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Abstract

In this work, we present a formalism for the equivalent circuit model to include all
harmonics of the synchrotron oscillation in a beam-cavity interaction system by
considering the perturbations in the moments of a bunched beam. The dispersion
relation obtained by this new method was compared with that derived from the linearized
Vlasov equation up to the second harmonic of the synchrotron frequency. We found
good agreements between these two approaches. We also discuss about the possibility of
extending the moment method to the cases with nonlinear longitudinal focusing forces
and to the time domain tracking of the beam-cavity interaction with a feedback control.

1. Introduction

In designing the radio frequency (RF) system of an accelerator or storage ring, the
interaction between the charged particle beam and the RF cavity is often modeled by an
equivalent circuit. The wide application of this kind of modeling can range from a simple
estimation of power requirement to complicated studies of system stability and control
designs. As an example, for an RF system without external control, K. Robinson
derived a set of well-known criteria for a stable beam-cavity interaction system.[1,2]
These stability conditions were originally derived by using an equivalent circuit model
and the equation of synchrotron motion before the more elaborate kinetic theory of
bunched-beam stability was formulated.[3,4] The equivalent circuit analysis can show
that the Robinson instability is due to the frequency-dependent cavity impedance and the
coupling of the upper and lower synchrotron sidebands next to the RF frequency. In the
kinetic theory, the frequencies of these sidebands correspond to the frequency of the
coherent dipole mode perturbation in the charge density of the bunch. For a beam with
more than one bunch, the content of Robinson's stability criteria covers only the coherent
motion of dipole modes among bunches.

Because of its mathematical simplicity and its practical importance, the dipole mode in
the beam-cavity system has been extensively studied by using the equivalent circuit model
and by using the Vlasov equation of the kinetic description.[5] One of the advantages of
using the Vlasov equation over the equivalent circuit model is that the coupling among
perturbation modes of all synchrotron harmonics, including the dipole mode, are covered
in the formalism in a natural way. A widely used formalism in applying the Vlasov
equation was developed by Lebedev and Sacherer.[3,4] In that formalism, the
perturbations of the beam-particle distribution in phase space are categorized according to
the harmonics of the synchrotron frequency. Since the synchrotron frequency is usually
much lower than the fundamental frequency of an RF cavity, synchrotron harmonics may
appear in the beam signal as sidebands around the resonant frequency of the cavity. For
narrow-band resonators, only those synchrotron sidebands near the resonant frequencies
of the cavity contribute significantly to the beam-cavity interaction. Yet, depend on
situations, the higher order modes could also be important in some cases. It has been
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discussed in an earlier work, that for a tightly bunched beam interacting with a highly or
moderately detuned narrow-band resonator, the neglect of higher synchrotron harmonics
is a good approximation. However, for long beam bunches or small cavity detuning,
higher synchrotron harmonics may affect the stability appreciably; therefore, at least a few
of the higher synchrotron harmonics should be considered.[6] When more synchrotron
harmonics are included, the mathematics involved in solving the Vlasov equation
becomes difficult except for a few special equilibrium phase-space distributions.

The equivalent circuit model used so far can not describe the dynamics involved in the
collective motion of particles within the bunch. However, it is simpler and easier to be
incorporated with engineering designs than the kinetic theory model. The simplicity of
the equivalent circuit model can be appreciated more when we want to track the beam-
cavity interaction in the time domain. The reason that the equivalent circuit model used so
far can cover only the dipole mode is because only the single particle motion is
considered. In such a model, a bunch of particles is envisioned as a single macro-particle
with no internal degree of freedom.

