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Abstract
We extract diffractive parton densities from diffractive, deep inelastic (DIS) ep data from the
ZEUS experiment. Then we use these fits to predict the diffractive production of jets and of
W ’s and Z’s in pp̄ collisions at the Tevatron. Although the DIS data require a hard quark
density in the pomeron, we find fairly low rates for the Tevatron processes (a few percent of
the inclusive cross section). This results from the combined effects of Q2 evolution and of
a normalization of the parton densities to the data. The calculated rates for W production
are generally consistent with the preliminary data from the Tevatron. However, the jet
data from CDF with a “Roman pot” trigger are substantially lower than the results of our
calculations; if confirmed, this would signal a breakdown of hard-scattering factorization.
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1 Introduction

In view of counterexamples [1] to the conjecture of factorization [2] of hard processes in
diffractive scattering, it is important to test [3] factorization experimentally. In this paper,
we present some results to this end. Specifically, we present some preliminary fits to data
on diffractive deep inelastic scattering [4], and use these fits to predict cross sections in hard
diffractive processes in pp̄ collisions, with the assumption of factorization.

We recall that diffractive events are characterized by a large rapidity gap, a region in
rapidity where no particles are produced. We are concerned with the case where there is
a hard scattering and the gap occurs between the hard scattering and one of the beam
remnants. Such hard diffractive events have been observed in deep inelastic scattering (DIS)
experiments [5], and are found to have a large rate: around 10% of the inclusive cross section.
Diffractive jet production in pp̄ collisions was earlier reported by the UA8 collaboration [6],
but under somewhat different kinematic conditions (larger |t|1). There was also a report
of diffractive bottom production [7]. Now, more diffractive data are being gathered from a
variety of lepto-hadronic [4, 8, 9] and hadronic processes [10, 11, 12, 13, 14, 15], but with
substantially smaller fractions in the case of the diffractive production of jets and weak vector
bosons in pp̄ interactions.

The QCD-based model that we use in our calculations is the one due to Ingelman and
Schlein [2], where diffractive scattering is attributed to the exchange of a pomeron — a
colorless object with vacuum quantum numbers. The pomeron is treated like a real particle,
and so a diffractive electron-proton collision is considered to be due to an electron-pomeron
collision. Thus hard cross sections involve a hard scattering coefficient (or Wilson coefficient),
a known pomeron-proton coupling, and parton densities in the pomeron. Similar remarks
apply to diffractive hadron-hadron scattering.

The parton densities in the pomeron can be extracted from diffractive DIS (F2) mea-
surements. Since the pomeron is isosinglet and is its own charge conjugate, there is only a
single light quark density to measure; one does not have the complications of separating the
different flavors of quark that one has in the case of the proton. Scaling violations enable
one to determine the gluon density. The H1 collaboration has already presented [8] a fit of
this kind. This type of data sufficiently determines the quark but, at present, it only weakly
constrains the gluon density in the pomeron. The first experimental evidence for the gluon
content of the pomeron was found by the ZEUS collaboration by combining their results on
the diffractive structure function in deep inelastic scattering [4] and their measurements of
diffractive inclusive jet photoproduction [9] under the assumption of factorization between
these two processes. In this paper we use each of several different fits that we have made to
diffractive F2 data [4] from ZEUS.

Our fits to the DIS data are made with full NLO calculations, but, given the level
of accuracy that is needed at present, we only use lowest order QCD calculations for the
hadronic processes. In the past, Ingelman and Schlein [2] and Bruni and Ingelman [16] have
made similar calculations for one of the hadron-induced processes that we consider here.
Their results have provided a commonly used benchmark in the phenomenology of these
processes. They provide a choice of either ‘hard’ or ‘soft’ distributions of partons in the

1By t we mean the invariant momentum-transfer-squared from the diffracted hadron.
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pomeron, according to the β → 1 behavior.2 The hard distributions give larger diffractive
cross sections. At that time, there were no data to determine the distributions. We will
find that although the quark distributions preferred by the DIS data are hard, our cross
sections are substantially below those predicted by Bruni and Ingelman. As we will see, the
lower cross sections occur for several reasons, particularly: a correct normalization of the
distributions to DIS data and the incorporation of Q2 evolution.

How well our predictions match up with the data in hadron-hadron collisions will be a
statement on the validity of factorization of the diffractive hadronic cross sections. If there
is good agreement, comparison of our results with measured cross sections will also provide
a good test of the pomeron parton distribution fits from diffractive DIS. In addition, the
results from diffractive jet photoproduction [9] will provide greatly improved constraints
on the gluon content of the pomeron, and will substantially improve the accuracy of our
predictions.3

This paper is organized as follows. In section 2, we present the formulae used to calculate
the various cross sections. We also discuss the kinematics and phase space cuts that were
used. In section 3, we present our fits to the diffractive deep inelastic data. Then in sections
4 and 5, we present and discuss the results obtained for vector boson production and jet
production, respectively. We will find that production rates for these diffractive events are
no more than a few percent, at most, of the nondiffractive ones. Finally, we summarize our
findings in section 6.

Other fits to the diffractive structure functions measured by H1 have been made by
Gehrmann and Stirling [18] and by Kunszt and Stirling [19]. Golec-Biernat and Kwieciński
[20] assumed a parameterization of the parton densities in the pomeron and found it to be
compatible with the H1 data on diffractive DIS. Their quark densities are about 30% smaller
than ours, and they required the momentum sum rule to be valid. The new features of our
work are a fit to the ZEUS data, and a calculation of the cross sections for diffractive jet
and W and Z production.

