;’—_IM;"; for higher energies, a regular Breit-Wigner form ;,m

where [y is the measured decay width of W-boson is introduced, whereas the gauge
invariance of QED is violated. The power divergent terms may appear again. It is
well known that the QED gauge invariance is a fundamental principle and cannot be
upset at any case. Here the apparent violation is artificial or due to an inappropriate
approximation and misapplication of the Breit-Wigner form. They suggested many
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approaches to restore the gauge invariance. However since most of the treatments
possess certain arbitrariness depending on the way to restore the gauge invariance
as long as it is not based on a solid stone of the quantum field theory, even the
gauge invariance is respected, some “unphysical” contributions emerge into the final
results. Aeppli [10] and Papavassilioy, Pilaftsis {11} provide very elegant ways to
set more solid foundations to deal with the width of the W-propagator for the
processes, namely loop contributions for its self-energy and vertex are considered,
thus the effective width T' in the W-propagator is a function of momentum. But
this procedure involves complicated loop calculations so the intuitive meaning of
the width is lost and is the convenience for cross section evaluation. Argyres et al.
{12] also suggested that taking into account the absorptive part of the triangular
loop correction to the WWy—vertex, one can regain the gauge invariance, the way
they provided is practically efficient for real processes and the results obtained in
various schemes which restore gauge invariance coincide with each other (see table
I of ref.[12)).

Alternatively, we propose a different scheme to approach the problem, namely
“project out” the large component from each piece of the amplitude (corresponds to
each diagram), by means of choosing a special gauge based on the gauge invariance
of the processes, thus the power terms i.e. the large numbers do not appear in
the calculations completely. Furthermore, even the gauge invariance is artificially
violated, in this scheme, the additional contribution related to the violation is also
suppressed. For instance, even though the naive Breit-Wigner formulation of the
propagator for describing the unstable nature of the particle is adopted, the large
terms are eliminated and only the terms as -ﬁw;ln(s/mf) x Af survive. A more
precise discussion and comparisons of the results obtained in this scheme with the
others, especially that of the authors of ref.[12) will be given below. Reasonable

consistence with others is found.

I1. The projection scheme.

(i) The scheme.

The amplitude corresponding to the Feynman diagrams shown in Fig.1 (a)
through (d) characterized by possessing a common electron line, can he written

= Tlpn, )7 u(p. ) 7 (T + T+ Ty + T, (1)

where I, is the lepton current, u.s are the incoming and outgoing electrons and Ti's
are the effective currents determined by the weak interaction and k? = {p, — p)® is
the squared momentum carried by the photon. Due to the gauge invariance for the
four diagrams themselves, we have

4
k-T=k-3T,=0 (12)

i=1

As aforementioned, through a straightforward calculation one may show that
each of 7)'s,i = 1 - - 4 itself will contributes power terms s/m? to the cross section at
vicinity of 8, = 0. The “total cross section” ¢ (here only the four Feynman diagrams
in Fig.1 are included, and it is introduced only for the discussion convenience):

= d'p; 2
7= 452/ H(27r)32E, ,..): 1Azl

I spins

a
= 482/1—1 (Qn)féE Z |Zl‘ lek‘v (13)

7 all spins i=1

where p)s are the momenta of the outgoing t,b,e~ and 7. Note once more: it has
been proved [4] that the final state integration only results in a In(s/m?) term, but
not any power term (s/m?)" (n > 1) at all. The disappearance of the troublesome
power terms finally is due to the gauge invariance of QED.

Nevertheless, there is still a problem in numerical calculation that the “cross
section” involves subtraction among large quantities with a very small quantity
remaining as shown in Fig. (3) of ref.[d]. To solve the problem, we propose the so-
called project scheme by choosing a very special gauge. One can add an arbitrary
term proportional to k* to the lepton current I* such as

I, =1, — ck,, (14)

due to the gauge invariance, here ¢ may be any variable or constant. The idea

about, the projection scheme is to subtract a suitable quantity from every amplitude
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(corresponding to each Feynman diagram) by choosing a proper gauge (here the
quantity c) , so as to project out a fraction which results in the large power divergent
term in the final cross section. Indeed the idea may be carried through successfully
as follows. Simply to make each’ components of the d-vector [, to he minimal, we

choose a condition

6 ’ 4 4
EEWHWGI» |Il‘v “2'1 ”3!) =0 (15)
To be symmetric, alternatively we adopt the following condition instead,
6 * * *
3;(1;,'1;, +h +Iglh+ L) =0. (16)