The purpose of this study is to formulate, at least in the linear longitudinal focusing
regime, an approach in the equivalent circuit model that can take any number of
synchrotron sidebands into account. As will be discussed in the followings, that using
the moment method, one can incorporate any number of synchrotron sidebands in the
equivalent circuit model. A more general moment method has been previously used to
study the space charge effect in the dynamics of transverse motion of beam particles.[7,8]
The "moment” we will study at here is the moment in the configuration space of the
bunch beam, it does not include all the moments in the phase space as some previous
studies did. In the following sections, we will derive the linearized equations of motion
for the longitudinal moments of a bunched beam and relate the variations in moments to
the perturbed beam current that drives the perturbed field in an RF cavity. We will also
discuss about the possibility of extending the moment method to include the effects of
nonlinear focusing and to study the nonlinear evolution of the beam-cavity interaction.

An example will be given for the time domain tracking of a beam-cavity system with
feedback control. For simplicity, we limit our study here to the scope of coherent mode,
or the "0" mode stability of a multibunch system, i.e., the coupled-bunch modes are not
considered here. We shall concentrate on the case below transition. Above transition, the
analysis is similar.

2. Linearized Equations of Particle Motion

The equation of synchrotron motion of a charged particle is

d’¢ _ oy
di*  Vcosy,

[Vsin(w, +¢, - @) - Vsiny, | (2.1)

where ¢ is the phase deviation of the particle's position with respect to the "synchronous
phase" vy, t is the time,

w? = - AMVcosy, 2.2)
27y R

@, is the synchrotron frequency at equilibrium, ¢ and m, are the charge and the rest
mass of a beam particle, respectively, V. is the maximum RF voltage on the cavity when
the system is in steady state, V is the voltage on the cavity, ¢, is the deviation of the
voltage phase from its equilibrium, 7y is the ratio between the total energy and the rest

mass of the synchronized beam particle, # is the RF harmonic number, R is the effective
machine radius,
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is the momentum slip factor for a machine with transition gamma y,. Integrating the
equation of motion, yields

doY _ 204 |
( dt ) Vicosy., [VCOS(WS +9, ¢) (Vssml//s)(l’]

(2.4)

=K, + ‘}ij[vsin(ll/x +9,- ‘P)Z_q; meos(y, +0, - q’)%]ﬂp

where K|, is the integration constant to be determined. We notice that ¢ = ¢/ when

¢, =0,V =V, and do/dt =0, where @, is the maximal excursion of the particle in the
unperturbed RF potential well. We therefore find that

2

2w , . )
K,=- > :;S [COS(WS — @l )~ (siny, )(pmax] ‘ (2.5)

Assuming that ¢ and ¢, are small quantities, V=V + V with V << V., Egs. (2.1)
and (2.4) can be linearized to obtain

d? 1%
75(23 + 5P = wfo(fﬁv + Vtanvfx] , (2.6)
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and
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+ a)jo{H +2{(V/,)-g,tany, ]} - waoj[d(V/K) —any,dg,| @)

~

= "a’szo‘»"2 - a’szo(Pz(““//‘ - ¢,tan V’x] + wfoH )

s
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where H = ¢/ _is a constant depends on the total energy of the particle.

3. The Moments and Their Equations of Motion

We assume that the particle density within the bunch p(z,t) is a steady part p,(z) plus
a perturbation part &(z,1), i.e.,
p(z.t) = py(2) + &(2,1)

) - 3.1
=J._mf0(z’vz)dvz+_L°f|(Z,VZ,t)dvz , G.1)

where f,(z,v,) and f,(z,v,) are the equilibrium and the perturbed distribution functions

of beam particles in the (z, vz) phase space, respectively; z is the coordinate along the



bunch length, and v, is the speed of a beam particle. The origin of the coordinate is
chosen to coincide with the bunch center in the steady state which is assumed to be

