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1 Introduction

The factorization theorems [1] provide us with powerful tools to study the processes with large

momentum transfers. They give us the possibility to separate the contributions responsible for

physics of large and small distances. The former are parametrized by the hadron’s parton distri-

bution functions, or by parton correlators in general, which are uncalculable at the moment from

the first principles of the theory, while the second ones — hard-scattering subprocesses — can be

dealt perturbatively. The parton distributions are defined in QCD by the target matrix elements

of the light-cone correlators of field operators [2]. This representation allows for the estimation

of these quantities by the non-perturbative methods presently available, which are close to the

fundamental QCD Lagrangian [3].

The increasing accuracy of the experimental measurements requires the unravelling of the twist-

3 effects in the hard processes, which manifest the quantum mechanical interference of partons in

the interacting hadrons. The most important advantage of the twist-3 structure functions is that,

while being important for understanding the long-range quark–gluon dynamics, they contribute

at leading order in 1/Q (Q being the momentum of the probe) to certain asymmetries [4, 5]

and therefore may be directly extracted from experiments [6]. To confront the theory with high-

precision data, the knowledge of the scale dependence of the measurable quantities is needed.

The Q2 evolution of the parton distributions [7, 8] can be predicted by exploiting the powerful

methods of renormalization group (RG) and QCD perturbation theory. The evolution equation

of the twist-3 polarized chiral-even nucleon structure function g2(x) was extensively discussed in

the literature [9]–[13] as well as its solution in the multicolour QCD and asymptotical values of

orbital momentum n→ ∞ (x→ 1 region) [14].

In this paper we address the study of the evolution of other twist-3 structure functions of the

nucleon: chiral-odd distributions e(x) and hL(x) [5], which open a new window to explore the

nucleon content. The present study was induced by several reasons and pursues various goals.

First, while the anomalous dimensions of the local operators corresponding to the moments of the

chiral-odd distributions were computed for the real QCD case [15], the kernels of the evolution

equations were derived only in the multicolour limit [16]. From the point of view of experimental

measurements, the knowledge of the evolution of the whole x-dependent distribution is welcome.

However, exact equations that takes into account the O(1/N2
c ) effects are lost, although we may

expect sizeable 1/N2
c effects for the small-x behaviour of the distribution functions, provided the

non-leading terms in Nc yield the rightmost singularity in the complex n-plane of the angular

momentum with respect to the leading-order result. Second, up to now the relation between

different formulations of the evolution equations in the light-cone fraction [9, 10] and light-cone

position [11, 17] representations was obscure. So, the aim of the present paper is two fold: to fill the
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gap in our knowledge of the exact (taking into account of the 1/N2
c effects) higher-twist evolution

equations for chiral-odd distributions and to provide the relation between different calculational

approaches. We attempt here to clarify these issues.

The outline of the paper is the following. We start with the construction of the basis of the

twist-3 chiral-odd polarized and unpolarized correlation functions, mixed under the renormaliza-

tion group evolution, and find the equations that govern their scale dependence in the momentum

fraction as well as in the light-cone position representations in Section 2. In Section 3 we present

the Fourier transformation of the evolution kernels, which simplifies the transition from one repre-

sentation to another. Section 4 is devoted to the construction of the generalized DGLAP equation

in mixed representation for the twist-3 distributions, which is the most useful for solving the RG

equations in the large-Nc limit as well as for asymptotical values of the orbital momentum n. The

corresponding analytical solution, as well as a numerical study of exact equations is performed in

Section 5. The final Section contains a discussion and concluding remarks.

To make the discussion complete and more transparent, we include several appendices. In

Appendix A we present definitions and some properties of the Θ-functions that appeared in the

formulation of the evolution equations in the momentum space. In Appendix B the evolution

equations for the redundant basis of operators are found in the Abelian gauge theory. This shows

the self-consistency of the whole approach. The anomalous-dimension matrix of local twist-3

operators obtained from the evolution equations we have derived in the main text are written in

Appendix C. It coincides with results known in the literature [15].

2 Evolution of chiral-odd twist-3 correlation functions

As we mentioned in the Introduction, the parton distribution functions in QCD are defined by the

Fourier transforms along the null-plane of the forward matrix element of the parton field operators

product separated by an interval λ on the light cone:

F(λ) ≡ F(λ, 0) = φ∗(0)φ(λn), (1)

where φ denotes a quark ψ or a gluon field Bµ. We suppress the dependence on the renormalization

scale µR, necessary to make this equation well defined in field theory. Throughout the paper we

use the ghost-free B+ ≡ Bµn
µ = 0 gauge. Here n is a light-cone vector n2 = 0 normalized with

respect to the four-vector P = p + 1
2
M2

hn of the parent hadron h of mass Mh, i.e. nP = 1, and

p is a null vector along the opposite tangent to the light cone such that p2 = 0, np = 0. In

any covariant gauge a path-ordered link factor should be inserted between the φ-fields so as to

maintain the gauge invariance of the physical quantities. The Fourier transformations from the
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coordinate to the momentum space and vice versa are given by

F (x) =
∫ dλ

2π
eiλx〈h|F(λ)|h〉, 〈h|F(λ)|h〉 =

∫
dxe−iλxF (x). (2)

Both of these representations display the complementary aspects of the factorization. The light-

cone position representation is suitable to make contact with the operator product expansion

(OPE) approach, while the light-cone fraction representation is appropriate for establishing the

language of the parton model. Throughout the paper we will use the light-cone position and the

light-cone fraction representations in parallel.

The multiparton distributions corresponding to the interference of higher Fock components

in the hadron wave functions that emerge at the twist-3 level are the generalizations of (1) to

3-parton fields

F(λ, µ) ≡ F(λ, 0, µ) = φ∗(µn)φ(0)φ(λn). (3)

We do not display the quantum numbers of the field operators since they are not of relevance at

the moment. The direct and inverse Fourier transforms are

F (x, x′) =
∫
dλ

2π

dµ

2π
eiλx−iµx′

〈h|F(λ, µ)|h〉, 〈h|F(λ, µ)|h〉 =
∫
dxdx′e−iλx+iµx′

F (x, x′). (4)

The variables x and x′ are the momentum fractions of incoming φ and outgoing φ∗ partons,

respectively. The restrictions on their physically allowed values come from the support properties

of the multiparton distribution functions discussed at length in Ref. [19], namely F (x, x′) vanishes

unless 0 ≤ x ≤ 1, 0 ≤ x′ ≤ 1.

Beyond the leading-twist level the intuitive parton-like picture is not so immediate, as one

usually starts with an overcomplete set of correlation functions. However, the point is that the

equations of motion for field operators imply several relations between correlators, and the prob-

lem of construction of the simpler operator basis is reduced to an appropriate exploitation of these

equalities. The guiding line to disentangle the twist structure is clearly seen in the light-cone for-

malism of Kogut and Soper [18]. Consider, for instance, the correlators containing two quarks ψ̄ψ.

Then decomposing the Dirac field into “good” and “bad” components with Hermitian projection

operators P± = 1
2
γ∓γ±: ψ± = P±ψ, we have three possible combinations ψ†

+ψ+, ψ†
+ψ− ± ψ†

−ψ+,

and ψ†
−ψ−, which are of twist 2, 3 and 4, respectively. The origin of this counting lies in the

dynamical dependence of the “bad” components of the Dirac fermions

ψ− = −
i

2
∂−1

+ (i 6D⊥ +m) γ+ψ+. (5)

These components depend on the underlying QCD dynamics, i.e. they implicitly involve extra

partons and thus correspond to the generalized off-shell partons, which carry the transverse mo-

mentum. For this reason we come back to the on-shell massless collinear partons of the naive
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parton model, but supplemented with multiparton correlations through the constraint (5). The

operators constructed from the “good” components only were named quasi-partonic [10]. The

advantage of handling them is that they endow the theory with a parton-like interpretation for

higher twists.