Note here that the summation 3_[;'l; is defined in “Euclidean space measure” but
not Minkovsky one, thus it means to minimize the squared radius of the Euclidean
four-sphere. Then we obtain

_ kolo + kily + kala + kil
T K+E R+

(a7

under the condition. Because k*l, = 0 (with the metric (1, -1,-1,-1) as convention),

we have
o 2
JIk{1?
where ||k|{? = k2 + k2 + k2 + k2. Thus with the gauge c, the lepton current may be
replaced by okl
I;: =t ”—k‘% r (18)

which indeed projects out the large term from [,. Due to smallness of m, in the
process, one can expand koly in m, and only keep terms up to m? in the series.

To see the results, by comparing with eq.(4) under the limit of m? - 0, i.e. a
in eq.(5) is zero, if one calculate the amplitude for each diagram in terms of the
projection scheme, one will find that each amplitude is proportional to 1/sin(8/2)
instead of 1/sin?(0/2) in usual scheme, thus the singularity becomes mild and after
the integration over final phase space, only the logarithm term remains even for the
contribution from each diagram individually.

To show the advantages more precisely, we recalculate the process numerically.
The numerical results are shown in Fig.2. We plot the dependence of the cross

sections on the (f,)q, which is the lower limit of the angle integration. In order to
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compare with the results of ref.[4], we recalculate the contributions from the four
diagrams of Fig.1 (without the interference among them) in terms of the usual way,
where we deliberately choose m; = 140 GeV and /3 = 190 GeV precisely as given
in ref.[d] the individual curves are the upper four in the figure and they are exactly
consistent with those of ref.[4]. It is noticed that the total cross section is lower
than them by 8 magnitude orders as pointed out by Boos et al. The lower four
curves correspond to the contributions from the four diagrams individually too but
are calculated in the projection scheme and the total cross section exactly coincides
with that obtained in the usual scheme where high accuracy computation technique
is employed. It is interesting to note that the “individual” curves obtained by the
projection scheme have the same order as the total cross section.

(ii) Under the approximation of a finite W-boson width I'y.

As the concerned energy is relatively low that all intermediate W-bosons are far
away from its mass shell, the propagator can be written as

—i _ Gul
¢~ M +ie (O m?, )

As showed by Kurihara [8], with propagators corresponding to zero-width, it is easy
to check k*T, = 0, i.e. the gauge invariance holds. However, when the other s-
channel diagrams for the process e*e~ — the™ & are concerned and as the energy
is increasing (/5 > my + my + Mw), ¢* of the process may cross the mass shell of
W-boson and the singularity of the propagator would result in a new singularity. In
fact this divergence is caused by a unsuitable approximation. Since the intermediate
boson is not a stable particle, the propagator should be modified, for instance,

-1 Quly
However, it still is a problem what 'y in the propagator is. Generally it is an
“effective” width, corresponding to the absorptive part of the self-energy of the
particle, therefore only s-channel ¥-boson, being timelike, can be nonzero, whereas
the t-channel is space-like, so always be zero. Therefore ['yy in the propagator shonld

be a function of momentum behaving as

Tw(g®) = T1(g")0(¢* — A}) + T2(¢)0(a” = AD) + -+, (19)



where A? is the threshold of a corresponding channel (7). In practice, the Breit-
Wigner formulation is adopted widely[13] i.e. one has

¢* >0 (s — channel)

N w
Cw(e®) = { 0 ¢ <0 (t— channel) (20)

where Ty, being constant, is taken as the measured width of real W-boson. This
brings in an inconsistency, i.e. violating the gauge invariance of QED artificially.
To amend the fake violation, many authors proposed various ways [8}[9} and Aeppli
[10} summarized them and indicated that all schemes may possess some unphysical
additions artificially imposed to the results.

In our scheme to take the special gauge (eq.(17)), thanks to the projection
in the gauge, the large terms ()" x A does not occur at all whereas in usual
schemes they appear in the int,e.rmediate stage of the calculation. when gauge
invariance is violated, such dangerous power terms still do not appear, namely even
the gauge invariance being violated, in the final result only the term proportional
to In(s/overm.62) appears in terms of the the projection scheme. In summary,
when the gauge invariance is artificially violated, in this scheme there could be only
additional terms:

I'w

§
“(m)

’"(mig)" x A0 + b(L—‘:'V)'"'znm—gao, (21)
which vanishes as 'y — 0. In the Breit-Wigner formulation, both a and b terms in
eq.(21) are non-zcro and any procedure to restore the gauge invariance would make
the power term disappear, i.e. impose a to be zero, and bring in some change to the
logarithmic term. The change, in fact, must involve unphysical components due to
violating the gauge invariance.