"synchronized” with the RF phase. Assuming there are M identical bunches in the ring,
the hth harmonic of the beam current /, is then given by

qMCﬁ J‘ rhz/R
hZM

Li2

=MD einp(2) 4 ez

27R
~LI2
MeB [ ik a1
— I(O) + qivc (I_E) Zst d
' 2m.Z;R n
L2
(Pmax
MCﬁ & . n Rg(z,l‘)
.y (O q d
g mm.EW)mh
~@max
i (3.2)
0 l
=1+ LY ()
_1(0) i < 21) +lId i (_1)1 <(P2,+|>
-1 e (2j+1) r
where

is the averaged (dc) beam current, c is the speed of light, B is equal to the averaged

particle speed divided by ¢, L is the full length of the bunch, i =+/-1, N is the total
number of particles in one bunch, ¢_,, is one half of the bunch length in the RF phase,

7R

L 7
1 =2 [y ()dz (3.4)

—nR

and the nth moment <(p"> is defined according to

P max P max
. 1 . Rplz,t | R
T P

~P max

where p(@,t) = Rp(z,t)/h follows from the change of variable from z to ¢, and the
moment due to the perturbation is given by

Pmax ~
¢ >p =% j(p"é((p,t)d(p : (3.6)

~Pmax

Following the definition of ((p”) in Eq. (3.5), we can derive that
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. do .
@ '—(fp(q),t)dtp , (3.8)

and

d*(¢") _ m(m- 1) o 470 .
" dt co,t)dfp ) ;i—;z—p(fp,t)dco

~Pmax

=—m a)m(go >+ mcoso[qbv + %tanws]<go'""> (3.9)

by

+m(m—1)w, [(H(pm_z) = (% —¢,tany/, )(‘Pm)} ’

s

where we have applied Egs.(2.6) and (2.7) to obtain Eq. (3.9). Thus, the moments obey
the following equations

d*{¢ 1%
and
d2 m A
5(6 ) +m’ ol (p") = mwfo(dn +Ztany, )(cp““‘)
t 4
R (3.11)
+m(m -}, [(pr’"‘2> - (—“; — ¢ tany, ](tp"' >} :
for m>1. Using a similarly procedure in deriving Eq. (3.11), one can show that
d2 Hn(pm o V .
% =-m0},(H"")+ mwfo(@ +T/:tanw‘]<H 0"
(3.12)

+m(m - 1)@’ {(H"”(p"‘ 2> (%—q)vtany/xj(H"(p'"}} :

N

Now, assuming that the moment <(p"> is composed of a steady part <qo” >0 and a small

perturbation part <(p”>1, 1Le.
() ={07), +(9), (3.13)

then using the conditions of d 2<(p" >0 / dt* =0 when V = ¢, = ((p">l = 0, the steady part
can be shown is given by



(#%), = <h;>° = (3.14)

(H"9¥™) =0, for n,j=0,1,23.......; (3.15)
and
20\ _ 2j+1 n+l, 2j . _
<H(p >o"——_2(j+1)<H ) , for n,j=123..... (3.16)

Applying these relations, we can derive the following linearized equations of motion for
moments:

d* (o) %
Tz'mfo((t’)l =l 9, +;,:tam//x , (3.17)
d2 (P2 ‘,}
fhz ol o), - -2w30<p§,ax[—vj - g,tan v«] , (3.18)
d2<(pm> ~

dr’

¥

+m(m-1)o, {(qu"“2>] - (% — ¢, tan W‘VJ«DM )0} :

et (o), =m0,y o),
3.19

N

We can also derive the following equations for the perturbation <H "(p’">l in <H "qo'"> and
the perturbation (H(pz>l in <H(p2>:

2 n..m A
&Zﬁip_)—l +m*o}, <H"qom >] =mo’, (q)v + —“/-{- tany, ](Hn(pm_l >0
\ (3.20)
e (melre]
and
d*(He? R
_% +40),(HY"), = -40,0},, [_“—//_ - ¢,tan Ws] : (3.21)

Egs. (3.18) and (3.21) indicate that (H9’) /(2¢2,,) and (@*) obey the same equation
of motion. Therefore we can infer that

(HO™), = (H)o(0"), =20%,.(0°), . (3.22)