At the twist-3 level the nucleon has two chiral-odd distributions e and hL
2, which can be

measured in the polarized Drell–Yan and semi–inclusive DIS processes. Under QCD evolution,

they couple to complicated quark–gluon operators and correlation functions, depending on the

quark mass and intrinsic transverse momentum. We will treat below the unpolarized and polarized

cases separately.

2.1 Unpolarized distributions

In the unpolarized case we define the following redundant basis chiral-odd twist-3 correlation

functions:

e(x) =
x

2

∫
dλ

2π
eiλx〈h|ψ̄(0)ψ(λn)|h〉, (6)

M(x) =
1

2

∫
dλ

2π
eiλx〈h|ψ̄(0)mγ+ψ(λn)|h〉, (7)

D1(x, x
′) =

1

2

∫
dλ

2π

dµ

2π
eiλx−iµx′

〈h|ψ̄(µn)gγ+ 6B⊥(0)ψ(λn)|h〉, (8)

D2(x
′, x) =

1

2

∫
dλ

2π

dµ

2π
eiµx′−iλx〈h|ψ̄(λn)g 6B⊥(0)γ+ψ(µn)|h〉. (9)

The functions D1 and D2 are related by complex conjugation [D1(x, x
′)]∗ = D2(x

′, x). The quan-

tities determined by these equations form a closed set under renormalization; however, they are

not independent, since there is a relation between them due to the equation of motion for the

Heisenberg fermion field operator:

e(x) −M(x) −
∫
dx′D(x, x′) = 0, (10)

where we have introduced the convention

D(x, x′) =
1

2
[D1(x, x

′) +D2(x
′, x)] . (11)

This function is real-valued and antisymmetric with respect to the exchange of its arguments:

[D(x, x′)]
∗

= D(x, x′), D(x, x′) = −D(x′, x). (12)

In Appendix B we present a set of RG equations for the correlation functions determined by

Eqs. (6)–(9) derived in Abelian gauge theory. The relation (10) provides a strong check of our
2In the language of OPE the local twist-3 as well as twist-2 operators contribute to the matrix elements of the

distribution function hL. Equation (27) is a consequence of this fact.
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calculations3. It allows the reduction of the RG analysis to the study of scale dependence of the

three-parton D and mass-dependent M correlators only.

The function D(x, x′) is gauge-variant provided we use the gauge other than light-cone; there-

fore, we are forced to introduce the gauge-invariant quantity

Z(x, x′) = (x− x′)D(x, x′). (13)

Using the advantages of the light-cone gauge, where the gluon field is expressed in terms of the

field strength tensor (the residual gauge degrees of freedom are fixed by imposing an antisymmetric

boundary conditions on the field, which allows unique inversion):

Bµ(λn) = ∂−1
+ G+µ(λn) =

1

2

∫ ∞

−∞
dzǫ(λ− z)G+µ(z), (14)

and taking into account the relation

1

2

∫
dλ

2π
e±iλxǫ(λ− z) = ±

i

2π
PV

1

x
e±izx, (15)

we can easily obtain from Eqs. (8) and (9) the definition of the gauge-invariant quantities in terms

of three-particle string operators. Generically

Z(x, x′) =
1

2

∫ dλ

2π

dµ

2π
eiλx−iµx′

〈h|Z(λ, µ) + Z(−µ,−λ)|h〉, (16)

where

Z(λ, µ) ≡ Z(λ, 0, µ) =
1

2
ψ̄(µn)gG+ρ(0)σ⊥

ρ+ψ(λn). (17)

In the same way, for a mass-dependent non-local string operator

Mj(λ) ≡ Mj(λ, 0) =
m

2
ψ̄(0)γ+(iD+(λ))jψ(λn), (18)

the Fourier transform is

M j(x) = xjM(x) =
∫
dλ

2π
eiλx〈h|Mj(λ)|h〉. (19)

For the spin-dependent scattering discussed below, the only difference is that one should insert

also a γ5-matrix between the fields in the definitions of the string operators (17), (18).

3This fact follows from general renormalization properties of gauge-invariant operators as one expects that the

counter term for the equation of motion operator can be given only by the operator itself. Its matrix element,

being taken with respect to the physical state, decouples completely from the renormalization group evolution.
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2.2 Polarized distributions

Analogously, the set of correlation functions for the polarized case is as follows:

h1(x) =
1

2
S⊥

σ

∫
dλ

2π
eiλx〈h|ψ̄(0)iσ ⊥

+σγ5ψ(λn)|h〉, (20)

hL(x) =
x

2

∫
dλ

2π
eiλx〈h|ψ̄(0)iσ+−γ5ψ(λn)|h〉, (21)

M̃(x) =
1

2

∫
dλ

2π
eiλx〈h|ψ̄(0)mγ+γ5ψ(λn)|h〉, (22)

K(x) =
1

2

∫ dλ

2π
eiλx〈h|ψ̄(0)iγ+ 6∂⊥γ5ψ(λn)|h〉, (23)

D̃1(x, x
′) =

1

2

∫ dλ

2π

dµ

2π
eiλx−iµx′

〈h|ψ̄(µn)gγ+ 6B⊥(0)γ5ψ(λn)|h〉, (24)

D̃2(x
′, x) =

1

2

∫
dλ

2π

dµ

2π
eiµx′−iλx〈h|ψ̄(λn)gγ+ 6B⊥(0)γ5ψ(µn)|h〉, (25)

where S⊥
σ denotes the transverse polarization vector of the hadron h (S2 = −M2

h). The derivative

in the correlation function K(x) acts on the quark field before setting its argument on the light

cone.

Besides the identity arising from the equation of motion

hL(x) − M̃(x) −K(x) −
∫
dx′D̃(x, x′) = 0, (26)

there is an equation provided by Lorentz invariance

2xh1(x) = 2hL(x) − x
∂

∂x
K(x) − 2x

∫
dx′

D̃(x, x′)

(x′ − x)
. (27)

It means that both parts of this equality are expressed in terms of matrix elements of different

components of one and the same twist-2 tensor operator. Again we have introduced the C-even

quantity D̃, which has the properties

[
D̃(x, x′)

]∗
= D̃(x, x′), D̃(x, x′) = D̃(x′, x). (28)

Combining the two Eqs. (26) and (27) we can obtain the following relation between the correlators:
(

2 − x
∂

∂x

)
hL(x) = 2xh1(x) − x

∂

∂x
M̃(x) +

∫
dx′

x

x′ − x

[
∂

∂x
−

∂

∂x′

]
Z̃(x, x′), (29)

where Z̃(x, x′) is a gauge-invariant quantity introduced by Eq. (13), but for the function D̃(x, x′).

Solving the differential equation with respect to hL(x) the integration constant can be found from

the support properties of the distribution: hL(x) = 0 for |x| ≥ 1. The solution is

hL(x) = 2x2
∫ 1

x

dβ

β2
h1(β) + M̃(x) − 2x2

∫ 1

x

dβ

β3
M̃(β) + x2

∫ 1

x

dβ

β2

∫
dβ ′

β ′ − β

[
∂

∂β
−

∂

∂β ′

]
Z̃(β, β ′).

(30)
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A similar relation was found by Jaffe and Ji 4 in Ref. [5]. Here the dynamical twist-3 contribution

is explicitly related to the particular integral of the three-parton correlation function Z̃. In terms

of local operators it looks like

(n+ 3)[hL]n = 2[h1]n+1 + (n+ 1)M̃n +
n∑

l=1

(n− l + 1)Z̃ l
n, (31)

and the definition of moments of distribution functions is given by Eq. (C.1).

As before, excluding the functions (21) and (23), and using the relations (26) and (27), we can

chose the basis of independent functions in the form: h1(x), M̃(x), D̃(x, x′).

2.3 Evolution equations

Note that in the leading logarithmic approximation the evolution equations that govern the Q2-

dependence of the three-particle correlation functions are the same, discarding the mixing with

the quark mass operator. Therefore we omit the “tilde” sign in what follows. We evaluate the

evolution equations using the different approaches described in [9, 10] and [13] and keep to general

remarks.