2 Kinematics and Cross Sections

The diffractive processes that we consider here are the production of W and Z bosons and
of jets in pp̄ collisions. In addition we consider W production with explicit consideration of
the distribution of the final state leptons. Schematically, these are

p(p1) + p̄(p2) → (W or Z) + p̄ +X,

p(p1) + p̄(p2) → jet + p̄+X

p(p1) + p̄(p2) → (W → l + ν) + p̄+X. (1)

2Here, β is the fraction of the pomeron’s momentum that is carried by the struck parton.
3As explained in Refs. [1, 3], we consider it more likely that factorization is valid in diffractive deep inelastic

and direct photoproduction than in diffractive hadron-induced processes. Therefore, we prefer to determine
the parton densities in the pomeron from deep inelastic scattering and from direct photoproduction, and
then to treat the hadron-induced diffractive processes as providing tests of factorization. Goulianos’ proposal
[17] to renormalize the pomeron flux in an energy dependent way could be regarded already as evidence that
factorization is likely to break down.
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We take the pomeron to be emitted from the antiproton and the positive z-axis to be along
the antiproton’s direction. The center of mass energy is

√
s, where s = (p1 + p2)2.

2.1 Diffractive jet production

Consider the diffractive cross section for the production of a jet with rapidity y, in a hadron-
hadron collision. We will assume hard-scattering factorization [2, 3]. The lowest order
hard-scattering process is 2 → 2 at the parton level, and results in a cross section of the
form

dσjet

dy
=
∑
a,b

∫ Emax
T

Emin
T

dET 2ET

∫ y′max

y′min

dy′
∫ xmax

P

xmin
P

dxP fP/p̄(xP, µ) fa/p(xa, µ) fb/P(xb, µ)xaxb
dσ̂jet

ab

dt̂
,

(2)
where the sum is over all the active parton (quark, antiquark and gluon) flavors. The
integration variables are ET , the transverse energy of the jet, y′, the rapidity of the other jet,
and xP, the momentum fraction of the pomeron. The momentum fractions of the partons,
relative to their parent proton and pomeron are

xa =
ET√
s

(e−y + e−y
′
),

xb =
ET√
sxP

(ey + ey
′
). (3)

The functions fa/p(xa) and fb/P(xb) are the distributions4 of partons in the proton and
pomeron, respectively, while fP/p̄ is the “flux of pomerons in the (anti)proton”, to be dis-

cussed below. dσ̂jet
ab /dt̂ is the partonic hard scattering coefficient and µ is the factorization

scale, which we set equal to ET . The specific limits used for the integral in xP, as well as
those for the rapidity y′ and transverse energy ET will be given later.

The diffractive cross section given by Eq. (2) has the same structure as the factorized
form of the corresponding nondiffractive cross section, except for the pomeron flux factor
and the parton densities in the pomeron. The same hard scattering coefficient and nucleon
parton distribution functions appear in both cross sections.

The pomeron flux factor, fP/p̄, is related to the pomeron-proton coupling measured in
proton-proton elastic scattering. The t dependence (which we integrate over) and the xP
dependence are thereby determined, but there is a controversy as to the (constant) nor-
malization needed to treat the exchanged pomeron as if it were a particle. Since the same
normalization factor appears in all our cross sections, its value will be irrelevant to our phe-
nomenology. Any change in the normalization factor is completely compensated by changing
the parton densities by an inverse factor, and we obtain the parton densities from fitting a
set of data without any a priori expectations as to their normalization.

However, the normalization does affect the question of whether the momentum sum rule
is obeyed by the parton densities in the pomeron. Since it is not at present understood
whether the sum rule is a theorem, this issue will not affect us. The momentum sum rule is
not assumed in any of our fits.

4These are number densities, not momentum densities.
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There are two pomeron flux factors that are commonly used, Ingelman-Schlein (IS) [2]
and Donnachie-Landshoff (DL) [21]. Since the parton densities will be obtained using the
DL factor, we use the same factor in predicting other cross sections. The DL flux factor is
given by

fDL
P/p̄(xP) =

∫ 0

−∞

dt
9β2

0

4π2

[4m2
p − 2.8t

4m2
p − t

( 1

1− t/0.7

)2]2

x
1−2α(t)
P , (4)

where mp is the proton mass, β0 ' 1.8 GeV−1 is the pomeron-quark coupling and α(t) =
1.085+0.25t is the pomeron trajectory. The integral is over the invariant momentum transfer
carried by the pomeron, since in the present generation of measurements, only the value of
the longitudinal momentum of the pomeron is measured. Since the t distribution is steeply
falling, only values of |t| under about a GeV2 are significant.

The cross section given by Eq. (2) has contributions from a range of subprocesses. The
indices a, b labeling the incoming partons range over the gluon and all the flavors of quarks
and antiquarks. The lowest order form of the partonic cross section dσ̂jet

ab /dt̂ may be found
in [22].

2.2 Diffractive W and Z production

The cross section for the diffractive production of weak vector bosons, is given by

σW,Z =
∑
a,b

∫ xmax
P

xmin
P

dxP

∫ 1

xmin
b

dxbfP/p̄(xP)fb/P(xb)fa/p(xa)C̃
2
ab

1

sxbxP

[√
2
π

3
GFM

2
V B

]
, (5)

where xb is now the momentum fraction of the parton from the pomeron, so that the mo-
mentum fraction of the other parton (in the proton) is xa = M2

V B/xbxPs. The minimum
value of xb is xmin

b = M2
V B/xPs. Also, MV B = MW or MZ is the vector boson mass, and GF

is the Fermi constant. For W bosons, C̃W
ab = Vab, the relevant Cabibbo-Kobayashi-Maskawa

matrix element, while for the Z boson,

C̃Z
ab = δāb

[1

2
− 2|eb| sin

2 θW + 4|eb|
2 sin4 θW

]
, (6)

where eb is the fractional charge of parton b and θW is the Weinberg or weak-mixing angle.

2.3 Diffractive production of leptons from the W

Since leptonic decays of W bosons include an unobserved neutrino, it is useful to compute
the distribution of the observed charged lepton. The general formula for the distribution of
leptons from W production has the same form as that for jet production, Eq. (2). In the
case of W production, at lowest order there are no gluon contributions.