For an explicit comparison with the literatures [12}, we have calculated the cross
section of e*e™ — ude~#, for /5 = 175 GeV. As the collision energy is so high, we
have adopted a little bigger fine-structure constant:

a.(s = 1752 GeV?) = 1/125.0

in our computations. The numerical values for the cross section we obtained are
listed in Table I. When calculating the values in the table, the parameters as
following:

My =80.22 GeV;

m, = 0.511 x 107 GeV;

a.(0) = 1/127.034;

sin Gy, =0.232;

50 < /P? < 110 GeV
are taken and with the definition P, = P, + P,. The coupling constant o, is mainly
based on the formulae [15]. In the calculations m, = 176 GeV is used.

o (pb) | 0.08977 (£ 0.000200) | with fixed W-width
o (pb) | 0.08983 (+ 0.000200) | with running W-width

Table [. The cross sections of e*e~ — ude™ ¥, obtained in the projection scheme
(the definition of the W-width appearing in the table may be found in ref.[12].

To compare with the results of ref.[12}, theirs for the cross section is 0.08887(8)pb
for fixed width (8;nin = 0), while from Table I one may see ours is about 1% larger
only. The result with running width is only 0.07% larger than that for the fixed
width. We should note here that a comparatively larger value for o, is adopted in
our calculation, hence a slight larger number should be expected.

II1. Discussions and Conclusion.

To solve the problem of large number cancellations around the singularity such
as that in the forward direction for the process e*e~ — the~#, we propose a
" projection” scheme so as to priori project out the large quantity in each amplitude
where a t-channel photon-propagator is involved.

The figures in Fig.2 show that in usual schemes, the curves corresponding to the
contribution of the individual diagrams of Fig.1 rise very fast as (6.)ce approaches
to zero, but the total cross section does not. It is a result of the gauge invariance as
discussed above. In contrast, in the new scheme (a specially gauge is applied) the
contribution presents a smooth behavior at zero-(8,)cue.

Indeed, this intriguing problem was conceived by some anthors long time ago
and they employed a special scheme[l4]. The squared amplitude is

1 v
7 2T = L5 (p, p1) Hyu (e, P, 9) (22)
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where L}” is the lepton current part, ¢ = p— py and ¢* H,, = 0 by gauge invariance.

In general, L§” may be written as follows:
Ly = (e} + ¢*¢")L(g") (23)
where L(q?) is a scalar function; and the polarization may be written as

a=r+i+2d,

where Z; stands for an arbitrary parameter. The authors proved that if a special
choice
Zy = -+ M)/

is taken, and further to demand ¢? = 0 and
& = —|al’ = 4ml + (2] - 1)g" + 0(m7),

the power terms (s/m?)" can be effectively eliminated. Our projection scheme is
along a way parallel to the treatment. Our scheme systematically handles the power
singularity at the collinear limit. We adopt the projection at the amplitude level
while the authors of the ref.[14] dealt with it at the amplitude-square level.

As pointed out above, so far there is no very satisfactory (simple, intuitive and
not breaking the existent symmetries etc.) way to dictate the absorptive part of
the propagator when the "finite width” effects could not be ignored. Usually when
the finite width is introduced phenomenologically the gauge invariance is artificially
violated. Large power singular terms generally emerge. Therefore one would try
some methods to restore the gauge invariance, but so far the most of the treatments
(a few exceptions e.g. ref.[12]) 'planting in’ gange invariance by hand, may get rid of
the unphysical power singular terms, but at the same time would bring in other new
unphysical and un-wished changes. Whereas in our scheme, the unphysical power
singularity is eliminated from very beginning, and so is even with the artificial
gauge invariance violation. Even though an unphysical logarithmic term due to
the violation of the gauge invariance, indeed, emerges and is added to the final
result, compared to other schemes this additional unphysical contribution is much
suppressed and the influence to the total cross section is within 1%, a tolerable error

at least for the tree level. It is because for all known unstable particles so far we
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are treating, we always have its width being much smaller than its mass, e.g. for
W-boson we have [y <« My, the extra term, behaving as eq.(21), does not make
substantial contribution at the highest energy in the foreseen future.

