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Abstract

We present a simulation algorithm for dynamical fermions that combines the

multiboson technique with the Hybrid Monte Carlo algorithm. We �nd that the

algorithm gives a substantial gain over the standard methods in practical simula-

tions. We point out the ability of the algorithm to treat fermion zero modes in a

clean and controllable manner.
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In this letter we want to present a new algorithm for simulations of dynamical fermions. Its

basic conceptual idea is to separate out the low{lying eigenvalues of the Wilson-Dirac operator

on the lattice and to not take this part of the spectrum into account for the generation of the

gauge �eld con�gurations. However, the algorithm can be made exact by incorporating the

low{lying eigenvalues into the observables, or, alternatively, by adding them via a reject/accept

step.

From a principle point of view, the separation of the eigenvalue spectrum into a high and

low frequency part allows to monitor the low{lying eigenvalues. In particular, the algorithm

o�ers the possibility to detect the appearance of eventual zero modes and to control their e�ects

on physical observables. The low{lying eigenvalues are also expected to play an important role

in practice as they slow down the fermion simulation algorithms, when approaching the chiral

limit. Cutting these modes o�, should therefore result in a gain for the cost of a practical

simulation.

The basic building blocks of the algorithm are the standard HMC algorithm [1] and the

multiboson technique to simulate dynamical fermions [2]. A similar idea has been presented

shortly in [3]. In the multiboson technique, the inverse fermion matrix is approximated by a

polynomial written in powers of the fermion matrix. We propose to take this polynomial to

de�ne the {approximate{ interaction of the fermions.

To be speci�c, let us consider the path integral for Wilson fermions on the lattice

Z =
Z
DU exp f�Sggdet(Q2) =

Z
DUD�yD� exp

n
�Sg � �yQ�2�

o
: (1)

The term Sg in the exponential is the pure gauge action and is given by

Sg = ��
6

X
P

Tr(UP + U y

P ) : (2)

The symbol UP represents the usual plaquette term on the lattice with gauge links taken from

SU(3). The determinant factor det(Q2) accounts for the contribution of virtual fermion loops

to the path integral. The bosonic �elds � carry spinor, avour and colour indices. In eq.(1)

and in the following we are assuming that we have two mass-degenerate avours. The matrix

Q that appears in the determinant is a hermitian sparse matrix de�ned by:

Q(U)x;y = c05[�x;y � �
X
�

(1� �)Ux;��x+�;y + (1 + �)U
y

x��;��x��;y] ; (3)

with � the so-called hopping parameter, related to the bare quark mass m0 by � = (8+2m0)
�1,

and c0 = [cM(1 + 8�)]�1, where cM should be chosen such that the eigenvalues � of Q satisfy

j�j < 1.

Let us assume that we have constructed a polynomial Pn of degree n such that

det
h
Q2Pn(Q

2)
i
! 1 for n!1 ; (4)
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with Pn(�(Q
2)) > 0 for all the eigenvalues �(Q2) of Q2 in the range 0 � �(Q2) < 1. Then we

can rewrite the determinant,

det(Q2) =
det [Q2Pn(Q

2)]

det [Pn(Q2)]
: (5)

Each of the two determinants on the right{hand side can be represented as a Gaussian integral

with the help of bosonic �elds � and �, respectively. The partition function becomes

Z =
Z
DUD�yD�D�yD�W exp

n
�Sg � �yPn(Q

2)�� �y�
o

(6)

where we introduced the \correction factor"

W = exp

�
�y
�
1�

h
Q2Pn(Q

2)
i
�1
�
�

�
: (7)

Note that eq.(6) is an exact rewriting of the partition function eq.(1).

With the introduction of the correction factor W the expectation value of an observable O

is now computed as

< O >=
< OW >P

< W >P

; (8)

where the averages < : : : >P are taken with respect to the measure de�ned through the ap-

proximate fermion action �yPn(Q
2)� . Alternatively one may incorporate the W factor via a

reject/accept step.