For the specific process p+ p̄→ (W− → e+ ν̄e) + p̄+X, we have

dσ̂lep
ab

dt̂
'

G2
F

6MWΓW
V 2
abδ(xaxbs−M

2
W )û2, (7)
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where MW (ΓW ) is the mass (width) of the W boson, Vab is the Cabibbo-Kobayashi-Maskawa
matrix element and

û = −xbxP
√
sET e

−y. (8)

We used the narrow width approximation in Eq. (7). Using Eq. (7) in Eq. (2), one obtains

dσlep

dy
=
∑
a,b

∫ xmax
P

xmin
P

dxP
xP

∫ Emax
T

Emin
T

dETfP/p̄(xP)fb/P(xb)fa/p(xa)V
2
ab

[
û2G2

F

6sΓW [(MW/2ET )2 − 1]1/2

]
,

(9)
where xa, xb are now given by

xa =
MW e

−y

√
s

MW

2ET
+

√(
MW

2ET

)2

− 1

 ,
xb =

M2
W

s

1

xaxP
. (10)

We have suppressed the scale dependence of the functions fi/j in Eqs. (5) and (9); we set
the scale equal to the vector boson mass. A similar equation may be obtained for the W+

cross section.

2.4 Inclusive cross sections

Since we are particularly interested in the percentage of events that are diffractive, we also
need to calculate the inclusive cross sections, that is, the ones without the diffractive re-
quirement on the final state. The analog to Eq. (2) for the inclusive cross section for jet
production is the standard formula

dσjet, incl

dy
=
∑
a,b

∫ Emax
T

Emin
T

dET2ET

∫ y′max

y′min

dy′fa/p(xa, µ)fb/p̄(xb, µ)xaxb
dσ̂jet

ab

dt̂
, (11)

where xa is given in Eq. (3) while xb is now xb = (ey + ey
′
)ET/

√
s.

For the leptons from W− production, the inclusive version of Eq. (9) is

dσlep, incl

dy
=
∑
a,b

∫ Emax
T

Emin
T

dETfb/p̄(xb, µ)fa/p(xa, µ)V 2
ab

[ û2G2
F

6sΓW [(MW/2ET )2 − 1]1/2

]
, (12)

with a similar equation for W+ production. In Eq. (12), û = −xb
√
sET e

−y, xa is as defined
in Eq. (10) while xb is now given by xb = M2

W/xas.
The analog to Eq. (5) for the inclusive total cross section for vector boson production is

σW,Z =
∑
a,b

∫ 1

xmin
b

dxbfb/p̄(xb)fa/p(xa)C̃
2
ab

1

sxb

[√
2
π

3
GFM

2
V B

]
, (13)

where C̃ab and MV B are as defined above, xmin
b = M2

V B/s and xa = M2
V B/xbs.

6



3 Partons in the Pomeron

We have made five fits of parton densities in the pomeron from the ZEUS data in Ref. [4]
for the diffractive structure function FD

2 . Diffractive structure functions are related to the
differential cross section for the process e+ p→ e+ p +X:

d4σdiff

dβdQ2dxPdt
=

2πα2

βQ4

{[
1 + (1− y)2

]
F
D(4)
2 − y2F

D(4)
L

}
, (14)

where corrections due to Z0 exchange and due to radiative corrections have been ignored.
Here xP and t are the same as in the previous sections, Q2 and y are the usual DIS variables,
and β = xbj/xP, with xbj being the usual Bjorken scaling variable of DIS. The diffractive

structure function F
D(4)
2 (β,Q2, xP, t) is assumed to obey Regge factorization, so that it is

written as a pomeron flux factor times a pomeron structure function:

F
D(4)
2 (β,Q2, xP, t) = fP(xP, t)F

P
2 (β,Q2). (15)

The momentum transfer t is not measured, so the data are actually for the structure function
integrated over t:

F
D(3)
2 (β,Q2, xP) =

∫ 0

−∞

dtF
D(4)
2 (β,Q2, xP, t). (16)

Furthermore, the actual fits are to F̃D
2 (β,Q2), which is obtained by integrating F

D(3)
2 (β,Q2, xP)

over the measured range of xP, 6.3 · 10−4 < xP < 10−2, using the fitted xP dependence [4].
That procedure, as noted in [4], assumes that a universal xP dependence holds in all regions
of β and Q2.

Hard scattering factorization gives F P2 in terms of parton densities and hard scattering
coefficients in the usual fashion:

F P2 (β,Q2) =
∑
a

e2
aβfa/P(β) + NLO corrections. (17)

Since the outgoing proton is not detected, the data include contributions where the proton
is excited to a state that escapes down the beam-pipe and thus misses the detector. Excited
states up to about 4 GeV pass the diffraction selection cuts, and the experimenters estimate
that there is a contribution of (15± 10)% to the measured diffractive F2 from such “double-
dissociative” events. This point is significant when we compare predictions obtained using
our fits to data where the diffracted proton is detected, as in Sect. 5.

Each of our fits is represented by a parameterization of the initial distributions at Q2
0 =

4 GeV2 for the u, ū, d, and d̄ quarks and for the gluon. The other quark distributions
are assumed to be zero at this scale. The fits were made with NLO calculations (with full
evolution and with the number of flavors set equal to 4) and with the pomeron flux factor
chosen to be that of Donnachie and Landshoff.5 The program used to perform the evolution
was that of CTEQ [23].

5The flux factor is a common factor in all the cross sections we compute, and we do not assume a
momentum sum rule for the parton densities in the pomeron. Therefore, the choice of flux factor does not
affect our predictions for the hadron-induced processes provided only that the pomeron trajectory function
α(t) is correct.
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Figure 1: The β dependence of the diffractive structure function F̃D
2 measured by ZEUS, together

with our fits. The inner, thick error bars represent the statistical errors on the data, and the
outer, thin error bars represent the systematic and statistical errors added in quadrature. Fit A
is represented by the dashed line, fit B by the thin solid line, fit C by the dot-dashed line, fit
D by the dotted line, and fit SG by the thick solid line. Note that fits B and D are essentially
indistinguishable.