The peculiar feature of the light-like gauge is the presence of the spurious IR pole 1/k+ in the

density matrix of the gluon propagator:

Dµν(k) =
dµν(k)

k2 + i0
, dµν = gµν −

kµnν + kνnµ

k+
. (32)

The central question is how to handle this unphysical pole when k+ = 0. In the calculation of the

relevant Feynman diagrams shown in Fig. 1 (and trivial self-energy insertions into external legs)

we assume two different approaches, which employ the principal value (PV) and Mandelstam–

Leibbrandt prescriptions (ML) [20]:

PV
1

k+

=
1

2

{
1

(kn) + i0
+

1

(kn) − i0

}
, (33)

ML
1

k+
=

(kn∗)

(kn)(kn∗) + i0
, (34)

with the arbitrary four-vector n∗ satisfying n∗2 = 0, nn∗ = 1 (without loss of generality, we can

put it equal to p). The first prescription will be used in the momentum space [9, 10, 21], the

second one in the coordinate space formulation [13]. As a by-product we verify that both of them

do lead to the same result.

4Corresponding expressions in Ref. [5] contain misprints.
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In the light-cone fraction representation we get for the correlation function D(x, x′):

Ḋ (x, x′) = −
α

2π

{
−CF

(x− x′)

xx′

[
x′M(x)Θ0

11(x
′, x′ − x) ± xM(x′)Θ0

11(x, x− x′)
]

+
∫
dβ

(
CFD(β, x′)

x

x′
Θ0

11(x, x− x′) +
CA

2

(
[D(β, x′) −D(x, x′)]

x

(x− β)
Θ0

11(x, x− β)

+[D(β + x′, x′) −D(x, x′)]
(x− x′)

(x− x′ − β)
Θ0

11(x− x′, x− x′ − β)

+
(β + x− x′)

x′

(
D(β, x′)

x

(x′ − x)
Θ0

11(x, x− β) +D(β + x′, x′)Θ0
11(x− x′, x− x′ − β)

))

+
(
CF −

CA

2

)(
D(β, x′)

(β + x− x′)

(x′ − x)
Θ0

111(x, x− x′, x− x′ + β)

+[D(β, x′ − x+ β) −D(x, x′)]
x

x− β
Θ0

11(x, x− β)
))

+
∫
dβ ′

(
CFD(x, β ′)

x′

x
Θ0

11(x
′, x′ − x) +

CA

2

(
[D(x, β ′) −D(x, x′)]

x′

(x′ − β ′)
Θ0

11(x
′, x′ − β ′)

+[D(x, β ′ + x) −D(x, x′)]
(x′ − x)

(x′ − x− β ′)
Θ0

11(x
′ − x, x′ − x− β ′)

+
(β ′ + x′ − x)

x

(
D(x, β ′)

x′

(x− x′)
Θ0

11(x
′, x′ − β ′) +D(x, β ′ + x)Θ0

11(x
′ − x, x′ − x− β ′)

))

+
(
CF −

CA

2

)(
D(x, β ′)

(β ′ + x′ − x)

(x′ − x)
Θ0

111(x
′, x′ − x, x′ − x+ β ′)

+[D(x− x′ + β ′, β ′) −D(x, x′)]
x′

x′ − β ′
Θ0

11(x
′, x′ − β ′)

))
−

3

2
CFD(x, x′)

}
, (35)

and for the mass-dependent correlation function we have

Ṁ(x) = −CF
α

2π

∫
dβM(β)

{
2

[
β

(x− β)
Θ0

11(x, x− β)

]

+

+
β + x

β
Θ0

11(x, x− β)

}
, (36)

where we have used the dot as short-hand for the logarithmic derivative with respect to the

renormalization scale ˙= µ2
R ∂/∂µ

2
R and the standard plus-prescription fulfilling

∫
dx[...]+ = 0 [for

a definition see Eq. (B.4)]. The kernel of the last equation resembles the non-singlet splitting

function of (un)polarized scattering up to the additional term α
2π

3
2
CF δ(x − β), which is the one-

loop renormalization constant of the quark mass taken with a minus sign. An explicit form of

the Θ-functions is given in Appendix A. Throughout the paper the plus and minus signs in the

mass-operator term correspond to the functions D (for e) and D̃ (for hL), respectively.

For the string operators (or their matrix elements) we obtain the following compact RG equa-

tion:

Ż(λ, µ) =
α

2π

∫ 1

0
dy
∫ ȳ

0
dz
{
CF ȳ

2δ(z)
[
M1(λ− µy) ±M1(λy − µ)

]

8



+
CA

2

[
2z̄ + [N(y, z)]+ −

7

4
δ(ȳ)δ(z)

]
[Z(λy, µ− λz) + Z(λ− µz, µy)]

+
(
CF −

CA

2

) [[
[L(y, z)]+ −

1

2
δ(y)δ(z)

]
Z(λz̄ + µz, µȳ + λy)

− 2z [Z(−λy, µ− λz̄) + Z(λ− µz̄,−µy)]
]}
, (37)

with

[N(y, z)]+ = N(y, z) − δ(ȳ)δ(z)
∫ 1

0
dy′

∫ ȳ′

0
dz′N(y′, z′), N(y, z) = δ(ȳ − z)

y2

ȳ
+ δ(z)

y

ȳ
,

[L(y, z)]+ = L(y, z) − δ(y)δ(z)
∫ 1

0
dy′

∫ ȳ′

0
dz′L(y′, z′), L(y, z) = δ(y)

z̄

z
+ δ(z)

ȳ

y
. (38)

The equations written so far should be supplemented by the following

Ṁ1(λ) =
α

2π
CF

∫ 1

0
dy

{[
2

ȳ

]

+

− 2 − y − y2

}
M1(λy), (39)

ḣ1(λ) =
α

2π
CF

∫ 1

0
dy

{[
2

ȳ

]

+

− 2 +
3

2
δ(ȳ)

}
h1(λy). (40)

The last one, when transformed to the momentum space using the formulae of the next section,

coincides with the result obtained in Ref. [22].

3 From light-cone position to light-cone fraction

representations

Having at hand the evolution equations in different representations for the same quantities, it is

instructive to relate the kernels in both cases. Such a bridge can be easily established using the

Fourier transformation for the parton distribution functions given by Eqs. (2) and (4).

First, we come to the simpler case of the two-particle correlation functions F . The evolution

equation in the light-cone position space is of the following generic form

Ḟ(λ) =
∫ 1

0
dyK(y)F(λy), (41)

where K(y) is an evolution kernel in the coordinate space. By exploiting the definitions (2) we

can recast the Fourier transform on the language of two-particle evolution kernels. In this way we

find the direct transformation

K(x, β) =
∫ 1

0
dyK(y)δ(x− yβ). (42)

And using the general formula

∫ 1

0
dyf(y)δ(x− yβ) = f

(
x

β

)
Θ0

11(x, x− β). (43)
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with the familiar Θ-function of the momentum space formulation, we can observe that the RG

equations for two-parton correlators derived in the previous section indeed coincide. The inverse

transformation can be done
∫
dxdβ

2π
e−iλx+iµβK(x, β) =

∫ 1

0
dyK(y)δ(µ− yλ) (44)

with the help of the formula
∫
dxdβ

2π
f

(
x

β

)
Θ0

11(x, x− β)e−iλx+iµβ =
∫ 1

0
dyf(y)δ(µ− yλ). (45)

The corresponding transformation for three-particle correlators is a little bit more involved.

The general form of the evolution equation for the light-cone string operator Z(λ, µ) reads

Ż(λ, µ) =
∫ 1

0
dy
∫ ȳ

0
dzK(y, z)Z(η11λ+ η12µ, η21λ+ η22µ), (46)

where ηij are linear functions of the variables y, z. In the momentum fraction representation the

evolution equation looks like

Ż(x, x′) =
∫
dβdβ ′K(x, x′, β, β ′)Z(β, β ′). (47)

Specifying the particular form of the functions ηij , we list below the corresponding conversion

formulae.

