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1 Introduction

It was shown in [1], [2] that overall eficiency of b-jets tagging can be substantial-
ly increased if soft muons with pr down to 2-3 GeV/c are efficiently identified
inside jets. Such muons cannot be reliably registered by ATLAS muon detector
because of significant probability to be absorbed in the calorimeter.

A way to encrease b-tagging efficiency consists in using response data of
ATLAS hadron calorimeter (HC) for identification of soft muons. Due to high
penetration ability of muons the signal in the last depth (section or longitudi-
nal sample) of the hadron calorimeter should be greater for jets with muons
compared with jets without muons (gluon jets, light quark jets).

The task of separation between gluon jets and b-jets (a single soft muon
inside a b-jet) was considered in (2] for jets with pr = 20 and 40 GeV/c in
the central region 0 < 1 < 0.6. It was shown that by imposing a cut on the
deposited energy in the last HC section one can reach the rejection factor for
gluon jets R, = 9 (at pr = 20 GeV/c) and R, = 4 (at pT=40 GeV/c) with
95% efficiency of b-jets identification. Anticipation was also expressed that at
a loss of 10% of b-jets the rejection factor for gluon jets could be pushed up
into the region of 50 - 100 if information from the middle section of HC is used
in the form of summed energy value of 2 adjacent cells with maximum deposit
from a 3 x 3 cell window centered on the position (1,,, ¢, ) of the cell with the
highest deposited energy in the last HC section.

QOur aim was to Investigate in a systematic way the posibility to enhance the
capability of ATLAS Tile Calorimeter to 1dentify low pr muons inside b-jets
by the use of artificial neural networks (ANN) technique.

2 Investigation scheme

In what follows the b-jet events (calorimeter response to b-jets) will be refered
to as signal events, and the gluon jet events — as background events respectively.

We have included a rather wide set of jet classifiers (discriminators) into
our research program. The classifiers were naturally divided into groups, the
study of each group constituted a separate step in our investigation scheme.
The steps imply investigation of the next groups of discriminators:

A. Linear threshold discriminator (LTD) operating on summed energy
deposition F4 in the last (4-th) section of HC.

B. Neural net discriminators (NND) operating on longitudinal profile of
jet energy deposition in HC.

C. A series of neural net diseriminators that make use of information on
the distribution of cell energies inside 3 x 3 cell windows in the first and the



middle HC sections (all windows centered on the position (n,,, ¢,,) of the cell
with the highest deposited energy in the last HC section).

D. A series of neural net discriminators that are extensions of discrim-
inators from Group C. These discriminators make use of additional features
related to: 1) joint distribution of the 3 x 3 cell window position and the jet
axis In (7, ¢) plane, 2) jet radius as estimated using HC response.

E. Neural net discriminators that operate on full spectrum of feature types
used by discriminators from Groups A,B,C,D.

Assignment of a discriminator to a certain group does not depend on the
discriminator architecture or its complexity and is guided solely by the type of
event features used as inputs to the discriminator. For example, discriminators
within Group C differ in the number of their inputs (see below).

In fact each discriminator in Groups C,D,E is a combined discriminator
that performs jet classification in two consecuitive stages:

Stage 1. An event is classified in LTD mode with the minimum cut thresh-
old (MCT) applied to the summed energy deposition E4 in the last HC section
(MCT value is defined by noise level). If E4 of an event is below MCT then the
final decision is made at Stage 1: the event is classified as background event
(1.e. gluon jet). Otherwise the final decision is made at Stage 2.

Stage 2. An event is classified in NND mode by applying a cut to the
neural net output signal.

it follows from this two stage classification scheme that the upper bound
e of b-jet 1dentification efficiency attainable without losing gluon/b-jet sep-
aration ability 1s imposed by characteristics of LTD discriminator. In our case
e = (.94 for jets at pr = 20 GeV/c and £]*%* = 0.96 at pr = 40 GeV/c. The
importance of minimizing additional loss of efficiency ¢, at Stage 2 becomes
evident.

At Stage 2 only subsets of jet events that satisfy the condition £y > MCT
are used for training and testing neural nets. In estimating discriminator char-
acteristics we followed the procedures descibed in details in {3], [4]. The ob-
tained characteristics are later renormalized in regard to the whole sets of events
to finally represent characteristics of the combined two stage discriminator.

In the present paper all results obtained with the use of neural nets are
given in renormalized form.

3 Simulation data

The same data files were used in the present investigation and in [2]. We remind
here some simulation conditions.