Four of the fits, labeled “A”, “B”, “C” and “D”, use conventional shapes for the initial
distributions. The final fit has a gluon distribution that is peaked near β = 1, as suggested
by the fit [8] exhibited by the H1 collaboration; we call this our “singular gluon” fit, SG. We
show our fits in Figs. 1 and 2.

Our first fit, A, has as its initial distribution a hard quark distribution (proportional to
β(1−β)) with no glue, and hence one adjustable parameter, whose value is the result of the
fit:

βfAq/P(β,Q
2
0) = 0.585 β(1− β),

βfAg/P(β,Q
2
0) = 0. (18)

This fit gives the dashed line in the figures. It represents the shape of the diffractive structure
function F̃D

2 moderately well, but there are noticeable deviations, both as a function of Q2

and of β.
For the Q2-dependence, Fig. 2, we see that fit A results in an F̃D

2 that at large β decreases
with Q2, whereas the data show a tendency to increase. At small β, both the data and the
fit rise with Q2, but the data rise more rapidly. This suggests adding in an initial gluon

8



∼

∼

Figure 2: The Q2 dependence of the diffractive structure function F̃D
2 measured by ZEUS,

together with our fits. The description of the lines and error bars is the same as in Fig. 1.
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distribution, whose effect is to make the quark distributions rise. As to the β-dependence,
we see from Fig. 1, that the fit gives an F̃D

2 that is rather higher than the data at large β
and rather lower at small β. This suggests that an admixture of soft quarks, more peaked
at small β would improve the fit noticeably.

So we try each of these additions in turn, and then together. First, in fit B we allow a
hard gluon in the initial distribution, with the result:

βfBq/P(β,Q
2
0) = 0.516 β(1− β),

βfBg/P(β,Q
2
0) = 12.28 β(1− β). (19)

Since the gluons only affect deep inelastic scattering in next-to-leading order (NLO), a very
large gluon distribution is needed to produce a substantial effect on F̃D

2 . The resulting Q2

evolution has a much more satisfactory shape, as can be seen from the thin solid line in
Fig. 2. In addition, the strong gluon distribution has the effect of biasing the evolved quark
distribution towards smaller β. Thus the shape of F̃D

2 as a function of β is also improved,
Fig. 1.6

Next, in fit C, represented by the dot-dashed line, we see the effect of adding a soft term
to the quark distribution without allowing an initial gluon distribution. In general we expect
a soft quark term, since Regge theory predicts that a quark distribution at small β behaves
approximately as βf ∼ 1. We find the best fit of this kind to be:

βfCq/P(β,Q
2
0) = 0.470 β(1− β) + 0.080 (1− β)2,

βfCg/P(β,Q
2
0) = 0. (20)

The normalization of the hard quark term is reduced by about 20%, compared with fit A,
and the added soft term clearly improves the shape of the β distributions, in Fig. 1. It should
be clear that at moderate and large values of β, above about 0.2, there is a dominant hard
quark term. Moreover a soft term, at small β is needed, no matter whether it is intrinsic to
the quark distribution or whether it is generated dynamically, from evolution controlled by
the gluon distribution. As is to be expected, the soft quark term does nothing to improve
the Q2 dependence in Fig. 2.

We next try both a soft quark term and a hard gluon term. This results in fit D (shown
as the dotted line in the figures):

βfDq/P(β,Q
2
0) = 0.512 β(1− β) + 0.005 (1− β)2,

βfDg/P(β,Q
2
0) = 11.65 β(1− β). (21)

This is indistinguishable from fit B, particularly given the errors. The important fact is that
if the pomeron were quark dominated, QCD predicts that F̃D

2 decreases with Q2 at large β.
The only way of undoing, or even reversing, this evolution is to have a large initial amount
of glue. No extra soft quark term is required by the data.

Given the number of points and their errors, we can conclude that

• Hard quark and gluon distributions are preferred.

6Remember that the initial Q2 is Q2
0 = 4 GeV2, so that evolution already has a significant effect at the

lowest value of Q2 for which we use data.
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• The normalization of the quark distribution is reasonably well determined.

• Probably a substantial gluon distribution is preferred.

However, even the pure quark fit, A, gives a satisfactory χ2 — see Eq. (23) below. It should
be remembered, however, that χ2 is not the only measure of goodness-of-fit. On the other
hand, the error bars in the lowest plot in Fig. 2 indicate that reduction of the systematic
errors in the measurement of ∂F̃D

2 /∂Q
2 is urgently needed to improve the determination of

the gluon distribution.
Finally, we recall that the H1 collaboration has shown fits to their data with a gluon

distribution that is very peaked close to β = 1. So we have tried a similar fit. The result, fit
SG (shown as the thick solid line in the figures), is:

βfSGq/P(β,Q
2
0) = 0.354 β(1− β),

βfSGg/P(β,Q
2
0) = 70.756 β8(1− β)0.3. (22)

The exponents in the gluon density of Eq. (22) were chosen to try and match the singular
gluon parameterization derived by H1 [8]; the ZEUS data, at least at this time, are not able
to determine definite values for these exponents. To avoid possible numerical problems with
the evolution code we have chosen a shape for the gluon distribution that has a peak close
to β = 1 but that is not actually singular there.

The singular fit results in an improved χ2 — see Eq. (23) below — presumably because
the resulting F̃D

2 increases more rapidly with Q2 at large β. Given the size of the systematic
error bars in the relevant plot, the bottom one of Fig. 2, this reinforces the need for improving
the systematic errors on ∂F̃D

2 /∂Q
2.