For the CA/2 part of the evolution equation, the Fourier transformation gives

K(x, x′, β, β ′) = δ(β ′ − x′)
∫ 1

0
dy
∫ ȳ

0
dzK(y, z)δ(x− x′z − βy). (48)

The particular contributions are

K1(y, z) = δ(ȳ)δ(z)
FT
→ K1(x, x

′, β, β ′) = δ(β − x)δ(β ′ − x′), (49)

K2(y, z) = δ(z)
y

ȳ
+ δ(ȳ − z)

y2

ȳ
FT
→ K2(x, x

′, β, β ′) = δ(β ′ − x′)
{

x

β − x
Θ0

11(x, x− β)

+
(x− x′)2

(β − x)(β − x′)
Θ0

11(x− x′, x− β)
}
, (50)

K3(y, z) = 1
FT
→ K3(x, x

′, β, β ′) = δ(β ′ − x′)Ξ1(x, x− x′, x− β)

= −δ(β ′ − x′)Θ0
111(x, x− x′, x− β), (51)

K4(y, z) = z
FT
→ K4(x, x

′, β, β ′) = δ(β ′ − x′)
{
x− β

x′
Ξ1(x, x− x′, x− β)

+
β

x′
Ξ2(x, x− x′, x− β)

}
. (52)

Here we have used (43) and the following useful formula

Ξn(x, x− x′, x− β) ≡
∫ 1

0
dyynΘ0

11((x− β) + yβ, (x− β) − y(x′ − β))

=
1

n

[
1 −

(
β − x

β − x′

)n]
Θ0

11(x, x− x′) +
1

n

β

x′

[(
β − x

β − x′

)n

−

(
β − x

β

)n]
Θ0

11(x, x− β). (53)
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The analogous results for the (CF − CA/2) part of the kernel read

K(x, x′, β, β ′) = δ(β ′ − x′)
∫ 1

0
dy
∫ ȳ

0
dzK(y, z)δ(x− x′z̄ + βy), (54)

and in particular

K1(y, z) = z
FT
→ K1(x, x

′, β, β ′) = δ(β ′ − x′)
{
x′ − x− β

x′
Ξ1(x

′ − x,−x, x′ − x− β)

+
β

x′
Ξ2(x

′ − x,−x, x′ − x− β)
}
. (55)

In addition, we have

K(x, x′, β, β ′) =
∫ 1

0
dy
∫ ȳ

0
dzK(y, z)δ(x− βz̄ + β ′y)δ(x′ − β ′ȳ + βz) (56)

and

K1(y, z) = δ(z)
ȳ

y
FT
→ K1(x, x

′, β, β ′) = δ(β − (β ′ − x′ + x))
x′

β ′ − x′
Θ0

11(x
′, x′ − β ′). (57)

These formulae complete the list of transformations. Collecting particular contributions, we can

easily verify that the evolution equations given by Eqs. (35) and (37) agree with each other. It

should be noted that it is sufficient to have at hand Eqs. (43) and (53) to perform the conversion

from one representation to another.

4 Generalized DGLAP-type equations

To study the large-Nc limit and establish the relation to the evolution equation for the par-

tially Mellin-transformed operators introduced in Refs. [11, 14, 16], we proceed to the generalized

DGLAP representation of the evolution equation for three-particles distributions first given in the

second paper of Ref. [13]. For this purpose we define a new function, Fourier-transformed with

respect to the λ variable only:

Z(x, u) =
1

2

∫
dλ

2π
eiλx〈h|Z(ūλ,−uλ) ± (u→ ū)|h〉, (58)

which is even under charge conjugation and depends on the variables x and u. The latter has the

meaning of the relative position of the gluon field on the light cone. For 0 ≤ u ≤ 1 the gluon field

lies between the two quark fields. Because of the support property |x| ≤ max(1, |2u − 1|), the

variable x is then restricted to |x| ≤ 1 and can be interpreted as an effective momentum fraction.

The evolution equation for Z(x, u) can be derived in a straightforward way from the RG

equation (37) for the non-local string operator Z. It can be presented in the form of a generalized

11



DGLAP-type equation:

Ż (x, u) =
αs

2π

∫
dy

y

∫
dv

{
PZZ(y, u, v)Z

(
x

y
, v

)
+ PZm(y, u, v)m

(
x

v

)}
, (59)

ṁ(x) =
αs

2π

∫
dy

y
Pmm(y)m

(
x

y

)
. (60)

Here, m(x) = xM(x) and the integration region is determined both by the support of Z(x, u) and

by the kernels

PZZ(x, u, v)

=
(
CF −

CA

2

) [
Θ1(x, u, v)[L(x, u, v)]+ − Θ2(x, u, v)M(x, u, v)−

1

4
δ(u− v)δ(x̄)

]

+
CA

2
Θ3(x, u, v)

[
M(x, u, v) + [N(x, u, v)]+ −

7

4
δ(u− v)δ(x̄)

]
+

(
u → ū

v → v̄

)
, (61)

PZm(x, u, v) = CF x̄
2θ(x)θ(x̄)

x

v
[δ(v − ū− xu) ± δ(v − u− xū)] , (62)

Pmm(x) = CF

[[
2

x̄

]

+
− 2 − x− x2

]
, (63)

where the auxiliary functions are defined by:

Θ1(x, u, v) = θ(x)θ(u− xv)θ(ū− xv̄),

Θ2(x, u, v) = θ
(
−
xv̄

ū

)
θ
(

1 − xv

ū

)
θ
(
x− u

ū

)
,

Θ3(x, u, v) = θ
(
x̄

ū

)
θ
(
xv̄

ū

)
θ
(
xv − u

ū

)
,

L(x, u, v) =
u2

v(v − u)
δ(u− xv),

M(x, u, v) =
2x(1 − xv)

ū3
,

N(x, u, v) =
v̄ǫ(ū)

ū(v − u)

[
v̄

ū
δ(x̄) +

u2

v
δ(u− xv)

]
. (64)

The plus-prescription for the arbitrary function A is defined by the equation

Θi(x, u, v)[A(x, u, v)]+

= Θi(x, u, v)A(x, u, v)− δ(x̄)δ(u− v)
∫ 1

0
dx′

∫
dv′Θi(x

′, u, v′)A(x′, u, v′). (65)

Note that, due to the evolution, the variable u is no longer restricted to the region 0 ≤ u ≤ 1.

Going further, we introduce the Mellin transforms

Z
n(u) =

∫
dxxn−1

Z(x, u) and mn =
∫
dxxn−1m(x) =

∫
dx xnM(x), (66)

12



where n is the complex angular momentum. Operators with different n do not mix with each

other and satisfy the evolution equations

Ż
n(u) =

αs

2π

∫
dv {P n

ZZ
(u, v)Zn(v) + δ(u− v) [P n

Zm(v) ± P n
Zm(v̄)]mn} , (67)

ṁn =
αs

2π
P n

mmm
n. (68)

The kernels are given by

P n
ZZ

(u, v) =
(
CF −

CA

2

) [
Θ1(u, v)[L

n(u, v)]+ − Θ2(u, v)M
n
1 (u, v) −

1

4
δ(u− v)

]

+
CA

2
Θ3(u, v)

[
Mn

2 (u, v) + [Nn(u, v)]+ −
7

4
δ(u− v)

]
+

(
u→ ū

v → v̄

)
,

P n
Zm(v) = CF

2 − v̄n[2 + n(2 + (n+ 1)v)v]

n(n+ 1)(n+ 2)v3
,

P n
mm = −CF (Sn + Sn+2) , (69)

where the auxiliary functions read

Θ1(u, v) = θ(v − u), Θ2(u, v) = θ(−v̄)θ(1 − vu), Θ3(u, v) = θ(v̄)θ(v − u). (70)