Let us now specify the form of the polynomial that we are going to take. We choose a

Chebyshev polynomial to approximate Q�2. When written in its factorized form

P[n;�](Q
2) = cN

nY
k=1

h
Q2 � zk

i
= cN

nY
k=1

h
(Q�p

zk
�
)(Q�p

zk)
i
; (9)

it is characterized by its roots (for k = 1; 2; : : : ; n),

zk =
1

2
(1 + �)� 1

2
(1 + �) cos(

2�k

n+ 1
)� i

p
� sin(

2�k

n + 1
) (10)

and a normalization factor cN , which is explicitly calculable [7]. The polynomial P[n;�](s) ap-

proximates the function 1=s (where s may correspond to any of the eigenvalues of Q2) uniformly

in the interval � � s � 1. The relative �t error

R[n;�](s) =
h
P[n;�](s)� 1=s

i
s (11)

in this interval is exponentially small:

jR[n;�](s)j � 2

 
1�p

�

1 +
p
�

!n+1

: (12)

Let us �nally introduce an accuracy parameter �, which is actually an upper bound to the

maximum relative error of the polynomial approximation,

� = 2

 
1�

p
�

1 +
p
�

!n+1

: (13)
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The parameter � provides an easily computable and conservative measure of how well the chosen

polynomial approximates 1=s in the given interval � � s � 1.

With the speci�cation of the polynomial eq.(9) the path integral eq.(6) and the correction

factor W are fully determined. It is clear that for polynomials of high degree, the interaction

de�ned by them becomes too complicated for the application of local algorithms. It is therefore

a natural choice to use molecular dynamics algorithms like the HMC or the Kramers equation

algorithms [4, 5]. In the following we will call our hybrid of molecular dynamics and multiboson

algorithms the Polynomial Hybrid Monte Carlo (PHMC) algorithm.

What do we expect from the PHMC algorithm? It has been suggested [6] that the lowest

eigenvalue of Q2, �min(Q
2), is an important quantity in determining the cost of the HMC

algorithm. In particular, a theoretical analysis leads to the {optimistic{ estimate that the cost

grows as 1=�
3=2
min(Q

2). In the PHMC algorithm, the role of the lowest eigenvalue is taken over

by the infrared cut-o� parameter �. For 0 � s � � the polynomial P[n;�](s) is always �nite with

values O(1=�). From the experience with the multiboson technique [7, 8, 9, 10, 11] it has become

clear that one might choose � to be substantially larger than �min(Q
2) while still getting values

for expectation values that are compatible with the ones obtained by the HMC algorithm.

This result suggests that one might choose � > �min(Q
2) also in the PHMC algorithm without

introducing too large uctuations of the correction factor. Since in the PHMC algorithm only

one bosonic �eld is introduced, one will also avoid the dangerous increase of the autocorrelation

time with increasing degree of the polynomial as found for the multiboson technique [8].

Before we turn to the results for the performance of the PHMC algorithm, let us shortly

sketch, how the algorithm is implemented in our simulation program. We will be quite short

here und refer to a forthcoming publication for more details and safety measures, in particular

when using the algorithm on a 32-bit arithmetics machine. Let us start by discussing the

heatbath for the bosonic �elds �, the action of which is given by

Sb = �yP[n;�](Q
2)� : (14)

To generate a Gaussian distribution according to this interaction, we proceed as follows. We �rst

generate a Gaussian random vector �. We then solve Q2P[n;�](Q
2)X = Q2� using a Conjugate

Gradient (CG) method. By writing P[n;�](Q
2) = P �

n=2(Q
2)Pn=2(Q

2) with appropriate ordering

of the roots, we �nally construct the �-�elds via � = P �

n=2(Q
2)X.