Similarly, we can infer that



(H"0), =(H") (o), , (3.23)

d (Hn(p2>1 = <Hn>0<(p2>1 ’ (3:24)
an
(Ho") = <<Z>>° (9") . forn=3,4,5. .. (3.25)

Making the use of the relations in Egs.(3.22)-(3.25), one can rewrite the linearized
equations of motion for moments as

d’ 14
;;p oy fo), = wfo(dx * thanwx] : (3.26)
d2 (pZ f}
% +40),(0%), = 20407, [;,S— - %tan%j : (3.27)
d2 3 A~
%w%(ﬂ = 3w30¢3m[4<¢>1 +9, +¥tanw:), (3.28)
d2 4 A~
%% +160(¢*), = 12w30¢iax[ (), - fpmax[ =9, tanw\ﬂ (3.29)
and
dZ m
<d(f2 >l + mzws20<(Pm>l = m(m - l)w_fo<H(pm‘2>|
. R (3.30)

N p
+ mwfo(dn +any, ](cv H, —mm =Dkl (—V—

A

~ ¢ tany J((p’"‘z% :

To proceed the analysis further, we identify the perturbed moment <(p">| here with

<<p">P in Eq. (3.2). The hth harmonic of the beam current then can be expressed as

oo

L=5"+I 2

'< i3 o)

= = (3.31)
j=1 i=0
where
Oy (_I)J 2j
Ih 2] (2])' Idc<q) j>] ) (332)
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O (@) I.(¢”")
h2j+l = (2j+1) a\P ) -

(3.33)

In the polar coordinate notation, the 4th harmonic of the beam current can be written

as
_ —1, (1)
Ih'—Ib(t)e "
where
- (0) a) ) _ 7 )
Ib“ Ih +zlh,2j + Zlh.zjﬂ ~Ih +Zlh,2j >
= j=0 Jj=1
and

oo

(¢}
Z;‘Ih,zm - .
_ ) = _ -1 M o | _ i (0)
¢, =—tan ’ ~ —tan zlh‘2)+l/lh = "Z Ih,zm/lh .

j=0 j=0

(0) n
L +¥ nh

j=1
If only the first moment or the dipole mode is considered, then

L =1,
and

_ I,(‘H) —_ IdC<(P)1
I - JO
h h

9, =
To the second moment, the quadrupole mode, we have

I
=10+ 1, = 10 - e (p7) |

and

To the third moment, the sextuple mode, we have

1,
I=1"+ 11(11)2) =1 ‘“?(‘PZX ,
and

3
¢, ~— If(13> _ 14(11(;) - Idc<(p>1 + Idc<(p >1
b I}(]U) I’EO) I'(lO) 61’(10)

4. Equivalent Circuit Model for an RF Cavity

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

In the equivalent circuit model, an RF cavity is envisioned as a parallel RLC circuit;
the applied RF power source and the circulating beam current are envisioned as currents

I, and iy, respectively. The schematic is shown in Fig. 1.
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Fig. 1. The equivalent circuit model of the beam-cavity interaction system.

Using Kirchhoff's law, one can derive that the total voltage on the cavity satisfies the
differential equation

2 .
i§+2a‘—13+a>3v=2a&‘—ii, (4.1
dt dt dt

where v is the total voltage, & = @,/(20), @ =R, /(Lw,) is the quality factor of the

cavity, @, = 1/J/LC is the resonant frequency of the cavity, R,, L, C are the shunt
resistance, the inductance, and the capacitance of the cavity, respectively;