In each of our fits, the parameters of the fit are the nonzero coefficients, with the expo-
nents being held fixed. The parameters are determined by minimizing the χ2 between the
theory and the data. The systematic and statistical errors have been added in quadrature,
although that is not an ideal procedure. All the fits give a good χ2 and the fits with the
large gluon are somewhat preferred, particularly the singular gluon fit:

Fit A Fit B Fit C Fit D Fit SG
χ2/d.o.f 5.7/10 1.7/9 2.5/9 1.7/8 1.2/9

Statistical χ2/d.o.f 18/10 3.8/9 6.0/9 3.8/8 3.1/9
(23)

The fact that the χ2 per degree of freedom for all these fits is much less than unity presumably
indicates that the systematic errors have not been treated correctly, for example, as regards
point-to-point correlations. However, even if only the statistical errors are taken into account,
4 of the 5 fits have a worryingly low χ2 per degree of freedom, as can be seen from the last
line. There is only a few per cent probability of getting fits this good, even if the theory is
exactly correct. We take this as an indication that one should look more carefully at the
computation of the errors on the structure functions.

Independently of the quantification of the errors, the most important feature from our
point of view is that the fits give rather stable normalizations to the quark distributions. The
second important feature is that a very large gluon distribution is preferred, perhaps strongly
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peaked at large β. This is in agreement with the results presented by the H1 collaboration
[8]. The momentum sums

∑
a

∫ 1

0
dββfa/P(β) are given in the following table:

Fit A Fit B Fit C Fit D Fit SG

Quarks 0.39 0.34 0.42 0.35 0.24
Gluons 0 2.05 0 1.94 3.57

Total 0.39 2.39 0.42 2.29 3.81

(24)

Although the allowed gluon distributions cover a wide range, the overall normalization of
the quarks is determined to about ±10%, except in the case of the singular gluon fit, where
the quarks are brought down by about 30%.

4 Numerical Calculations of W and Z Production

For the calculations in this section, the factorization scale in the parton distributions was
set to MV B. The values of the electroweak parameters which appear in the various formulae
were taken from the particle data handbook [24], and we use only four flavors (u, d, s, c) in
the weak mixing matrix, with the Cabibbo angle θC = 0.2269.

4.1 Comparison to previous calculations

Bruni and Ingelman [16] computed diffractive W/Z cross sections up to O(αs), i.e., including
gluon contributions. These calculations neglected any Q2 evolution of the parton distribu-
tions in the pomeron. At

√
s = 1800 GeV, they obtained the following diffractive fractions

(R = σdiff/σincl): RW++W− ' 17% and RZ ' 15% for total W and Z production, respec-
tively. These rates are substantially larger than the few percent quoted in preliminary CDF
results [10, 12].

As we will now explain, when one uses evolved pomeron parton densities from the above
fits to data from the ZEUS experiment, one obtains substantially smaller rates than the
Bruni-Ingelman ones. To understand these small rates, we first verify that we can reproduce
the Bruni-Ingelman results. For these we used their unevolved hard quark distribution in
the pomeron (given by their Eq. (4)), the same cut on xP: x

max
P = 0.1, the EHLQ1 parton

distributions in the proton and the Ingelman-Schlein (IS) flux factor:7

f IS
P/p(xP) =

∫
dt

1

2.3xP

(
6.38e8t + 0.424e3t

)
. (25)

Next, we evolved their pomeron parton distributions and recalculated the cross sections. Fi-
nally, to provide our best estimates of the rates, we repeated the calculations using CTEQ3M
for the parton densities in the proton/antiproton and using our fits for the parton densities
in the pomeron, all with proper evolution.8 All the inclusive cross sections were calculated
using Eqs. (5) and (13). The results we obtained are summarized in Tables 1 to 3.

7Note that since our purpose in using the IS flux is to compare our results with the Bruni-Ingelman
calculations, we have used a pomeron intercept of unity instead of the more accurate value used in the DL
factor Eq. (4).

8We evolved the BI distribution from Q2
0 = 5 GeV2 (as with the EHLQ1 distributions), while our fits

were evolved from Q2
0 = 4 GeV2.
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Ref.[16] LO
EHLQ1 EHLQ1 CTEQ3M

W+ +W− 14000 14332 18150
Z 4400 4407 5383

Table 1: Inclusive cross sections σW,Z incl (pb) for weak vector boson production.

Pomeron: BI[16] Our BI BI Fit A Fit D
unevolved unevolved evolved evolved evolved

Proton: EHLQ1 EHLQ1 EHLQ1 CTEQ3M CTEQ3M
W+ +W− 2800 2768 2025 518 844

Z 760 738 520 133 204

Table 2: Diffractive cross section σW,Z diff (pb) for weak vector boson production, with xmax
P =

0.1.

First, in Table 1, we show the inclusive9 cross section, σincl, which will give the denomina-
tor for the fraction of the cross section which is diffractive. Our results are shown in the last
column. These are 20% to 30% higher than those of Bruni and Ingelman (column 2). We
have verified (column 3) that this increase is due to the use of the more up-to-date CTEQ3M
densities in the proton instead of the EHLQ1 densities used by Bruni and Ingelman. Given
the current accuracy of the diffractive data, we did not bother to make NLO calculations;
generally the effect would be to increase the cross sections by some tens of percent.

The diffractive cross sections σW,Z diff are shown in Tables 2 and 3. In the columns
labeled ‘BI’, we used the Bruni-Ingelman parton density in the pomeron and the EHLQ1
parton densities in the proton. In the other columns we used our fits for the parton densities
in the pomeron together with the CTEQ3M parton distributions in the proton. First, we
use the same cut xmax

P = 0.1 that was used by Bruni and Ingelman, to produce Table 2.
However, this allows xP to be rather larger than where pomeron exchange is expected to
dominate. So we also made calculations with xmax

P = 0.01, for which the results are shown
in Table 3.

In column 3 of Table 2 we show our results when we use the same unevolved parton
densities as Bruni and Ingelman; we agree with their cross sections. Then we repeat the
calculations but with correctly evolved parton densities in the pomeron, with the Bruni-
Ingelman formula being used as the initial data for the evolution at Q2

0 = 5 GeV2. We
see that this leads to about a 30% reduction in the cross section. The diffractive fraction
obtained from the evolved BI pomeron parton distribution, using column 3 of Table 1 for
σW,Z incl, is about 14% for W production, compared with the 19% that is obtained using the
unevolved BI pomeron distributions. The corresponding percentages for Z production are a
little smaller: 12% and 17%.