The derivation of the force for the PHMC algorithm is done in complete analogy to the

method used for the HMC algorithm [12]. A variation of the action eq.(14) using the polynomial

eq.(9) reveals that one has to construct the vectors

�j =
jY

k=1

[Q�p
zk]�0 ; j = 1; :::; 2n� 1 (15)

with �0 the bosonic �eld generated by the boson heat bath. The vectors �j are precalculated

and stored. This calculation may be organized in such a way that the memory storage required
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amounts to only n + 1 (instead of 2n) vectors �j. One may then use them in the actual force

computation at the appropriate places.

The above storage requirement for the vectors �j may be further reduced by introducing

more bosonic �eld copies. For example, one may split the polynomial into two parts P
(1)

n=2 and

P
(2)

n=2 satisfying det
h
P[n;�](Q

2)
i
= det

h
P

(1)

n=2(Q
2)
i
� det

h
P

(2)

n=2(Q
2)
i
and integrate each contribution

separately, leading to the action

Sb = �y1P
(1)

n=2(Q
2)�1 + �y2P

(2)

n=2(Q
2)�2 : (16)

It is amusing to note that by iterating this procedure one can obtain an interpolation between

a nearly exact HMC algorithm, if n and 1=� are large enough, and the multiboson technique to

simulate dynamical fermions. Although we did not yet perform an extended analysis, our �rst

results indicate that introducing a few bosonic �eld copies does not increase the autocorrelation

time, when the number of copies is held small, say less than about eight. It remains a subject

of further study, however, whether the molecular dynamics behaviour is severely altered by the

introduction of more �eld copies.

Finally, the computation of the correction factor W eq.(7) needs an additional inversion of

Q2P[n;�](Q
2). Since the �-�eld occurring in W is completely independent from the �-�eld in the

boson heatbath, this inversion has to be done separately.

We decided to test the PHMC against the HMC algorithm on 44 and 84 lattices. All

numerical results have been obtained on Alenia Quadrics (APE) massively parallel computers.

We adopted Schr�odinger functional boundary conditions. For the 44 lattice we ran at � =

6:4, � = 0:15 and for the 84 lattice we had � = 5:6 and � = 0:1585 � �c [13]. In both,

the HMC and the PHMC algorithms, even-odd preconditioning [14] and a Sexton-Weingarten

leap-frog integration scheme [15] is implemented. We want to emphasize that most of the

improvements to accelerate the HMC algorithm can be taken over to the PHMC algorithm.

We think, therefore, that the results of the comparison we are performing here should be

independent of the particular implementation.

Table 1: Technical parameters for both algorithms

HMC PHMC

Lattice �md Nmd �md Nmd � n cM

44 0:25 4 0:25 4 0:036 12 0:5789

84 0:075 13 0:09 10 0:0026 48 0:5789

In table 1, we give the parameters of the algorithms which are the step size �md and the

number of molecular dynamics steps Nmd as used for the leap frog integration. We also give

the parameters characterizing the polynomial. The parameters were tuned in such a way that

about the same acceptance rate was achieved in both algorithms, namely 82% and 86% for the
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HMC and PHMC algorithms, respectively, on the 44 and, correspondingly, 80% and 79% for

the 84 lattices.

With the choice of cM in table 1 we found the value of the largest eigenvalue �max(Q̂
2) of

the preconditioned matrix Q̂ to be close to 1. As �rst noted in [19], since the polynomial is

constructed such that it provides a uniform approximation of Q̂�2 for � < � < 1, lifting the

eigenvalues by choosing cM < 1, allows to choose a larger value of � and therefore a polynomial

of lower degree in order to achieve a desired value for the accuracy parameter �.

We give in table 2 results for the expectation values of the plaquette < P > and the lowest

eigenvalue < �min(Q̂
2) > . We also give the uncorrected expectation values (setting W = 1 in

eq.(7)) denoted by a �. In the third column we give the number of trajectories that were taken

for the analysis.

