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Abstract

We present a comprehensive high statistics analysis of spin- and velocity
dependent corrections to the static (central) q¢ potential in pure SU(3)
lattice gauge theory. Simulations have been performed at 8 = 6.0 and
3 = 6.2 which corresponds to lattice spacings of 0.1 and 0.07 fm.
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1. Introduction

Potential models have been proven to de-
scribe meson spectra remarkably well, even at
rather small quark masses. To derive the semi-
relativistic Hamiltonian one usually starts from
a Fouldy-Wouthuysen transformation of the one-
particle propagator and its corresponding path in-
tegral representation and expands this in inverse
powers of the quark mass around the static limit
{(m — o00). The result up to order ;nl; is a gen-
eralization of the familiar Breit-Fermi Hamilto-
nian, containing the central potential Vo(r), and
spin and velocity dependent parts V,q(r), Voa(r)
that are related to coefficient functions (poten-
tials) V) — V4 and V, — V,, respectively. Explicit
expectation values have been associated with the
sd and vd potentials that can be calculated on
the lattice [1-3]. The sd potentials are related to
scalar (S), vector (V) and pseudoscalar (P) ex-
change contributions in the following way:

Vo(r) = S(r)+V(r) (1)
wn = LOZED o) @
Va(r) = 2VV(r)— AP(r). (3)

Relativistic invariance yields the relations
Vi(r) = Vi(r) Vi (r) (Gromes relation)  (4)

TV (r) = 3Ve(r) (®)
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2. Lattice Techniques

In table 1 we display the parameters of our lat-
tice simulations.

Table 1
Simulation parameter. The physical values are
obtained by using \/o = 0.44 GeV.

[ ] 8=6.0 B =62 |
V=Ls Lt 16° 16° | 327
a/fm 0.098(2) 0.0710(4)
a~'/GeV 2.02(3) 2.79(2)
a-Ls/fm 1.57(3) | 1.136(6) | 2.27(1)
# conf 370 700 116

In order to reduce statistical fluctuations tem-
poral links have been integrated out analytically
wherever possible.

To determine the sd and vd potentials on the
lattice one has to integrate correlation functions
C(T) consisting of two chromoelectric or mag-
netic insertions (”ears”) into the temporal trans-
porters of the Wilson loop divided by the Wilson
loop without ears (T denotes the temporal ear-to-
ear distance). The minimal distance A of one ear
to a Wilson loop end is the time the gluon field
needs — after creation — to decay into its ground
state and therefore governs contaminations of ex-
cited states. To suppress such pollutions all spa-
tial links have been smeared, allowing us to re-



duce A. For all correlators we observed a plateau
for A > 2. In this simulation we keep the ears
fixed at A = 2 with respect to the Wilson loop
ends and vary the integration time by enlarging
the temporal Wilson loop extent. This leads to
smaller statistical fluctuations in comparison to
the usual method [1] where the Wilson loop is
kept fixed and the positions of the ears are var-
ied.

Correlation functions are numerically interpo-
lated and integrated up to cut-off values Trax
where saturation sets in. Some < EE > cor-
relators converge towards non-zero constants in
the limit T — oo, in agreement with their spec-
tral decompositions. These constants are deter-
mined from fits to the last few data points of C(T")
(T > Timax) and subsequently subtracted.
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Figure 1. Test of the Gromes relation.

The lattice sd and vd potentials undergo multi-
plicative renormalization in respect to their con-
tinuum counterparts while Vo(r) does not. We
use the nonperturbative renormalization proce-
dure of ref. [4]. Fig. 1 shows a comparison of
the Gromes combination Vj — V{' (in units of the
stringtension) with the central force (solid line),
derived from a fit to the central potential
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We find reasonable scaling and consistency of the
data with the Gromes relation. This supports the
renormalization procedure.

Vo(R) = Vo + KR — (7)

3. Results

From eq. (7) and tree level perturbation theory
one expects for the sd potentials:

VR =-K , ViR)=%-2 ®)
iR =3 -3 vr = + 2 9)

For the vd potentials we just quote [2]:
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Figure 2. V{ together with a fit curve K + 5.

The first sd potential V} is displayed in fig. 2.
Besides the long range confining term we ob-
serve an additional short range contribution, that
can be well fitted to gz. Assuming P interac-
tions to be negligible and V; to be pure scalar
(which induces the equalities V, = V and V§ =
—S) one expects relations similar to egs. (8),(9)
with e replaced by e — a. In fig. 3 we find
good agreement between V3 and this expectation.
The sd potential V; shows oscillatory behaviour
that can largely be understood as a (lattice) 6-
contribution. Fig. 4 shows §Vyi(R) = V4(R) —
8r(e—a)d (R ) where 6L (R) is a lattice 8-function
from lattice perturbation theory. The data points
show qualitative agreement with the expectation
from eq. (9). As can be seen from fig. 5 V2V,
deviates from zero. The data can be fitted to the
parametrization —% with d=0.7 GeVZ.
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Figure 4. 6V, compared to its expectation.

The other vd potentials are found to agree with
naive expectations. This is illustrated for V in
fig. 6.

4. Conclusions

Apart from the linear large distant part we ob-
serve an additional Coulomb like scalar contribu-
tion in V{. This leads to a scalar/vector splitting
of the central Coulomb part inbetween + — 1. All
other sd potentials are short ranged and in per-
fect agreement with lattice perturbation theory.
The vd potentials V, to V. follow naive expec-
tations. V, contains a %—contribution which is
important for spectroscopy since it modifies the
Coulomb part of the central potential (Factor 2
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Figure 6. V, compared to its expectation.

of charmquark mass). A detailed investigation of
the various potentials can be found in ref. [5].
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