Ln(u, v) =
ǫ(v)

v − u

(
u

v

)n+1

,

Mn
1 (u, v) =

2

ū3

{
1

n + 1

[
1

vn+1
− un+1

]
−

v

n+ 2

[
1

vn+2
− un+2

]}
,

Mn
2 (u, v) =

2

ū3

{
1

n+ 1

[
1 −

(
u

v

)n+1
]
−

v

n+ 2

[
1 −

(
u

v

)n+2
]}

,

Nn(u, v) =
v̄ǫ(ū)

ū(v − u)

{
v̄

ū
+ ǫ(v)

(
u

v

)n+1
}
. (71)

The plus-prescription is defined as

Θi(u, v)[A
n(u, v)]+ = Θi(u, v)A

n(u, v) − δ(u− v)
∫
dv′Θi(u, v

′)An(u, v′). (72)

It is not difficult to observe that, in multicolour limit, Eq. (67) is exactly reduced to the equation

of Ref. [16], which was the starting point of their analysis. However, we will start from Eq. (59) in

the mixed representation and show in the next section that in the multicolour limit the generalized

splitting functions can be diagonalized.
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5 Solution of the evolution equations in multicolour QCD

This section is devoted to the solution of the evolution equations we derived in the previous

sections for the twist-3 correlation functions. First of all, we perform an extensive numerical

study of the exact Eq. (67). For simplicity we restrict ourselves to the homogeneous case, i.e.

we discard the quark-mass operator, which is certainly a justified assumption for the light u-

and d-quark species. The solution we are interested in is given in terms of the eigenvalues and

eigenfunctions of the anomalous-dimension matrix ZZγ
l
n of the local operators Z l

n calculated in

Appendix C. The eigenvalue problem we have attacked has no analytical solution; however, the

diagonalization can be done numerically for moderately large orbital momentum n, e.g. n ≤ 100,

which is quite sufficient for practical purposes. Second, we provide the analytical solution of

the generalized DGLAP equation in the multicolour limit of QCD. In this case it reduces to the

familiar ladder-type equation that holds for the twist-2 operators. It will be shown that such a

reduction occurs in the limit x → 1 too. Assembling the two results allows us to construct the

improved DGLAP-type equations for two-quark twist-3 distributions. Exploiting some examples

of the evolution for the moments, we confront these two approaches. In particular, we study

the accuracy of the improved DGLAP equation with respect to the exact evolution for different

models of gluon light-cone position distribution for the three-particle correlation function at low

momentum scale.

5.1 Evolution of the moments

To obtain the solution of the evolution equation (67) we choose n as a positive integer. In this

case, as follows from the definition (58) of Z
n(u) the n-th moment is actually given by the following

linear combination of local operators Z l
n (see Eq. (C.1)):

Z
n(u) =

n∑

l=1

C l−1
n−1 u

n−lūl−1Z l
n, (73)

so that Z
n(u) is a polynomial of degree n−1 in u. Thus the kernel P n

ZZ
(u, v) possesses n polynomial

eigenfunctions en
l (v):

∫
dv P n

ZZ
(u, v)en

l (v) = −λn
l e

n
l (u), l = 1, . . . , n, (74)

where −λn
l denotes the eigenvalues. These eigenfunctions can be constructed by diagonalization

Ck−1
n−1

∫
dv P n

ZZ
(u, v)vn−kv̄k−1 =

n∑

l=1

C l−1
n−1ZZγ

n
lk u

n−lūl−1, (75)
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where the anomalous-dimension matrix ZZγ
n
lk of the local operators is given by Eq. (C.8). Actually,

this is a purely algebraic task and we find

en
k(u) =

n∑

l=1

C l−1
n−1 u

n−lūl−1En
lk, with

{
(En)−1

ZZγ
nEn

}
kl

= −λn
kδ(k − l), (76)

where δ(k − l) is a Kronecker symbol defined by Eq. (C.9). The spectrum of the eigenvalues λn
l

up to n = 50 is shown in Fig. 2a, together with some examples of the eigenfunctions of the kernel

P n
ZZ

for particular orbital momenta. The solution for the moments Z
n(u) (in the massless case) is

then expressed in terms of the eigenfunctions and eigenvalues we have found:

Z
n
(
u,Q2

)
=

n∑

l=1

cnl
(
Q2

0

)
en

l (u) exp

{
−
∫ Q2

Q2

0

dt

t

αs(t)

2π
λn

l

}
. (77)

The coefficients cnl (Q2
0) at the reference momentum squared Q2

0 have to be determined from the

non-perturbative input Z
n (u,Q2

0):

cnl
(
Q2

0

)
=

n∑

k=1

(En
lk)

−1 (n− k)!

(n− 1)!

dk−1

dwk−1
(1 + w)n−1

Z
n
(

1

1 + w
,Q2

0

)

|w=0
. (78)

5.2 Reduction of the evolution equations

In the large-Nc limit only the planar diagrams (Fig. 1 a, d) survive and the kernel P n
ZZ

(u, v)

has two known dual eigenfunctions: 1 and 1 − 2u, so that
∫ 1
0 du e

n
l (u) = δl1 + O(1/Nc) and

∫ 1
0 du (1−2u)en

l (u) = δl2 +O(1/Nc), where l = 1, 2 correspond to the lowest two eigenvalues of the

spectrum shown in Fig. 2a. A straightforward calculation gives the following DGLAP evolution

kernels:

∫ 1

0
du





1
1−2u
1−2v



PZZ(x, u, v) = Nc θ(x̄)θ(x)





[
x2

x̄

]
+

+ 1
2
x2 − 5

4
δ(x̄)

[
x2

x̄

]
+
− 3

2
x2 − 5

4
δ(x̄)





+ O
(

1

Nc

)
, (79)

and for the mass-mixing kernels the exact results read

∫ 1

0
du





1
1−2u
1−2v



PZm(x, u, v) = CF θ(x̄)θ(x)




x(2 − x)

0



 for e,

∫ 1

0
du





1
1−2u
1−2v



PZm(x, u, v) = CF θ(x̄)θ(x)





0

x(2 − 3x)



 for h̃L. (80)

As was first observed in Ref. [14] in the context of the chiral-even distribution g2(x), similar

equations hold true also for the 1
Nc

-suppressed terms in the x → 1 limit for flavour non-singlet

twist-3 evolution kernels. In the present chiral-odd case, we find

∫ 1

0
du





1
1−2u
1−2v



PZZ(x, u, v) = −

1

Nc
θ(x̄)θ(x)





[
1
x̄

]
+

+ 5
4
δ(x̄) + O(x̄0)

[
1
x̄

]
+

+ 19
12
δ(x̄) + O(x̄0)





+Nc · · · , (81)
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where the Nc · · · symbolize the x→ 1 limit of Eq. (79).

The eigenfunctions we have obtained coincide precisely with the coefficients that appear in

the decomposition of e(x,Q2) and h̃L(x,Q2) in terms of three-particle correlation functions. To

observe this explicitly we need relations similar to the ones given by Eqs. (10) and (30) transformed

to the mixed representation (58). Namely, we have

e(x) =
1

x
m(x) −

1

2

d

dx

∫ 1

0
du Z(x, u), (82)

h̄L(x) =
1

x
m̃(x) −

1

2

d

dx

∫ 1

0
du (1− 2u)Z̃(x, u), (83)

where we introduce for convenience a new function h̄L(x), so that hL(x) reads:

hL(x) = 2
∫ 1

x
dy

x2

y2
h1(y) − x

d

dx

∫ 1

x

dy

y

x2

y2
h̄L(y). (84)

For the massless case the last term on the RHS coincides with the twist-3 part h̃L.