Table 2: Results for both algorithms

Lattice Algorithm # trajectories hP i h�min(Q̂
2)i

44 HMC 18000 0:66179(13) 0:01582(9)

PHMC 18000 0:66169(16) 0:01570(10)

PHMC� 18000 0:66248(13) 0:01324(7)

84 HMC 2745 0:57251(12) 0:001310(51)

PHMC 2560 0:57253(16) 0:001328(51)

PHMC� 2560 0:57272(14) 0:001141(51)

First of all, table 2 con�rms the correctness of the PHMC algorithm. While on the 44 lattice

the correction factor is important, one notices that for the 84 lattice it only has a small e�ect.

A crucial question is, whether the correction factor introduces strong uctuations that may

lead to large errors for the corrected observables. We �nd that this is not the case, when we

arrange for a situation where � is 2{3 times larger than the lowest eigenvalue of the problem

and the relative �t error of the polynomial is kept small enough, �
<� 0:02. For larger values of

� the uctuations can become substantial, leading to large errors for the corrected observables

eq.(8).

In addition, the uctuations of the corrected observables can be suppressed further by

choosing the number of updates of the �-�elds to be larger than the number of full gauge �eld

updates. This amounts to compute the correction factor Ncorr times on the same gauge �eld

con�guration. In our test, presented here, we have chosen Ncorr = 1 on the 44 lattice and

Ncorr = 2 on the 84 lattice.

Since the behaviour of the observables from the HMC and the corrected ones eq.(8) from

the PHMC algorithm may in principle be very di�erent, it is important to �nd an estimate for

the true error in order to be able to compare both algorithms. To this end, we used a jack-knife

binning procedure, looking for a plateau in the blocked errors. For the HMC algorithm, as a

consistency check, we determined also the integrated autocorrelation time computed directly
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Figure 1: The blocked jack-knife errors for the lowest eigenvalue

�min(Q̂
2) from the HMC algorithm (�lled squares). Nb is the bin-

ning block length. The dashed line ist the estimate for the blocked

error from the integrated autocorrelation time in the HMC algorithm.

The shaded region is the estimate for the true error from the PHMC

algorithm.

from the autocorrelation function. The result is illustrated in �g. 1 for the case of the lowest

eigenvalue of Q̂2 on the 84 lattice. The �lled squares are the blocked errors �(�min(Q̂
2)) as a

function of the block length Nb as obtained from the HMC algorithm. Nb = 1 corresponds to

the naive error �naive, Nb = 2 to blocking two consecutive measurements and so on. The dashed

line indicates the true value of the error as computed from the integrated autocorrelation time

� , �true =
p
2��naive.

For the PHMC algorithm on the 84 lattice we ran on the QH2 version of the APE machine

with 256 nodes. Distributing the 84 lattice on 8 of these nodes, gives us 32 independent

systems, from which the error can be evaluated straightforwardly. One may also build from

these 32 systems 2 groups, each consisting of 16 independent systems and giving a separate

error estimate �1 and �2. We take the di�erence between �1 and �2 as an estimate of the

\error of the error". We plot this uncertainty of the error as the shaded region in �g. 1. The

same analysis can be made for the plaquette with a similar result.
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We conclude that with the same number of trajectories both algorithms give compatible

error bars for the plaquette and the lowest eigenvalue. Note, however, that with our statistics

the error on the error is still signi�cant. This is, of course, just a reection of the uncertainty

in the determination of the autocorrelation times.

Let us discuss now the cost of a single trajectory in both algorithms. We write the total

cost for the algorithms as

Ctot = CQ� + Cextra ; (17)

where the �rst contribution is given by the number of matrix times vector Q� operations and

the second part accounts for all other operations. Asymptotically, when the condition number

of Q becomes large, CQ� will by far dominate the cost of the algorithms. We will therefore

only discuss and compare the cost CQ� in the following. Let us remark, however, that for small

condition numbers Cextra can be a non-negligible part of the total cost, in particular for the

HMC algorithm as one might deduce from the details of the algorithm structure.