=i, +i, . 4.2)
Making the substitutions of
v=V()e ™, (4.3)
i, =I(t)e ™, (4.4)
and
i =1 (e ™", (4.5)
in Eq. (4.1), yields
d’v . dv 2 2 A ~ da . -
% + 2(a - za)g)z + (a), -, - Zzaa)g)V = 2aRs(E - a)glj , (4.6)

where @, is the frequency of the driving RF power and

I=1-1,. 4.7)
For synchronization, the RF frequency is chosen according to the relation

w, =0

=0, =hQ (4.8)

where €2 is the averaged revolution frequency of beam particles and 4 is the harmonic
number. For high-Q and high frequency resonators, & << ®,, and

d2\~//dt2 <o, dV/a’t . If we also assume that df/dt << a)gf, which is true in most
cases, Eq. (4.6) can be approximated by
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ﬂ+{a—%}lv=a&1 : (4.9)

o,

The relations among these phasors are shown in Fig. 2, where we have chosen a rotating
polar coordinate system such that the steady state | , 1s on the real axis.

Im im
M<0 n>0 v 0
- v
Ig,
don
-~ . , - \j 'D
) LNy J
bp 0l do
»Re * Re
H ' \\ v
"=\ v
ol
g
__j\ ¢
ws ‘\ v

(@) (b)

Fig.2. Phasor diagram showing the relations among the beam current, I, , the generator
current, | . » and the total cavity voltage, V, for (a) y <y,, (b) ¥ >7¥,. v, represents the
synchronous angle and dashed lines designate steady state angles.

For most systems, the phasors will oscillate about their steady states, so we denote @,

and ¢, as the angular deviations of V, and 1, from their steady states, respectively. We

also introduce the synchronous angle between the total voltage and the beam current, v,
as shown in Fig. 2.

Using the notations defined above, we can write the phasors in polar form as:

I =1e ", (4.10)
I=1@ne™, (4.11)

and
V=V()e ", (4.12)

Substituting the above polar representations into Eq. (4.9) and equating the real and
imaginary parts on both sides of the equality, we have

‘2—‘; +aV =R [~I,cos(9, - 9, - w,) + L,cos(s, ~y, +v,)] (4.13)
and



d R [ .
% =0, -0, - = [Lsin(0, -9, - )+ Lsin(g, -y, +v.)| . @14

where use has been made of the approximation ® —®, ~2®. One can prove that when
Vv, =y, the system will be in tune, that is, the RF source will see a real impedance. In
this case, Egs. (4.13) and (4.14) are simplified to

dv

-t av = aRE[—I,,cos(q)b -0, -y, )+ Igcosq)v] , (4.15)
and
dg, oR [ . |
=00, [1,sin(9, - 6, - w, )+ Lsing, ] . (4.16)

The subsequent analysis in this and the next sections will always assume that the system
is in tune. It should be noted here that the total voltage in the steady state V., is given by

V,=R][I, - I,cosg,] . 4.17)
Also note that in the steady state,

R 1 siny, 0, -0
V o

A

£=—tang, . (4.18)

Assuming that I, = I, +I,, with I, << I, and a small perturbation V is introduced
to the voltage, one can linearize Egs. (4.15) and (4.16) to yield

_‘2/ +aV = —aRx[]blCOSl}Iv + Ih0(¢b -0, )Sinllfv] ) (4.19)
and
d¢ —aR 1, cosy 1, 14
D rap =k Ty | bL g +| — |tan : 4.20
dt ¢v ‘/S ¢b Ibo any/v Vs WV ( )

The above two equations and Eqs. (3.26)-(3.36) are the basic equations for studying the
beam-cavity interaction in the linear regime.

5. Dispersion Relations and Comparison with Kinetic Theory

The purpose of this section is to test our formalism established so far by comparing
the characteristic equation, or the generalized dispersion relation, derived from the
moment method with that obtained from the kinetic theory. We shall study the dispersion
relation up to the second harmonic of the synchrotron oscillation, i.e. to the second
moment.