In the last two columns of Tables 2 and 3 we present the results when two of our fits to
ZEUS data are used. Fit A is the one with a simple hard quark distribution and no glue as

9I.e., diffractive plus non-diffractive.
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Pomeron: BI (evolved) Fit A (evolved) Fit D (evolved)
Proton: EHLQ1 CTEQ3M CTEQ3M

W+ +W− 52.3 12.8 13.9
Z 6.6 1.6 1.6

Table 3: Diffractive cross section σW,Z diff (pb) for weak vector boson production, but now with
xmax
P = 0.01.

BI (unevolved) Fit A Fit D Fit A Fit D
xmax
P = 0.1 xmax

P = 0.1 xmax
P = 0.1 xmax

P = 0.01 xmax
P = 0.01

W+ +W− 19% 2.9% 4.7% 0.07% 0.08%
Z 17% 2.5% 3.8% 0.03% 0.03%

Table 4: Diffractive fractions

the initial values, while fit D, together with fit B, has the smallest χ2. Although this latter
fit has a very large gluon distribution which carries about seven times as much momentum
as the quarks, the preference for a large amount of glue is mild—see the last two columns of
(23). Furthermore, at Q2

0 = 4 GeV2, the initial quark distribution remains mostly unchanged
whether there are zero gluons or, conversely, the gluons are unconstrained.

The cross sections resulting from fit A (in column 5 of Table 2) are about 25% of the
evolved BI cross sections. The diffractive fractions obtained from this fit, using the CTEQ3M
entries in Table 1, are 2.9% (2.5%) for W (Z) production, as shown in Table 4.

In fit D, there is an enormous amount of glue initially, and this significantly affects the
evolution of the quarks in the pomeron from Q2

0 = 4 GeV2 to the vector boson mass. The
result is an increase in the cross section, as can be seen in column 6 of Table 2. This happens
even though the initial quark distribution is smaller than in fit A. Even so, the cross sections
are still smaller, by a factor of about 2, than the ones from evolved BI pomeron parton
distributions. The rates from fit D are 4.7% (3.8%) for W (Z) production. These rates are
somewhat lower than those obtained by Kunszt and Stirling [19], who mostly used quark
distributions that at large β fall less steeply than ours.

The data [4] from which our fits were extracted used a conservative cut on the pomeron
momentum, xmax

P = 0.01. The pomeron flux factor allows for the xP dependence, but to
ensure maximum compatibility with the ZEUS data without the assumption of standard
Regge behavior, the same cut should be applied to the cross sections in hadron-hadron
collisions. This results in the cross sections in Table 3, which therefore represent our most
accurate prediction of diffractive W and Z production, given only the assumption of hard
scattering factorization, which of course we wish to test. Notice that with this cut the
diffractive cross sections are over an order of magnitude smaller than with xmax

P = 0.1. The
percentages obtained with this cut on xP for W (Z) production are 0.07% (0.03%) and 0.08%
(0.03%) for fits A and D, respectively, as shown in Table 4 The large reduction is presumably
due to the fact that we are not far from an effective kinematic limit: the cut on xP gives a
maximum proton-pomeron energy of 180 GeV, and partons typically do not carry the whole
of the energy of their parent hadrons.
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4.2 Why are the fractions smaller than from BI?

Although the data used in our fits support a “hard” quark distribution10 in the pomeron, we
predict that the diffractive W and Z cross sections are much smaller, by a factor of 3 to 5,
than those predicted by Bruni and Ingelman, who also used hard quark distributions. This
factor arises as an accumulation of several modest factors that all change the ratios in the
same direction.

• A factor 0.8 because of the larger inclusive cross sections when one uses CTEQ3M
instead of the obsolete EHLQ1 distributions in the proton.

• A factor 0.7 for the effect of the evolution of the parton densities in the pomeron.

• A factor 0.7 for the use of the Donnachie-Landshoff flux factor instead of the Ingelman-
Schlein flux factor, when the momentum sum is kept fixed.

• A factor 0.5 because the data indicate that the quarks give a contribution to the
momentum sum of 0.5 (with the DL normalization), instead of unity as assumed by
Bruni and Ingelman.

4.3 Lepton distributions for W production at the Tevatron

In this section, we present our results for W production, but now with cuts on the emitted
lepton l. Specifically, we calculate the electron’s (or positron’s) rapidity (y) distribution
from Eq. (9) for the diffractive process, and Eq. (12) for the inclusive one. For the parton
distributions in the pomeron, we use our five fits, Eqs. (18)–(22), evolved up to the W mass.

We impose cuts on the lepton that are appropriate for measurements [10] at the CDF
experiment. A cut of 20 GeV was imposed on the ET of the emitted lepton so that the
integration region for ET is 20 GeV ≤ ET ≤

1
2
MW . The parameter xP was integrated over

the range M2
W/s ≤ xP ≤ 0.01.

Fig. 3 shows our results for W− production. The diffractive cross sections using fits B
and D differ only by a few percent and are represented by solid curves which overlap, while
those using fits A and C are denoted by the dashed and dot-dashed curves, respectively.
These curves exhibit a strong fall-off in the region ye > −0.25 that is a consequence of the
requirement of a rapidity gap. The overlap between the two solid curves suggests that, at
least for this particular process in this kinematic region, the extra soft term in fit D for the
quark in Eq. (21) does not contribute much. The lower dotted curve is the inclusive cross
section rescaled by 10−3.

The diffractive cross section is about 3% to 4.4% of the nondiffractive one at the leftmost-
edge of the plots (at y = −3) depending on the fit used. The cross sections using fit B or fit
D are about 45% larger than those using fits A and C at y = −3, with the ratio decreasing
as y increases. Since we only include the qq̄ →W channel in the calculations, and the quark
densities are nearly the same for the five fits because of the small contribution of the soft
term, this difference is mostly due to the effect of evolution. The presence of a large amount
of glue in fits B and D increases the evolved quark densities relative to those in fits A and

10This agrees with the H1 results [8].
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Figure 3: Rapidity Distribution of e− in W− production. A cut xP < 0.01 was used.