From the observations we have made above, it follows that in the large-Nc as well as in the

large-x limit the twist-3 distributions satisfy the DGLAP evolution equations. By combining

the large-Nc evolution with the large-x result for the 1
Nc

-suppressed terms, we can improve the

accuracy of such an approximation within a factor 5–10, to be compared with the multicolour

limit taken alone (see Fig. 2b). Thus, the functions e(x,Q2) and h̄L(x,Q2) obey the following

improved evolution equations:





ė(x)
˙̄hL(x)



 =

αs

2π

∫ 1

x

dy

y





Pee(y) e
(

x
y

)
+
[

1
x
{Pmm(y) − Pee(y)} −

1
2
Pem(y) d

dx

]
m
(

x
y

)

Ph̄h̄(y) h̄L

(
x
y

)
+
[

1
x
{Pmm(y) − Ph̄h̄(y)} −

1
2
Ph̄m(y) d

dx

]
m
(

x
y

)



 , (85)

with

Pee(y) = 2CF

[
y

ȳ

]

+

+
CA

2
y +

(
CF

2
− CA

)
δ(ȳ) + O

(
ȳ0/Nc

)
,

Ph̄h̄(y) = 2CF

[
y

ȳ

]

+

−
3CA

2
y +

(
7CF

6
−

4CA

3

)
δ(ȳ) + O

(
ȳ0/Nc

)
, (86)

Pem(y) = CFx(2 − x),

Ph̄m(y) = CFx(2 − 3x). (87)

The evolution kernel for the mass-dependent correlator was already given by Eq. (63). In Eq. (86)

we have added subleading terms O (ȳ0/Nc) (which we do not specify here) so that the first moment

of each kernel coincides with the corresponding eigenvalue of the kernel P n
ZZ

(u, v). This guarantees

that the solution for the lowest moments given below, in Eq. (94), will be reproduced exactly. Note

that in the massless case h̃L(x) fulfills the same evolution equation as h̄L(x). The simplest way to

verify this is to make the Mellin transform of the corresponding evolution equations.
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Let us add a few remarks on the momentum space formulation. As we have seen above the

solution of the evolution equations in the asymptotic regimes is the most straightforward in the

light-cone position representation. It is by no means trivial to observe the appearance of the

DGLAP equations in momentum fraction representation. However, we know that the asymptotic

solution, in coordinate space, is given by the convolution of the three-particle correlation function

with the same weight function that enters in the decomposition of the two-parton correlators at

tree level. With this in mind, we are able to check that the integrals

e(x) =
∫
dβ ′D(x, β ′), (88)

h̃L(x) = x2
∫ 1

x

dβ

β2

∫
dβ ′

β ′ − β

{
2 + (β − β ′)

[
∂

∂β
−

∂

∂β ′

]}
D̃(β, β ′), (89)

taken from Eqs. (10) and (30) neglecting quark-mass as well as twist-2 effects, satisfy the DGLAP

equations, namely

ė(x)

= −
α

4π
Nc

∫
dβe(β)

{
2

[
β

(x− β)
Θ0

11(x, x− β)

]

+

+

(
2 −

x

β

)
Θ0

11(x, x− β) −
1

2
δ(β − x)

}
, (90)

˙̃
hL(x)

= −
α

4π
Nc

∫
dβh̃L(β)

{
2

[
β

(x− β)
Θ0

11(x, x− β)

]

+

+

(
2 + 3

x

β

)
Θ0

11(x, x− β) −
1

2
δ(β − x)

}
. (91)

The corresponding anomalous dimensions are

˙[e]n =
α

4π
Nc

{
−2ψ(n+ 2) − 2γE +

1

2
+

1

n+ 2

}
[e]n, (92)

˙
[h̃L]n =

α

4π
Nc

{
−2ψ(n+ 2) − 2γE +

1

2
−

3

n + 2

}
[h̃L]n. (93)

Which are exactly the anomalous dimensions γ±n found in Ref. [16] for e and hL, respectively,

with the replacement n→ j − 1 5.

5.3 Examples of the evolution

For the lowest few moments the evolution equation (67) can be solved exactly. Taking into account

the symmetry properties of the quark–gluon correlation function, we obtain the following results

for the (non-vanishing) first two moments:

Z
1
(
u,Q2

)
= Z

1
(
Q2

0

)
exp

{
−

55

18

∫ Q2

Q2

0

dt

t

αs(t)

2π

}
,

5The difference in the anomalous dimensions is due to an extra power of the momentum fraction x included in

the definition of the twist-3 correlation functions.
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Z
2
(
u,Q2

)
= Z

2
(
Q2

0

)
exp

{
−

73

18

∫ Q2

Q2

0

dt

t

αs(t)

2π

}

Z̃
2
(
u,Q2

)
= Z̃

2
(
Q2

0

)
(1 − 2u) exp

{
−

52

9

∫ Q2

Q2

0

dt

t

αs(t)

2π

}
,

Z̃
3
(
u,Q2

)
= Z̃

3
(
Q2

0

)
(1 − 2u) exp

{
−

1099

180

∫ Q2

Q2

0

dt

t

αs(t)

2π

}
, (94)

where Z
n (Q2

0) are related to the following matrix elements of the local operators (up to normal-

ization)

Z
1
(
Q2

0

)
= Z1

1

(
Q2

0

)
= 〈h|Z1

1 |h〉|µ2=Q2

0

, Z
2
(
Q2

0

)
= Z1

2

(
Q2

0

)
= 〈h|Z1

2 |h〉|µ2=Q2

0

,

Z̃
2
(
Q2

0

)
= Z̃1

2

(
Q2

0

)
= 〈h|Z̃1

2 |h〉|µ2=Q2

0

, Z̃
3
(
Q2

0

)
= Z̃1

3

(
Q2

0

)
= 〈h|Z̃1

3 |h〉|µ2=Q2

0

. (95)

Thus the Q2-dependence for the first moments of e(x) and h̃L(x) can be predicted uniquely

since the initial values at the low-momentum scale are given by these moments themselves. For

larger n, the evolution is sensitive to the shape of the gluon distribution between the quark fields.

However, as can be traced from Figs. 3 and 4, the dependence on the assumed different toy

models of the light-cone position distribution at Q2
0 = 1 GeV2 is quite small: the typical relative

deviations for the moments of the twist-3 unpolarized and polarized structure functions are 2%

and 5%, respectively, at Q2 = 100 GeV2. In the calculations we have set the number of flavours

Nf = 3 and ΛQCD = 0.25 GeV. For the “gap”-type (end-point-concentrated) distributions (see

Figs. 3, 4 dashed line) the deviation is small with respect to the “coefficient function”-type model

predictions (1 and 1− 2u, solid lines), while for the “hump” (end-point-suppressed) distributions

(dash-dotted line) it is a little bit larger. The accuracy of the multicolour approximation is about

15–20% at a scale Q2 = 100 GeV2. These numbers are natural and can be expected from the

discrepancy between the DGLAP anomalous dimensions and the exact lowest two eigenvalues of

the spectrum (see Fig. 2b). Nevertheless, there is one very important exception from the naive

expectation. If the initial gluon distribution is strongly suppressed in the end-point region, for

instance as u[(n−1)/2] for u → 0, then the large-Nc approximation breaks down for large n (polarized

moments are more sensitive than unpolarized ones). In this case the evolution is not smooth. The

shape of this function will be turned immediately into the end-point-concentrated one. So, we can

get rid of this “hump”-type model for a momentum transfer Q
>
∼ 1 GeV and argue that such a

distribution could not occur in the non-perturbative domain either. It is the most likely to assume

that the momentum fraction-function Z(x, x′) is rather smooth. From the equation

Z
n(u) =

∫
dx
∫
dx′(xu+ x′ū)n−1 Z(x, x′) (96)

it then follows that Z
n(u) cannot be strongly suppressed in the end-point region. For instance, if

Z(x, x′) is positive-definite and concentrated in the region 0 ≤ x, x′, then Z
n(u) cannot vanish at

u = 0, 1 unless it is identically zero.
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6 Discussion and conclusion

In the present paper we have investigated the Q2-dependence of the chiral-odd distributions of

the nucleon e(x) and hL(x). Using the constraint equalities coming from the equation of motion

and Lorentz invariance, which provide certain sum rules for the structure function, the problem

is reduced to a study of the renormalization of the multiparton correlators in lowest order of the

perturbation theory. As a result we construct an exact (taking account of 1/N2
c effects) one-

loop evolution in the light-cone fraction as well as in the light-cone position representations. For

these purposes, we have used two techniques, which employ the light-like gauge for the gluon

field. Accepting different prescriptions on the spurious pole in the gluon propagator, we were

able to verify that they do lead to the same results. From the calculational point of view the

momentum space technique is much easier to treat. However, the coordinate space makes the

involved symmetries apparent and, as a by-product, diagonalization of evolution kernels is easy

to handle. We establish the bridge between different formulations of the QCD evolution. It is

straightforward to obtain the evolution kernels in the light-cone fraction representation, starting

from the coordinate space and vice versa using the Fourier transform. Using this transformation it

is straightforward to obtain the coordinate space two-particle evolution kernels for Faddeev-type

equations with pair-wise particle interaction, which govern the scale dependence for higher twist

(more than 3) quasi-partonic correlators [10] and to study the diagonalization problem, which is

more easier to do in the light-cone position representation. We hope to return to this question in

the future.