5.1 Dispersion Relations

The complete set of equations, up to the second moment, are



dv

= aV = -aR [I,cosy, +I,,(9, - 9, )sin v,], (5.1)
da¢, _ —OR I, cosy, 17
7 +ap, = ———_—Vs ¢, — Ibo tany, + Vs tany, | , (5.2)
I=1,+1 ~1<°>-1£< ) 5.3
b= dpo Ty =1y Z(Pl’ (3.3
I
0, ~ - d}f(f)l , (5.4)
h
d*{p 1%
—dizlmfo(q») = so(¢ +;,S-tanws] , (5.5)
and
dZ((P2> ‘}
a7 L+ 4w, <(P2>] = _za)szoq)r:ilax [VT - ¢,tan ‘/’A\-] ) (5.6)
where 1,, = 1", and
I
I, = —f(ff)l - (5.7)
The Laplace transformation of Egs. (5.1), (5.2), (5.5) and (5.6) are
(s+)(V/V,)==A](9, - 8, )siny, +(L,,/1,0)cosw, ] , (5.8)
(s+o)p, = —A[(V/V; )sin v, +,cosy, —(1,,/1,)sin wv] : (5.9)
(s +@l)p, = soul[ +(V/v Jeany], (5.10)
and
(52 +4w, )(IbI/IbO) = 4‘030.‘12[(‘7/‘/;) - ¢vtam/’s] , (5.11)
where
A=l (5.12)
v,
¢b Idc Idc
b __ e 5.13
ﬂ] ((P>l I(o) I,,o ( )
.u2 — _Ibl(prznax = Idc(prznax
21,,(¢%), 21, (5.14)

and we made no distinguish between the notations for the time domain quantities and the
notations for the Laplace transformed quantities. In the matrix form, Egs. (5.8)-(5.11)
can be written as



(s+a) —Asiny, Asiny, Acosy, (V/VJ ]
Asiny, (s+a) Acosy,  —Asiny, ¢
2 ; o © =0, (515)
Wit tany, Dol (s + wsO) 0 ®?,
~@l,  AwpLtany, 0 (S2 + 4wy, )_ _(Ibl /o )_

Equating the determinant of the matrix in Eq. (5.15) to zero, one arrives the following
dispersion relation:

s+ p555 + p4s4 + p3$3 + p2s2 +ps+p,=0, (5.16)
where
Do = 4a)fo[a2sec2¢), =2+ )+ /lz,u,uzseczw‘_] : (5.17)
p, =8aw?, (5.18)
p, = 4w}, + 50’ wlsec’, — oL X (i, +44,) , (5.19)
p, = 10aw?, (5.20)
P, =507+ a2secz¢y ’ (5.21)
and
ps =20 (5.22)

5.2 Comparison with Kinetic Theory

The dispersion relation including the second harmonic of the synchrotron frequency
has been derived from linearized Vlasov equation in a previous work.[6] Therefore only
a summary is given in the following. The starting point here is the linearized Vlasov
equation

(0—lwg)R(r)= M(ﬁ)

2mmyyr \ dr
- (5.23)
V4 Q ‘
xZ—————"(“’:" O)im—’-‘J,(%)f&n(r')Jm(”; )r'dr' ,

0

where n is the index for the harmonic number around the ring, R,(r) is the /th radial

. . 2 21/2
mode of the perturbation in the phase space of (z, v,/ a)so), r= [z + (vz / a)so) ] , J(x)

is the Bessel Function of the /th order, and

Z, (0 +nQ,) (5.24)

T1+ (0 FrQy t w)/a]
is the impedance of the RF cavity.

Considering the cases of n=*h, [ =£1,42, and m =+1,+2, we have



(@=2@,)T, = -2i8,[E (T, +T,)-i&, (I, - T,)],
(@ =@, =—iv[iE,(T,+T,)+E_ (T, -T,)] ,

(@ +@,)T, =—it, i ([, +T,)+Z (I, -T)],

and
(@+20,,)T, =-2i0,[-E_(T, +T,)+i5,([, -T))] ,
where
2 o 2
o, = LM, [Jm(ﬂ)] Go gy
2rhmyy J R/] dr
r = JRm(r)Jm (ﬁz)rdr ,
R
0
E =Z,(0+hQ,)-Z,(0-hQ,),
and

Z,(0+hQ,)+ Z,(0-hQ,) .