C. This tendency is even more pronounced for the SG fit (upper dotted curve), where the
glue is concentrated at large β.

The corresponding cross sections for W+ are shown in Fig. 4. The cross sections are larger
than for the W−, because a valence up quark from the proton can be used to make a W+,
especially at large negative rapidities. In the plot, the rapidity gap exists for ye+ > −1.6.
As in the case of W− production, the diffractive cross section using fit B or D is larger than
the one with fit A or C, by about 35% at ye+ = −4, decreasing with ye+ .

4.4 Comparison to CDF data for W production

The CDF collaboration has presented preliminary data on diffractive W production from pp̄
collisions at

√
s = 1800 GeV [10, 12]. The W ′s are produced with a rapidity gap in the region

2.4 < |η| < 4.2. They find that the fraction of diffractive to non-diffractive W production is
[12] RW = [1.15± 0.51(stat)± 0.23(syst)]%.

In Table 5 we present our diffractive fractions using Eq. (5) with xmaxP = 0.017, which we
determined from the CDF plot [11] relating ηmax and xP. The fractions are about a factor
of two smaller than the measured rates but are all within the experimental uncertainties.
They are computed with the diffracted hadron being allowed to be either the proton or the
antiproton.
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Figure 4: Rapidity Distribution of e+ in W+ production. A cut xP < 0.01 was used.

Fit A Fit B Fit C Fit D
W+ +W− 0.56% 0.67% 0.50% 0.66%

Table 5: Diffractive fractions using CDF cuts.
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5 Diffractive Jets

In this section, we present our results for jet production. We imposed the following cuts on
the jet cross sections. These represent the effect of appropriate experimental cuts [10, 14]
and of cuts to improve the significance of the signal.

• We require that two jets are produced in the same half of the detector, i.e., y1y2 > 0,
where yi is the rapidity of jet i. This eliminates the region where the jets are in
opposite hemispheres, since that region is well populated by non-diffractive events but
is relatively unpopulated by diffractive events, because of the rapidity gap requirement.

• Each jet is required to have a transverse energy ET greater than 20 GeV. This ensures
that we are definitely in the perturbative region for the jets, but the cut could be
relaxed.

• Each jet’s rapidity satisfies |y| > ycut ≡ 1.8.

Next, we integrated over the rapidity of one of the jets to obtain a single jet distribution,
but still subject to the above cuts on the other jet. Eqs. (2) and (11) were used for the
diffractive and inclusive cross sections, respectively, with the parton distributions evolved
to the scale ET . The integration limits used for the ET integral were Emin

T = 20 GeV and
Emax
T =

√
s/(e−y+ey), while the xP integral was performed up to xP = 0.01. In the following

discussion, we will denote the rapidity of the final state jet by yjet instead of y.
The resulting cross sections are shown in Fig. 5. There are no points in the middle part

of the plot because of the rapidity cut used, as described above. The lower (upper) solid
curve, which results from using fit D (fit B), is about 10 times larger than both the dashed
and dot-dashed curves, in which fits A and C, respectively, were used. This reflects the
sensitivity of this particular type of cross section to the gluon content of the pomeron. The
lower dotted curve, which is symmetric about y = 0, represents the inclusive cross section
scaled down by a factor of 10−3.

We also show in Fig. 5 the cross section obtained when the pomeron parton density with
a singular gluon is used (fit SG), the upper dotted curve. The resulting cross section is about
1.5 to 2.5 times larger than that obtained using fit B or D.

The diffractive jet fractions are shown in Fig. 6, where R×100 is plotted as a function of

yjet, with R =
dσjet,diff/dyjet

dσjet,incl/dyjet
. As in Fig. 5, the solid curves correspond to the rates when fits B

and D are used, while the dashed and dot-dashed curves denote the rates for fits A and C,
respectively. For the non-singular distributions, one finds that the rates R are largest when
fit B is used, varying from 4.5% to 2.2%. With fit D, which differs from fit B by the absence
of a soft term in the quark distribution, the rates are about tenths of a percent lower. The
rates obtained with fits A and C are almost identical and range from 0.43% to about 0.18%.
The rates are largest at yjet = −4 then decrease as yjet increases. Of course, the large rates
for the distributions B and D, both with the large glue, directly result from the fact that
there is a gluon induced subprocess. For comparison, we also show the even higher rates
obtained using the singular gluon fit SG (dotted curve), which vary from 6.7% to 5.2%.

We end this section by making comparisons with preliminary data on diffractive dijet
production from CDF and D0 at

√
s = 1800 GeV. CDF has measured dijet data both with a
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Figure 5: Rapidity Distribution of Jet Cross Sections.

Figure 6: Diffractive Jet Production Rates.
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Fit A Fit B Fit C Fit D
σjet,diff

σjet,incl 0.47% 5.6% 0.47% 5.4%

Table 6: Diffractive fractions for dijet production using CDF cuts (rapidity gap).

Fit A Fit B Fit C Fit D
σjet,diff

σjet,incl 0.33% 4.45% 0.37% 4.24%

Table 7: Diffractive fractions for dijet production using CDF cuts (Roman pots).

rapidity gap requirement [10] and with Roman pots [11] along the antiproton beam direction.
In the first case, the cross section for dijets produced opposite a rapidity (η) gap in the region
2.4 < |η| < 4.2 is measured. Each jet is required to have a minimum ET of 20 GeV and
rapidity |η| > 1.8. They also measure the dijet cross section without a rapidity gap, i.e.,
what we refer to in this paper as the inclusive cross section. The diffractive fraction they
measure is [12] RJJ = [0.62± 0.04± 0.09]%. The fractions that we obtain using the above
cuts are shown in Table 6. The rates obtained with fit D or B are about nine times larger
while those obtained with fit C or A are about 25% smaller than the measured value. Our
calculation assumes that either the antiproton or the proton is diffracted.