In the multicolour limit as well as for x→ 1 we obtain the ladder-type evolution equations for

the twist-3 part of the distribution functions. Joining these asymptotics together we construct an

improved DGLAP equation, which generally has very good accuracy, at the level of few per cent.

We argue that the observed discrepancy between these reduced equations and the exact evolution

could occur only for unphysical initial conditions of the latter. To clarify the situation completely,

it would be helpful to have the low-energy model predictions for the distribution of the gluon field

in the quark–gluon correlator.
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A Definition and some properties of Θ-functions

The Θ-functions entering the evolution equations in the momentum fraction representation are

given by the formula

Θm
i1i2...in(x1, x2, ..., xn) =

∫ ∞

−∞

dα

2πi
αm

n∏

k=1

(αxk − 1 + i0)−ik . (A.1)

For our practical purposes it is enough to have an explicit form of the functions

Θ0
1(x) = 0, (A.2)

Θ0
2(x) = δ(x), (A.3)

Θ0
11(x1, x2) =

θ(x1)θ(−x2) − θ(x2)θ(−x1)

x1 − x2
, (A.4)

since the other are expressed in their terms by the relations

Θ0
21(x1, x2) =

x2

x1 − x2

Θ0
11(x1, x2), (A.5)

Θ1
21(x1, x2) =

1

x1 − x2

Θ0
11(x1, x2) −

1

x1 − x2

Θ0
2(x1), (A.6)

Θ0
22(x1, x2) = −

2x1x2

(x1 − x2)2
Θ0

11(x1, x2), (A.7)

Θ0
111(x1, x2, x3) =

x2

x1 − x2

Θ0
11(x2, x3) −

x1

x1 − x2

Θ0
11(x1, x3), (A.8)

Θ1
111(x1, x2, x3) =

1

x1 − x2

Θ0
11(x2, x3) −

1

x1 − x2

Θ0
11(x1, x3). (A.9)

In the main text we have used the relations

∫
dββnΘ0

11(β, β − x′)Θ0
11(x, x− β) = x′nΞn(x, x− x′, x) =

1

n
[x′n − xn] Θ0

11(x, x− x′). (A.10)

PV
∫
dβ

x

(x− β)

[
Θ0

11(β, β − x) + Θ0
11(x, x− β)

]
= 0. (A.11)

B Evolution equations in Abelian gauge theory

In this appendix we present a pedagogical illustration of the renormalization group mixing problem

for the redundant basis of correlation functions defined by Eqs. (6)–(9) and Eqs. (20)–(25) for the

unpolarized and polarized cases, respectively, in the framework of the Abelian gauge theory. Its

aim is to show the self-consistency of the whole approach we have used as the equations derived

below satisfy the constraint equalities given by Eqs. (10), (26), (27), which are further employed

to reduce the overcomplete set of correlators to the independent basis of functions.
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In the calculations of the corresponding evolution kernels, we follow the methods developed in

Ref. [9] (see Ref. [21] for a more recent discussion of the RG equations for the time-like twist-3 cut

vertices). The one-loop Feynman diagrams giving rise to the transition amplitudes of two-particle

correlation functions into the two- and three-parton ones are shown in Fig. 5a, b. The last figure

(c) on this picture is specific of the vertices having non-quasi-partonic form [10], that is for e(x)

and hL(x); it displays the addendum due to the contact term that results from the cancellation of

the propagator adjacent to the quark–gluon and bare vertices. As an output the vertex acquires

the three-particle piece. The radiative correction to the three-parton correlators are presented in

Fig. 1 a, b, c.

A straightforward calculation yields the evolution equations for the spin-independent case in

the form

Ṁ(x) = −
α

2π

∫
dβM(β)

{
2

[
β

(x− β)
Θ0

11(x, x− β)

]

+

+
β + x

β
Θ0

11(x, x− β)

}
, (B.1)

ė(x) =
α

2π

∫
dβ

(
e(β)

{
x

β
Θ0

11(x, x− β) +
1

2
δ(β − x)

}

− M(β)

{
2

[
β

(x− β)
Θ0

11(x, x− β)

]

+

+ xΘ1
21(x, x− β) + 2Θ0

11(x, x− β)

}

−
∫
dβ ′D(β, β ′)

{
2

[
β

(x− β)
Θ0

11(x, x− β)

]

+

+
x

x− β
Θ0

111(x, x− β, x− β + β ′)

+ δ(β − x)
∫
dβ ′′ β

β ′′
Θ0

111(β
′′, β ′′ − β, β ′′ − β ′) + 2Θ0

11(x, x− β)

})
, (B.2)

Ḋ(x, x′) = −
α

2π

{[
x′

x
e(x) −M(x)

]
Θ0

11(x
′, x′ − x) −

[
x

x′
e(x′) −M(x′)

]
Θ0

11(x, x− x′)

+
∫
dβ ′

(
D(x, β ′)

(β ′ − x+ x′)

(x− x′)
Θ0

111(x
′, x′ − x, x′ − x+ β ′)

+
x′

x′ − β ′
[D(x− x′ + β ′, β ′) −D(x, x′)]Θ0

11(x
′, x′ − β ′)

)

+
∫
dβ

(
D(β, x′)

(β − x′ + x)

(x′ − x)
Θ0

111(x, x− x′, x− x′ + β)

+
x

x− β
[D(β, x′ − x+ β) −D(x, x′)]Θ0

11(x, x− β)

)
−

3

2
D(x, x′)

}
, (B.3)

where the dot denotes the derivative with respect to the UV cutoff ˙ = Λ2∂/∂Λ2 and the plus-

prescription is defined by the equation

[
β

(x− β)
Θ0

11(x, x− β)

]

+

=
β

(x− β)
Θ0

11(x, x−β)−δ(β−x)
∫
dβ ′′ β

(β ′′ − β)
Θ0

11(β
′′, β ′′−β). (B.4)
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In the same way we can immediately obtain the set of evolution equations for the spin-

dependent distributions (20)–(25):

˙̃
M(x) = −

α

2π

∫
dβM̃(β)

{
2

[
β

(x− β)
Θ0

11(x, x− β)

]

+

+
β + x

β
Θ0

11(x, x− β)

}
, (B.5)

ḣ1(x) = −
α

2π

∫
dβh1(β)

{
2

[
β

(x− β)
Θ0

11(x, x− β)

]

+

+ 2Θ0
11(x, x− β) −

3

2
δ(x− β)

}
,

(B.6)

ḣL(x) =
α

2π

∫
dβ

(
hL(β)

{
x

β
Θ0

11(x, x− β) +
1

2
δ(β − x)

}

− M̃(β)

{
2

[
β

(x− β)
Θ0

11(x, x− β)

]

+

+

(
2 +

x

β

)
Θ0

11(x, x− β)

}

− K(β)

{
2

[
β

(x− β)
Θ0

11(x, x− β)

]