—_
=
+

Equating the determinant of the coefficients of I',, I, ", and I', to zero and

making a substitution of @ =is yield the dispersion relation

s +bys® +b,s* +b,s* +b,s* +bhs+b, =0

where
by = 400}y [l,sec’d, — 4R,o(B, + B, )tang, + 16R'D,0, ] ,
b, = 8aw}, ,
b, = 40, + S0’ wysec’y, — 4R w0 (B, + 49, )tang,
b, = 10aw?, ,
b, =20}, + o’sec’9,
and

b, =20 .

(5.25)
(5.26)
(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)
(5.34)
(5.35)
(5.36)
(5.37)

(5.38)

(5.39)

Comparing Eqs.(5.16)-(5.22) with Egs.(5.33)-(5.39), we find that the differences are

R

in p,w}A° versus 4R 0’ tang B, and p,w} A’ versus 4R @

definitions of a, A, H, Ky, ¥,, and @, one can show that

_ 4R w0’ tang B,
- Rk

Hy

’

and

.’ tang ¥,. Using the

(5.40)



2R 0,,Pr " tan g v,

1 = Y (5.41)
250

where

= 2

JICEIER
o R dr
m = h 2 - ’ (542)
(}—) Jofo(r)rdr

is the reduced form factor. The values of F, and F, have been calculated and charted for
some different phase space distributions.[6] In general, the value of K (F,)) decreases

(increases) when the bunch length increases. For very short bunch lengths, K and F,
have values near 2.0 and 0, respectively. At the bunching factor of 0.5, most
distributions have the values of F near 1.3 and the values of F, near 0.17.

Thus, we have demonstrated that the dispersion relation derived from the equivalent
circuit is the same as that inferred from the linearized Vlasov equation except for a factor
that depends on the detail of the perturbation in the phase space.

6. Discussions

We have shown that in the regime of linear longitudinal focusing, the results of
stability analysis using the equivalent circuit and the moment method agree very well with
that using linearized Vlasov equation. In this section, we shall discuss the possibility of
applying the moment method to nonlinear problems and give a simple example of taking
the feedback control into consideration.

6.1 Nonlinear Longitudinal Focusing Forces

There are two main difficulties make it hard to apply the moment method to a general
nonlinear problem. The first difficulty is that nonlinearities introduce coupling among all
the equations of motion for moments. The second difficulty is the indefinite integral in
Eq. (2.4) can not be carried out or expanded into the power series of ¢ unless the voltage
response is given. Nonetheless, we shall discuss in the following, a possible approach
by retaining only the zeroth order in the expansion of the integrand in Eq. (2.4). Under
this approximation, one can derive a general equation of motion for the moments. These
differential equations are all linear and coupled. One can truncate the coupling at any
desirable order for numerical solutions. Readers are reminded that the approximation
taken here could be a crude one.

Thus, using the approximation of

ﬂVsin(ws +9, - co)% ~cos(y, +¢, - cv)%}dfp = (Vsiny,)g, - Veosy, ,  (6.1)
@

and expanding the trigonometric functions in Egs. (2.1) and (2.4) we obtain



d’p _ 05
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dr’  Vcosy,
6.2
N whVsin(y, +¢,) i )Y > a)schos v, +9,) i -1)'p**! ©2
Veosy, = 2n)' Veosy, “~ (2n+1)
and
dfpj .
— Vsm ,+¢,)—Vsin
(dt VCOS![/Y[ 9,)- Visiny, Jo

+— [Veos(w, +9,)+ K, +(Vsiny, )9, - Veosy | (6.3)