1. Single jets were generated in DICE with pr = 20 and 40 GeV /¢ uniformly
in 7 in the central region 0 < n < 0.6 .

2. Gluon jets were chosen as background process.

3. For b-jets (signal events) some conditions were imposed at particle level
at the moment of generation:
a) only events contaming one muon (accompanied by 1ts own neutrino)
were accepted;
b) transverse momentum of the muon must be in the soft region
2 < pr <) GeV/e,

4. For simulation, the Technical Proposal layout was used were Tile Barrel
Calorimeter consisted of 4 longitudinal depths (sections) - along r axis
in cylindrical coordinate system.

-~

5. At each pr value 500 b-jets and 500 gluon jets were generated.

Because of decision [5] to bring together two central depihs of HC. the
simulated cell energy depositions in these two HC depths were properly merged.

Distributions of summed energies deposited i each section of ATLAS ca-
lorimeter are shown in Fig.1, Fig.2. In comparison with the case of isolated
muons and pions {3],{4] the present distributions for the two types of events are
much more overlapped in each HC section.

4 Discriminators and their performance

Three-layered perceptrons with n imput neurons (nodes) in the first laver. uy,
neurons in a hidden layer and one output neuron in the third layer were selected
for constructing neural net discriminators. Adjacent layers of the perceptrons
are fully interconnected. A formula (1, np, 1) will be used to depict the struc-
ture of such perceptrons. Actually throughout the present investigation two
structures were used: (n, 4, 1) for jets at pr = 20 GeV/c and (n, 6, 1) at pr
= 40 GeV/c. The package JETNET [8] was used for training the perceptrons.

Inputs to the first layer of NND may be thought as components of n-
dimensional vector that represents an event in n-dimensional feature space.
Dimension n and ordering of input components are fixed for a particular NNT).
For neurons in the hidden and output layers the nonlinear neuron activation
function g{a) = (1 + exp(—2a))~! was chosen; hence the perceptrons perform
nonlinear mappings of n-dimensional space into (0, 1) mterval. During train-
ing phase the target value of the output neuron was put to I for b-jets and
0 for gluon jets. Training procedure iteratively adjusts weigths of connections



between neurons in order to minimize mean fit error MFE, t.e. mean squared
deviation of actual net output values Oyn(p) from the target values t(p) over
the whole training set of events:

Ny

\ Ry
MFE = 5= ) (t(p) ~ Onn(p))*
p p=1

where p denotes events.

One pass over training sample constitutes a step of the training procedure;
the step is usually called an "epoch™. Using a trained perceptron one gets one-
dimensional distributions of net output values for b-jets and gluon jets. By
applying variable thresholds to neural net output values one gets estimates of
important characteristics of discriminators such as:

e =, —efficiency of signal events recognition, i.e. the probability that a b-jet
event be correctly classified,

e «; — inefliciency of signal events recognition, i.e. the probability that a
b-jet event be misclassified (ap = 1 — 23},

e 3, — survival probability for background events, i.e the probability that
a gluon jet event be misclassified,

o R, = 1/73, - rejection factor for gluon jets.

Components of input vector for a neural net are usually called event fea-
tures. Features are functions of raw data items (data items are cell energies of
HC response in our case). Evaluation of feature values is an operation called
preprocessing of measurement data (or source data).

In the present investigation the performance of various discriminators is
considered here in the order defined by our investigation scheme. Since the
total number of discritminators is great, we restrict ourselves to presenting only
one characteristics for each discriminator, namely the dependence of R, on ¢;.
This functional dependence will be given in the form of plots (R,, £) prepared
with the use of simulated jets.

Group A. This group includes the single discriminator LTD that performs
classification by thresholding the summed energy deposition F4 in the last HC
section.

Distributions of F4 are presented 1n Fig.3 for both types of simulated jets at
pr = 20 and 40 GeV/c. Characteristics of LTD are estimated in a simple way
by applying a variable cut threshold to these distributions. The corresponding
(R,, £p) plots for both pr values are given in Fig.4 .



One can see that at pr = 20 (40) GeV/c the maximum efficiency £}***
attainable without losing jet separation ability is equal to (.94 (0.96). At these
efficiencies the value of gluon jet rejection factor is Ry(e7***) = 9(4). For LTD
discrimiator, R, appears to be slowly decreasing function of the argument ¢,.

Group B. We have included 2 models of neural nets discriminators into
this group.

The first one, labeled "var 0, inp 3”7, uses three values of summed energy
depositions £1, (Ey + E3), E4 in HC sections. NND(var 0, inp 3) is simi-
lar to NND; discriminator of the ”longitudinal” type applied to solving 7/p
separation task in [3],{4].