Let us denote by NCG the average number of iterations of the Conjugate Gradient algorithm

that is implemented in our programs for all matrix inversions. Then the cost for the HMC

algorithm in units of Q� operations is given by

CQ�(HMC) = 2 � (2Nmd + 1) �NCG ; (18)

where the �rst factor of 2 stems from the fact that one needs 2 Q� operations in each iteration

of the CG routine. The factor (2Nmd + 1) originates from the use of the Sexton-Weingarten

integration scheme [15]. The cost for the PHMC algorithm is split into three parts,

CQ�(PHMC) = Cbhb + Cupdate + Ccorr ; (19)

where Cbhb is the cost for the heatbath of the bosonic �elds, Cupdate the cost for the force

computation and Ccorr the cost to evaluate the correction factor. In units of Q� operations we

�nd

Cbhb = 2n �N bhb
CG + n

Cupdate = 3n � (2Nmd + 1)

Ccorr = 2n �N corr
CG �Ncorr : (20)

The factor Ncorr denotes as above the number of evaluations of the correction factor W per

full gauge �eld update. The factor 3n in Cupdate comes for the following reason. One needs

basically 2n Q� operations to construct the �elds �j of eq.(15). The computation of the total

force needs a loop over the number of �elds, n. In each iteration of this loop one has to

compute the variation of the action with respect to the gauge �elds for all four directions.

This computation corresponds roughly to one Q� multiplication. We explicitly veri�ed this

expectation for our implementation of the PHMC algorithm on the APE computer. We expect,
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however, the formula for Cupdate in the PHMC algorithm to also hold for other situations like

improved Wilson fermions.

We give the cost of both algorithms in table 3. We see that on the 84 lattice, we win about

a factor of 1:8 against the HMC algorithm. Let us make a few remarks at this point.

Table 3: Cost for both algorithms

Lattice Algorithm Cbhb Cupdate Ccorr CQ�

44 PHMC 130 324 86 540

HMC | 868 | 868

84 PHMC 350 3024 600 3974

HMC | 7398 | 7398

(Correction factor) We �nd for our PHMC algorithm that the plaquette has an autocorrela-

tion time of two while for the lowest eigenvalue the autocorrelation time comes out to be about

four. In this situation it is not necessary to calculate the correction factor for every trajectory.

Indeed, the correction factor should be more considered as part of the measurement and, from

this point of view, its cost should be added to the measurement costs. For observables, for

which the measurements are time consuming, or for situations where not every trajectory is

measured, the cost of the correction factor becomes negligible.

(Long trajectories) If we go to larger lattices and situations with larger condition numbers

than considered here, the number of steps per trajectory, Nmd, is increased when the trajectory

length is kept �xed. We therefore expect that again the overheads for the correction factor and

also for the boson heatbath will become negligible. From the above numbers, we conclude that

the cost for the update itself, Cupdate, is reduced in the PHMC algorithm by more than a factor

of two as compared to standard HMC.

(Parallelization) When using massively parallel architectures, it is often advantageous to

simulate several lattices simultaneously. If one uses the HMC algorithm, on SIMD architectures

all the systems have to wait until the system with the largest number of CG iterations has

converged. If one compares the number of CG iterations from running 32 replicas in parallel,

NCG(32 systems), to the one from running only a single system, NCG(1 system), one �nds that

the ratio NCG(32 systems)=NCG(1 system) may easily reach values of about 2. In the PHMC

algorithm, at least in the most time consuming part, the number of Q� operations is, however,

�xed by the degree of the polynomial and the same for each system. We expect therefore for

this situation the PHMC algorithm to give an additional gain. Let us emphasize that, of course,

all of the costs of the algorithms given in table 3 refer to the case of running a single system.