With their Roman pot triggered diffractive sample, CDF has measured a diffractive
fraction of RJJ = [0.109 ± 0.003 ± 0.016]%. The data in this sample correspond to xP in
the range 0.05 < xP < 0.1, with the jets having minimum ET of 10 GeV. The fractions we
obtain using the same kinematic cuts are presented in Table 7. The ones obtained with fits
D, B are an order of magnitude larger than the data, while those obtained with fits C, A
are about 3–4 times larger. Our calculation assumes that only the antiproton is diffracted.
Since our diffractive parton densities are fitted to data in which the proton may be excited,
our predictions should be reduced by about (15± 10)% [4] before being compared with data
in which the isolated proton is detected. However, even after this reduction, our predictions
are still well above the measured diffractive fraction.

Finally, D0 also has some preliminary data [14] on diffractive dijet production. They
require a rapidity gap opposite the dijets which have Emin

T = 12 GeV and |ηjet| > 1.6. The
diffractive fraction they measure is RJJ = [0.67 ± 0.05]%. Our calculated fractions are
shown in Table 8. Again, the fractions obtained using fits D, B are an order of magnitude
larger than the data, while those obtained with fits C, A are consistent with the data. Our
calculation assumes that either the antiproton or the proton is diffracted.

Fit A Fit B Fit C Fit D
σjet,diff

σjet,incl 0.8% 10.4% 0.9% 10.0%

Table 8: Diffractive fractions for dijet production using D0 cuts (rapidity gap).
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6 Conclusions

We have presented fits to the DIS diffractive structure functions measured by the ZEUS col-
laboration, together with a lowest order calculation of the resulting diffractive cross sections
for vector boson production and jet production from pp̄ interactions at the Tevatron. Since
we used pomeron parton distributions fitted to data on diffractive DIS, the rates represent
a realistic prediction of the cross sections, given the assumption of factorization.

The quark distributions are fairly well determined, at least in overall size, and we see that
diffractive W and Z production is predicted to be a few percent of the inclusive cross section,
at least if suitable cuts are made to select kinematic configurations that are preferentially
populated in diffractive events.

We have derived fractional rates R = σdiff/σincl which are much smaller than those
obtained in the benchmark studies [16] of vector boson production. The rates we have
calculated are 0.08% (0.03%) for W (Z) production using fit D, and a cut xP < 0.01. For
the case of lepton decays of vector bosons, we are able to increase these fractions to several
percent by requiring the lepton to have large rapidity, on the side opposite the rapidity
gap. Substantial deviations from these rates would indicate a breakdown of hard scattering
factorization for diffractive processes. In fact, the preliminary data from the Tevatron appear
to be consistent with our calculations, within large errors.

The wide range of gluon distributions that is permitted by the DIS data yields predictions
for the diffractive jet cross section at the Tevatron (see Fig. 5) which differ by an order of
magnitude. Given the assumption of factorization, the smaller jet cross sections, from fits
A and C, represent the lowest reasonable cross sections since they correspond to a pomeron
without glue at Q2

0 = 4 GeV2. However, the fits with the large gluon initial distributions
(fits B, D, and SG) are preferred for the ZEUS DIS data, in agreement with the results [8]
from the H1 collaboration.

For jet production, rates of 4.5% to 2.1% in the rapidity range −4 < yjet < −1.8 were
calculated using fit D or B (with the large glue). The corresponding rates for the calculations
using fit A or C (with the small gluon distribution), in the same rapidity range, vary from
0.43% to 0.18%. We are working on using data [9] on diffractive photoproduction of jets to
reduce greatly the uncertainty in the gluon density. This will improve the accuracy of our
predictions, particularly for diffractive jet production. We can already see from the results
reported by the ZEUS collaboration [9] that parton distributions with a substantial amount
of glue are preferred.

As we saw at the end of Sect. 5, only the lowest of the jet cross sections we compute for
the Tevatron is consistent with the data. These are the cross sections for which there is no
initial glue in the parton densities. In the case of the Roman pot data, our calculated cross
sections are all well above the experimental value; these are the data for which the cuts can
be most directly implemented in our calculations. These results combined with the ZEUS
measurement of a substantial gluon component in the pomeron already are suggestive of a
breakdown of factorization.

With a modest increase in accuracy, comparison with actual data for diffractive W , Z
and jet cross sections will permit a good test of the factorization hypothesis. As explained
in Ref. [1], the results of such a test will be important as a probe of the space-time structure
of hadron-hadron scattering at high energy.
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[11] P.L. Mélèse, for CDF Collaboration, “Diffractive Dijet Search with Roman Pots at
CDF”, Fermilab-Conf-96/231-E.

[12] S. Bagdasarov, talk given at 3rd Workshop on Small x and Diffractive Physics, 26–29
Sept. 1996, Argonne, IL.

[13] K. Mauritz, for D0 Collaboration, “Hard Diffraction at D0”, talk presented at Small x
meeting, Sept. 28, 1996, Argonne, IL.

[14] S. Abachi, for D0 Collaboration, “Hard Single Diffractive Jet Production at D0”,
Fermilab-Conf-96/247-E.

22



[15] A.G. Brandt, for D0 Collaboration, “Rapidity Gaps in Jet Events at D0”, Fermilab-
Conf-96/185-E.

[16] P. Bruni and G. Ingelman, Phys. Lett. B311, 317 (1993).

[17] K. Goulianos, “Renormalized diffractive cross-sections at HERA and the structure of
the pomeron”, Talk given at 7th Rencontres de Blois: Frontiers in Strong Interactions -
6th International Conference on Elastic and Diffractive Scattering, Blois, France, 20–24
June 1995, e-Print Archive: hep-ph/9512291

[18] T. Gehrmann and W.J. Stirling, Z. Phys. C70, 89 (1996).

[19] Z. Kunszt and W.J. Stirling, “Hard diffractive scattering: partons and QCD”, e-print
archive hep-ph/9609245.

[20] K Golec-Biernat and J. Kwieciński, Phys. Lett. B353, 329 (1995).
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