The second model, labeled ”var 1, inp 3”, differs from NND(var 0,inp 3) in
that the third entry F4 is substituted by eS,‘il,, — the maximum energy deposit
among cells in the last HC section.

Characteristics for both NNDs of Group B are presented in Fig.5 for jet
pr = 20 and 40 Gev/c

Group C. For all NND models of this group the event features used as
inputs are evaluated as functoins of deposited energies in those cells of the first
two HC sections that lie inside the 3x3 cell window centered on the position
of 81(;11()1::: cell in (n, ¢ ) plane. The series of NND models are subdivided into 3
subgroups.

Subgroup C1. This subgroup includes one NND model, labeled ”var 2,
inp 3”. The input features for this model are as following,.
NND(var 2,inp 3): E‘gé), E£§+3), ez, where

Egé) - the summed energy deposition in all ¢ cells of the 3 x 3 cell window
mm HC section 1, and

EZ*3) _ the corresponding value for the middle section of HC.

In Fig.6 characteristics are presented for the NND of Subgroup C1 at
pr = 20 and 40 GeV/c.

Subgroup C2. This subgroup includes 6 NND models:
NND(var k,inp 3), k=3,...,7 and NND(var 8,inp 2).

Along with 65,32,,,, the input features used by models of this subgroup are
eveluated as functions of energy depositions in various subsets of cells inside
the 3 x 3 cell window. The subsets of cells and the input features are defined

as following.

e NND(var 3,inp 3). Inputs: Egé), EE§+3), e,(,:c)w
The value E 5 1s equal to the summed energy deposition in 5 cells whose
locations form a cross in the center of the 3 x 3 cell window.



e NND(var 4,inp 3). Inputs: Eg;z,'Eg:S), emhs
E.2. 18 evaluated as the maximum summed energy deposition among pairs
of adjacent cells, one cell of a pair being the central cell of the 3 x 3 cell

window.

e NND(var 5,inp 3). Inputs: E'Sl, ngj"), elnis
The value of E.. is equal to energy deposition in the central cell of the
3 x 3 cell window.

e NND(var 6,inp 3). Inputs: Eg), EE‘;H), eggc)w
The value of E.2 is equal to the maximum summed energy deposition
among pairs of adjacent cells in the 3 x 3 cell window.

o NND(var 7,inp 3). Inputs: E$}), EG™® (4.
The value of E.4 1s equal to the maximum summed energy deposition in
a 2 x 2 cell square among four such squares inside the 3x3 cell window.

e NND(var 8,inp 2). Inputs: E£§+3), eS,fiZ,a,
This model does not use information from HC section 1. It may be
considered as truncated version of NND(var 6,inp 3) model.

Characteristics for NNDs of Subgroup C2 at pr = 20 and 40 GeV/c are
presented in Fig.7.

Subgroup C3. This subgroup includes 6 NND models:
NND(var k,inp 5}, k=3,...,7 and NND(var 8,inp 3).
Compared with Subgroup C2, the lengths of input vectors of these models
are enlarged by adding information on summed energies E.g in the 3 x 3 cell
windows. The list of input features is as following.

o NND(var 3,inp 5): £ gl g3+ g+ ),

e NND(var 4inp 5): EY

c2er

E(l) E(2+3) E(3+3) (4)
» Log

9 Hede » Emaz

o NND(var 5,inp 5): EU) E() pl+3) p+3) ()
o NND(var 6,inp 5):  EL), B p2+3) p2+3) (4
e NND(var 7,inp 5):  EY), B, EGY G (),

o NND(var 8,inp 3): EGZtY g3+ 4



Characteristics for NNDs of Subgroup C3 are presented in Fig.8.

In total there are 13 NND models in Group C. All the models were trained
and tested at jet pr = 40 GeV /c. Because of moderate size of event samples
available for training NNDs at pr = 20 GeV/c¢, only models with short input
vector (Subgroups C1, C2) were investigated at this pr value.

Group D. All discriminators of this group are extensions of NND discrim-
thators of the previous Group C. The total number of NND models in Group
Dis 13.

To get a NND model of the present group, the input vector of the corre-
sponding model from Group C 1s extended by adding 4 features that are related
with distributions n (n, ¢} plane. The additional inputs are n,,, én. 7. By,
where

(m. ¢m) - parameters of the cell Ciﬂr with the highest energy deposit in
the last depth of HC;

(1.0, ¢1.7) ~ parameters of the jet axis estimated with the use of active
cells in the first HC section,

6”?” - (Wm - 7)1,J)‘ 6‘15171 = (ém - ¢’1,J)a 'm = v 6”1:;1 + 66531 -are deviations

of the cell ebraz from the Jjet axis in (7, ¢) plane,

Ry 5 — estimation of the jet radius in (5, ¢) plane with the use of energy
depositions in cells of the first HC section.