In conclusion, we have presented a new algorithm, called the PHMC algorithm which is a

hybrid of the standard HMC algorithm and the multiboson technique to simulate dynamical

fermions. Within the uncertainty of the error determination, shown in �g. 1, we �nd that for

the same number of trajectories, the errors from the HMC and the PHMC algorithms are about
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equal. At the same time, the cost of generating a single trajectory is reduced by almost a factor

of 2 when using the PHMC algorithm. Certainly, the properties of the PHMC algorithm have

to be investigated more, di�erent observables should be considered and, of course, improved

fermions should be studied. However, we �nd our results very promising to �nally �nd a real

gain of about a factor of 2 over the standard HMC algorithm.

As a rule of thumb we advise to choose the lowest end of the �t range, �, two or three times

larger than the lowest eigenvalue of Q̂2 and the degree n of the �tting polynomial such that the

accuracy parameter �, introduced in eq.(13), is between 0:01 and 0:02. For too large values of

�, the uctuations of the corrected observables eq.(8) become too large. For too small values,

the degree of the polynomial increases too much.

Even more than the practical gain that we anticipate, we think that the PHMC algorithm has

an advantage which is of principle nature. It has been demonstrated that for Wilson fermions,

with and without Symanzik improvement, fermionic (almost) zero modes may appear in the

quenched approximation [16, 17]. Such modes distort the statistical sample substantially. On

the other hand, as discussed in [17], the full path integral is �nite and the fermion zero modes

are cancelled by the measure.

The way the standard fermion simulation algorithms deal with the zero modes, leaves us

with a dilemma. Either these algorithms suppress the zero modes so strongly that in practical

simulations con�gurations carrying (almost) zero modes do not occur at all. But then we do

not know what their importance is on physical observables, which is unfortunate in particular

within the context of topology. Or, on the other hand, a few con�gurations with (almost)

fermion zero modes are actually generated. But then they will lead to exceptional values for

quark propagators and a reliable measurement of the observables involving them will become

very di�cult.

In our PHMC algorithm, the update part is safe against the zero modes, since the infrared

cut-o� parameter � leaves the polynomial always �nite. One may, however, monitor the lowest

eigenvalue and its eigenvector during a simulation by using minimization techniques like the one

described in [18]. If an isolated zero mode is detected, one may switch from the computation

of the correction factor discussed above to the following strategy. What we want to compute is

det
h
Q2P (Q2)

i
� det [A] : (21)

Since we know the lowest eigenvalue �min(A) = �min(Q
2)P (�min(Q

2)) and its eigenvector �, we

may de�ne a projector P� that projects onto the subspace orthogonal to � leading to a matrix,

where the lowest eigenvalue is taken out,

~A = A� �min(A)P� : (22)

Now, it is not di�cult to show that

det [A] = �min(A)det
h
~A
i
; (23)
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where the factor det
h
~A
i
may again be evaluated with the help of Gaussian bosonic �elds ~�.

For pure gauge observables, like Wilson loops, we �nd therefore that the con�gurations

carrying zero modes have a negligible weight in eq.(8). For a fermionic observable involv-

ing quark propagators, the situation is di�erent because in the numerator of eq.(8) the zero

mode con�gurations may give a �nite, non{vanishing contribution, while in the denominator

these con�gurations do not contribute. In this case the strategy will be to again separate out

the leading divergent contribution to the observable, which, when considering two degenerate

quark avours, may be at most proportional to ��1
min(Q

2). Technically, this can be achieved

again by projecting the lowest eigenvalue out. The divergence possibly appearing in the lead-

ing contribution will now be cancelled by the in�nitesimal factor (proportional to �min(Q
2))

from the correction factor yielding, as expected, a �nite, non{vanishing, well de�ned result.

The non{leading contributions to the fermionic observable (i.e. the ones less divergent than

��1
min(Q

2)) may also be evaluated, by basically inverting the matrix Q2 � �min(Q
2)P�, which is

now well conditioned. Note that these contributions are suppressed by the correction factor as

�min(Q
2)! 0.

The above discussion may be generalized to a situation where a number of eigenvalues

assume very small values. We therefore �nd that our PHMC algorithm is in principle able

to take eventual zero modes into account in a controllable way when performing dynamical

fermion simulations.
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