+

+

(
2 + 3

x

β

)
Θ0

11(x, x− β) − δ(x− β)

}

−
∫
dβ ′D̃(β, β ′)

{
2

[
β

(x− β)
Θ0

11(x, x− β)

]

+

+
x

x− β
Θ0

111(x, x− β, x− β + β ′)

+ δ(β − x)
∫
dβ ′′ β

β ′′
Θ0

111(β
′′, β ′′ − β, β ′′ − β ′) + 2

(
1 +

x

β

)
Θ0

11(x, x− β)

})
, (B.7)

K̇(x) =
α

2π

∫
dβ

(
2hL(β)

x

β
Θ0

11(x, x− β) − 2M̃(β)Θ0
11(x, x− β) (B.8)

− K(β)

{
2

[
β

(x− β)
Θ0

11(x, x− β)

]

+

+ 2

(
1 + 2

x

β

)
Θ0

11(x, x− β) −
3

2
δ(x− β)

}

−
∫
dβ ′D̃(β, β ′)

{
2
(x− β + β ′)

(x− β)
Θ0

111(x, x− β, x− β + β ′) + 2
x

β
Θ0

11(x, x− β)

})
,

˙̃
D(x, x′) = −

α

2π

{[
x′

x
[hL(x) −K(x)] − M̃(x)

]
Θ0

11(x
′, x′ − x)

+
[
x

x′
[hL(x′) −K(x′)] − M̃(x′)

]
Θ0

11(x, x− x′)

+
∫
dβ ′

(
D̃(x, β ′)

(β ′ − x+ x′)

(x− x′)
Θ0

111(x
′, x′ − x, x′ − x+ β ′)

+
x′

x′ − β ′
[D̃(x− x′ + β ′, β ′) − D̃(x, x′)]Θ0

11(x
′, x′ − β ′)

)

+
∫
dβ

(
D̃(β, x′)

(β − x′ + x)

(x′ − x)
Θ0

111(x, x− x′, x− x′ + β)

+
x

x− β
[D̃(β, x′ − x+ β) − D̃(x, x′)]Θ0

11(x, x− β)

)
−

3

2
D̃(x, x′)

}
. (B.9)

The anomalous dimensions calculated from the evolution equation for the distribution h1(x) co-

incide (up to the colour group factor CF ) with the result of Ref. [22].
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By exploiting the relation provided by the equation of motion and Lorentz invariance, we can

easily verify that the RG equations thus constructed are indeed correct and the renormalization

program can be reduced to the study of logarithmic divergences of the three-parton (Z(x, x′),

Z̃(x, x′)) and quark mass (M(x), M̃(x)) correlators in perturbation theory.

C Local anomalous dimensions

In this appendix we pass from the evolution equations for correlators to the equations for their

moments and, in this way, the anomalous-dimension matrix for local twist-3 operators.

We define the moments as follows:

Fn =
∫
dxxnF (x) for any two-particle correlator,

Z l
n =

∫
dxdx′xn−lx′l−1Z(x, x′). (C.1)

In the language of operator product expansion these equalities specify the expansion of non-local

string operators in towers of local ones, namely:

Z l
n = in−1(−1)l−1 ∂

l−1

∂µl−1

∂n−l

∂λn−l
Z(λ, µ)|λ=µ=0

=
1

2
ψ̄(0)(iD+)l−1gG+ρ(0)σ⊥

ρ+


 I

γ5


 (iD+)n−lψ(0),

Mn = in
∂n

∂λn
M(λ)|λ=0 =

m

2
ψ̄(0)γ+


 I

γ5


 (iD+)nψ(0). (C.2)

The inverse transformations to the non-local representation are given by

Z(λ, µ) =
∞∑

n=0, m=0

(−i)n+m(−1)mµ
m

m!

λn

n!
Zm+1

n+m+1, M(λ) =
∞∑

n=0

(−i)nλ
n

n!
Mn. (C.3)

Now it is a simple task to derive the algebraic equations for the mixing of local operators under

the change of the renormalization scale from the evolution equations (35)–(39). They are

Ṁn =
α

2π
MMγ

nMn, (C.4)

Ż l
n =

α

2π

{[
ZMγ

n
n−l+1 ± ZMγ

n
l

]
Mn +

n∑

k=1

ZZγ
n
lkZ

k
n

}
, (C.5)

where the anomalous dimensions are given by the expressions

MMγ
n = −CF (Sn + Sn+2) , (C.6)

ZMγ
n
l =

2CF

l(l + 1)(l + 2)
, (C.7)
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ZZγ
n
lk =

3

4
CF δ(l − k) +

CA

2

{
θ(l − k − 1)

(k + 1)(k + 2)

(l − k)(l + 1)(l + 2)
− δ(l − k) [Sk−1 + Sk+2]

}

+
(
CF −

CA

2

){
θ(l − k − 1)

[
2(−1)kCk

l

l(l + 1)(l + 2)
+

(−1)l−k

(l − k)

Ck−1
n

C l−1
n

]

+ δ(l − k)

[
2(−1)k

k(k + 1)(k + 2)
− Sk

]}
+

(
k → n− k + 1

l → n− l + 1

)
. (C.8)

Here we have used the following step functions

θ(i− j) =





1, i ≥ j

0, i < j
, δ(i− j) =





1, i = j

0, i 6= j
, (C.9)

as well as the convention Sn =
∑n

k=1
1
k

and the binomial coefficients Cm
n = n!

m!(n−m)!
. The plus and

minus signs in this equation correspond to the functions e and hL, respectively. These analytical

expressions coincide with the result of Ref. [15].
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Figure 1: The one-loop renormalization of the three-parton correlation functions.
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Figure 2: The spectrum of the eigenvalues λn
l for the evolution kernel P n

ZZ
defined in (69) is

shown in (a). In (b) the relative deviation 1 − λn
l /(−γ

n
l ) (in %) for the lowest two eigenvalues

of the spectrum, i.e. l = 1, 2, is plotted: the solid (dashed) line γ1
n (γ2

n) corresponds to the n-th

moments of the improved kernel Pee (Ph̄h̄) defined by Eq. (86); the dash-dotted (dotted) line is the

multicolour approximation for Pee (Ph̄h̄). In the improved approximations, subleading terms were

taken into account to reproduce the first two eigenvalues exactly. Eigenfunctions of the kernel

P n
ZZ are shown for n = 4 in (c) and for n = 30 with l = 2, 3, 6, 29 in (d).
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Figure 3: The predictions of the improved evolution equation for the moments [e]n, normalized

to 1 at Q2
0 = 1 GeV2, are shown in (a) for n = 1 (solid line), n = 2 (dashed line), n = 10

(dash-dotted line) and n = 100 (dotted line). In (b) three different models for the gluon light-

cone position distributions at Q2
0 = 1 GeV2 for n = 10 are presented; they are evolved up to

the scale Q2 = 100 GeV2 in (c). The relative deviation 1 − [e(Q2)]exn /[e(Q
2)]imn (in %) from the

improved DGLAP equation of the exact evolution for the assumed gluon distributions is shown

in (d). The dotted line corresponds to the relative deviation 1− [e(Q2)]Nc

n /[e(Q2)]coef
n with respect

to the multicolour approximation, where “coef” refers to the gluon distribution that is equivalent

to the corresponding coefficient function.

28



0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

1 10 100

-5

0

5

10

15

20

1 10 1000

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

-10

-5

0

5

10

(a)

Q2

(b)

u

(c)

u

(d)

Q2

%

Figure 4: The predictions of the improved evolution equation for the moments [h̃L]n, normalized
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0 = 1GeV2, are shown in (a). Here the solid line and dashed line represent n = 2 and

n = 3, respectively. The further description is the same as in Fig. 3, except that n = 20 in (b)–(d).

Figure 5: One-loop radiative corrections for two-particle correlators in the Abelian gauge the-

ory. The fermion propagator crossed with a bar on diagram (c) shows the contraction of the

corresponding line into the point.
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