In estimating values of 1 5, ¢1,4, 1 ; we follwed the procedures proposed
in [6], [7] for reconstruction of jet parameters using calorimetric data:

1
m,s = Er s X ZET,HH
' i

1
g = X ZE’T,id)i

Ry gy = E;J x 227‘;'81",:: .
where ep; — transverse energy deposited in i-th cell of HC section 1.

In Fig.9 distributions of ., én,,, 7, and Ry 5 at pr = 40 GeV /e are pre-
sented for subsets of gluon and b-jets in which the condition 0.4 < PS:()U < 1.2
GeV is satisfied.

In Fig.10 characteristics are presented for those discriminators of Group D
at pr = 40 GeV/c which are extensions of NN discriminators from Subgroup



(3. It should be noted that the values of R, attained by NNDs of Group D
exceed R, values of Subgroup C3 only at lower efficiencies ¢, < 0.8.

Group E. All discriminators of this group are extensions of NND discrim-
mators of Group D. The corresponding input vectors used in Group D are
extended by adding 2 features: F; and (F» + E3), where Ej is the summed
energy deposition in k-th HC section. The input vectors of discriminators in
Group E contain values of 11 features.

Though formally the Group E may include many NND models, we have
tested only one NND model with full length input vector at pp = 40 GeV/c,
namely NND (var 6, inp 11). Its characteristics are presented in Fig.11.

Subgroup El. This subgroup is a truncated version of NNDs from Group E.
The following features are used as inputs to the perceptron (6, 4, 1) trained at
pr = 20 GeV/c . [, ef,f};,.,, Tms 0m, Tm, £21 5. Characteristics of NND(var 6,
mp 6} are presented in Fig.12.

Neural nets were trained using up to 10* epochs in a training session. As an
example we present in Fig.13 the dynamics of mean fit errors MFE as functions
of the current epoch number in training sessions for several NNDs.

Using (R, €;) plots a reader can compare performances of LTD and various
NND models in a straightforward way. Though the idea of another jet clas-
sifier was formulated in {2], the corresponding plots on its performance were
not given. Nevertheless, using charcteristics of our wide set of neural net dis-
criminators we can estimate upper bounds for performance of the classifier [2].
The feasibility lies in the fact that a classifier which performs classification by
applying n consecuitive cuts to one-dimentional distributions of event features,
in general case, 1s Inferior to a classifier which uses m hyperplanes (m > n) for
separation of event classes directly in n-dimensional features space. Among the
wide set of NNDs, the NND(var 8, inp 2) is the most close one to the classifier
[2]. Though input variables are the same ( EgH) and eias ), the number
of free parpmeters in NND case is bigger (4 hyperplanes are used at py = 20
GeV/c, 6 hyperplanes at pr = 40 GeV/c).

For convenience we summarize the results in Table 1, 2 |, where gluon jets
rejection factors are given at pr = 20 and 40 GeV/c for 3 values of b-jet
identification efficiencies (g, = 0.90, 0.85, 0.80) for a) the best of NND,
b}y LTD and ¢) NND(var 8, inp 2).

5 Conclusion

1. The use of linear threshold discriminator (LTD) that performs classifica-
tion of jets by applying a cut on summed energy deposition in the last



depth of Tile Calorimeter leads to poor performance: at b-jet identifica-
tion efficiencies 0.80 < e < 0.95 the gluon jet rejection factor R, lies in
the range 13 - 17 (for pr = 20 GeV/c) and in the range 6 - 8 (for pr =
40 GeV/c).

. Results on more than 20 models of neural net discriminators (NND) show
appreciably higher performance of NND compared to LTD. At b-jet iden-
tification efficiencies 0.80 < g, < 0.90 the gluon jet rejection factor R, is
4 - 6 times higher for NND at pr = 20 GeV/c and 5 - 10 times higher at
pr = 40 GeV/c.

. To reveal the full potential of ANN approach to solving jet separation
tasks, greater samples of events are needed to allow using neural nets of
a size bigger than in the present investigation.