Vcosy/

a) Veos(w, +¢,) i 1)" @ wsOVsm v, +9,) i Y
V.cosy, = (2n) Veosy, 2n+1

n=1

Then, following the same procedures in deriving Eqs (3.10) and (3.11), we can derive
the following equations:

4’ (o) :
7 Vcos v [Vsm +e,)- V;smt/fs]
20\ 241 (6.4)
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ERT
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(6.6)
where V=V + V. The variation of the moment <(p">I can be calculated according to

— 16 J—
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The variations of the moments are then related to the perturbed beam current through Eqs.
(3.34) to (3.36). To complete the set of equations, we have to include Eqs. (4.15) and
(4.16). These equations, in principle, can be solved numerically.

A special case that a full nonlinear effects can be studied is the one of zero bunch
length, in which the particle density is given by a delta function, i.e.,

p(z.1) = N&(z—(2)) . (6.8)

In this case, it is easier to work on the moments with respect to the bunch center. Note
that since the bunch center is always moving, the moments defined with respect to the
bunch center are essentially defined in a noninertial coordinate system. The perturbed
beam current is then given by

_ gMcp i ihz/ R
Ih —%—Le p(Z,t)dZ
MeON L2
S LAl 2;2 e"'*8(z—(z))dz

-L/2

Poas (6.9)
= [, J’ 50— (Vo

= I,(cos(g) + isin{g)) .

The equation of motion for the bunch center is

d{p) _ ok
dr*  Vcosy,

[Vsin(y, +9, - (@) - Visiny, ] . (6.10)

All moments with respect to the bunch center vanish in this special case, i.e.,

Pmax

<(¢“<‘P))n>°< J((P-((P))"5(<P—(¢))d<p=0. 6.11)

~Pmax
6.2 An Example of Including the Feedback Control
Since the control of the beam-cavity system is a well studied and documented subject,
so we are not going to discuss it at here.[9] The purpose of this section is to present an
example of the attempt to make the equivalent circuit equations complete for numerical
solutions in the time domain study when the feedback control is included.

We consider the transfer matrix of a feedback control in the Laplace transformed

domain like
(518/1g)=[An An](V/Vs], (6.12)
o, Ay Ap )\ 9,

where
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7 1s the time delay in the feedback circuit, 6/, and ¢, are the corrections in the amplitude

and phase of the generator current, respectively, d,.j, Cis €i> &is and h, are constants

depend on the feedback circuit design. In the time domain, the corresponding differential
equations are

2ol
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1
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1% d{Vv 1% d
ol )radi()ra ) (Fprataira fou
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a8 Bl
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1% d(v 1 d
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The right hand sides of Egs. (6.14) and (6.15) should be evaluated at the time ¢ — 7. The
equations for cavity voltage and phase are

‘2—‘; +aV =aR|~1,cos(9, -, = v,) + (I, + 01, )cos(9, + 9, v, + v,), (616
and .

d - oRy, . .

‘zv _ “’ngwg -5 [1sin(8, ~ 8, —w,)+ (1, + 81, Jsin(9, +6, -y, +w.,)] . (617

Eqgs. (6.14)-(6.17) should be solved together with Egs. (3.34)-(3.36), and the moment
equations [Eqgs. (3.26)-(3.30) or Egs. (6.4)-(6.7)]. Note that in Eqgs. (6.16) and (6.17),
we have included the nonlinear part of the RF focusing force.

Conclusions

We have presented an approach to incorporate all harmonics of synchrotron oscillation
in the equivalent circuit model of beam-cavity interaction by considering the perturbed
moments of a bunched beam. In the regime of linear approximation, we found good
qualitative agreements in comparing the dispersion relations obtained from this new
approach with that derived from the linearized Vlasov equation up to the second
synchrotron harmonic . We have also discussed about the possibility of extending the
method to the cases of nonlinear longitudinal focusing forces and the time domain
tracking with feedback control. It is found that the moment method can not be easily
extended to the nonlinear focusing case without using some crude approximations.
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