For ete~ — the~ 1, since in the four t-channel photon exchange diagrams of
Fig.1, the W-boson cannot go onto its mass shell no matter at s or t channels,
so the finite Ty should not give rise to any substantial change in that case. Our
results with the W-propagator having a finite width only at the time-like region are
numerically consistent with that of null [y, and the error is within 1%, so it confirms
our aforementioned discussions that the gauge invariance violation can only cause a
term proportional to (%)zln;’!. Whereas in the process ete~ — ude™ 5, the effects
of a finite width I'yy become important even for the four photon-exchange diagrams
in Fig.1. With our scheme, the troublesome unphysical power term does not appear
either and the unphysical term corresponding to artificial gauge invariance is also
suppressed to ([w/Mw)? order, so they are negligible up to a sufficient accuracy,
for example as /s = 200 GeV, (%)’lﬂn—ﬁ; ~ 0.016, and 0.016 x Af must be much
less than 1. The results, shown in Table I, indicate that the effect of violating gauge
invariance caused by the running W-width does not affect the final conclusion within
a range of 1%. In contrary, without the projection, the power term caused by the
artificial gauge invariance violation is too large to tolerable, in fact, it blows up the
numerical results {see Table of ref.{12}).

It is certain that the scheme of ref. [12} is more solid from theoretica! point of view
which is based on more solid ground such as quantum field theory where through
loops one can connect the vertex to the self-energy diagrams to restore the gauge
invariance when finite width effects are concerned. Even though, we still shounld
note that if one restricts himself to work in an exact perturbative theory, surely
the gauge invariance will be kept just order by order, however the W-propagator
cannot be simply written in the compact form —i/(g? — m¥, + il'w Myy), which is a
result of resummation of chain diagrams, thus it is not easy to mend the singularity
problem at a given order. In fact, what we need is to eliminate the dangerous
power divergence caused by the artificial violation of gauge invariance so to reach
a reliable result in requested accuracy. To serve the goal, onc cither restores the
gauge invariance to antomatically remove the dangerous power divergence or gets
rid of the troublesome term directly as we do in this work. For restoration of
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the gauge invariance, an appropriate scheme is to include all loop corrections of
the self-energy and vertex whose absorptive parts would consistently result in the
imaginary part in the full propagator of W-boson, Z-boson and fermions and retains
the gauge invariance [11][12]. In ref.[12], the authors proved that the absorptive
part of the triangular loop compensates the unbalance at s- and t-channels due to
introducing finite width to the unstable W-boson, so the gauge invariance is regained
in the calculations. The authors showed that deviations for various schemes which
are adopted to retain gauge invariance and eliminate the power divergence s/m?,
are reasonably small. In our scheme, we just simply avoid the trouble of power
divergence and suppress the gauge invariance violation effects. Indeed, in principle
and in practice our scheme may let the calculations escape from the trouble due to
violation of the gauge invariance caused by phenomenologically introducing a finite
width in the propagator(s).

The advantages of the scheme are obvious. At least many large number cancellations

due to internal gauge invariance in a concerned process is avoided. Those advantages
are crucial sometimes for numerical calculations. Futhermore, a simple but rough
numerical computation indicates that the final results for the cross sections of
ete” — e Doud in the projection scheme only deviates from that in the schemes

which restore the gauge invariance by considering a loop correction to the W W~y —vertex

by less than 1%. A more careful calculation is in progress and the results will he
published some time later. [16].

Since the process ete™ — ude™ 5, attracts much attentions due to its significance
for better understanding top physics and precise test of the standard model, further
studies are going on {17]. Indeed, a convenient method which greatly simplifics
analysis of data and at the same time obtains results deviating from the ’accurate’
values obtained by other more solid, but much more complicated ways only by a
small fraction within the experimentally allowed tolerance, should be helpful and
probably preferable. This projection scheme may be one of the appropriate and
desired ones for both experimentalists and theoreticians.
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Figure Captions
Fig.1, (a) through (d), the Feynman diagrams where a t-channel photon propagator
is involved.

Fig.2. The dependence of the cross sections on the angle cut (Be)eut- The upper
four curves show a rapid rise near (8,)c — 0, which correspond to the cross sections
of the individual diagrams of Fig.1 calculated in the regular scheme. Whereas
the lower four solid lines also correspond to the individual diagrams of Fig.1, but
calculated with the projection scheme. The dashed line is the total cross section.
To compare with the previous calculations, we take m; = 140 GeV and /5 = 190
GeV.
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