. Accepting the present results as an estimate of lower bounds of NND
performances, one can state that the following inequalities should hold
for the gluon jet rejection factor Ry(es) attained by NND:

(a) at pr = 20 GeV/c:  Rg(0.90) > 50, R,(0.85) > 100

(b) at pr = 40 GeV/c . R, (0.90) > 30, R,(0.85)> 70



Table 1: Gluon jet rejection factors at pr = 20 GeV /¢

| £5 | Best of NND | LTD | NND (var 8, inp 2) |
0.80 100 17 70
0.85 100 15 70
0.90 50 13 : 30

Table 2:  (Gluon jet rejection factors at pr = 40 GeV/c

| £, | Best of NND | LTD | NND (var 8, inp 2) |
0.80 80 8 20
0.85. 70 7 15
0.90 30 6 10
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Jets separation by LTD
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Jets separation by NND
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Jets separation by NND
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Jets separation by NND
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Angular features at 40 GeV/c
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Jets separation by NND
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M ean fit errors in training sesions ( 40 GeV/c)
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Actsauatypos A.P. u up. . EL10-96-288
[TpUMeHEHNEe HCKYCCTBEHHBIX HEHPOHHBIX CETEH LM HACHTHDIKAUHK CTPYII C MIOOHOM

Manoro nonepevHoro HMNyabCd Ha JIaHHbIX

MOEIHPOBAHMNS OTKIHKA AIPOHHOTO mﬁoptmcma ATLAS

C MCNONbIORAHHEM  CHCTEMHOID TNOUXOHA MCCIENycTCd BOTMOXKHOCTD NOBRIUCHHE  3PeKTHRHOCTH
HUCHTHOHKALAW MIOOHOB € MAbiM IHAYCHHCM NONCPCYHOTO HMIyapca pp (2 < p. <5 [3B/c) B cocrase

b-cTpyit, perwcTpupyembix auponieiM kanopumeTpoM ATLAS. B uentpanenoii ofnacTis xaiopuserpa
0 <n < 0.6 w13 pp= 20 1 40 Ta3B/c Outi nprMeriens: 6oCe ABALILATH MOIENCH HCHPOCETEBbIX HCKPHMHHA-

Topos (NND) 1nst pajuenciing DKOHHBIX CTPYIH H b-CTPyit (C OHHM «MSTKHM» MIOOHOM B COCTaBe b-CTpyn).
XapaKTePHCTHKH ANCKPHMHHATOPOB NND) CPusiHBAIOTCS ¢ Xapak Te PHCTHR AMH NOPOTOBONO [MCK PHMIHATOPA
(LTD), ocymniecTRIMIOWEr0 KAACCH(PHKALMIO CTPYH NUCPCACTBOM 1TOPOIDBOIC CPABHCHMS B LINIHBL CYyMMap-
HOTO 3HEploBBLIENEHHS B MOCACIHEN CexIlN aiponioro kanopiumetpa. TTokasano, 410 B cpasneniy ¢ LTD
nipH adexThBiocT perncTpaunn b-etpyit 0.80 <€, <Q%)  haktop peReKUHN FHOOHNBIX CTPYiT R, B

cnyyae JHcKpumMuHatopoB NND rosbitiactes 8 4-10 pat
IMonayyeHHsle pe3ynabTaThl OCHOBAHLI Ha aHanuie damiex 2000 cTpyl, NOIyYEHHBIX IIPH MOMOLULH
nporpaMm Moleanposains ATLAS. )

PaboTa puinonuena B JlaGopatopim gaepueix npoGies OHUSAH.

Coobuienne OOBEAHHEHHOIO MHCTHTYTA HUCPHLIX HeWletoBatHil. [1ybua, 1996

Astvatsatuyrov AR et al. ) ' E10-96-28%
Identification of b-Jets with a Low pr Muon
Using ATLAS Tile Calorimeter Simulation Data
and Artificial Neural Networks Technique _

The possibility to enchance the capability of ATLAS Tile Calorimeter to identify Jow p. muons
(2 < py < 5 GeV/c) inside b-jets by the use of artificial neural networks technique is investigated in a systematic
way. More than 20 models of neural net discriminators {(NND) were applied to separation of gluon jets and b-jets
(with asingle soft muon inside a b-jet) at jet p = 20 and 40 GeV/c in the central region 0 < 1 < 0.6. Charactenstics
of NND are compared to those of the linear threshold discriminator (LTD) which performs jet classification by
applying a cut to the summed energy deposition in the last depth of Tile Calorimeter. It is shown that at b-jet
identification efficiencies 0.80 < €, < 0.90 the gluon jet rejection factor RA_ is 4-10 times higher in NND case
compared to LTD. .

The results obtained are based on 2000 jets simulated with the use of ATLAS simulation programs.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Commanication of the foint Institute for Nuclear Research. Dubna, 1996
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