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We study the phenomenological constraints on a recently proposed model of open inflation in the context of
induced gravity. The main interest of this model is the relatively small number of parameters, which may be
constrained by many different types of observation. We evaluate the complete spectrum of density perturba-
tions, which contains continuum subcurvature modes, a discrete supercurvature mode, and a mode associated
with fluctuations in the bubble wall. From these, we compute the angular power spectrum of temperature
fluctuations in the microwave background, and derive bounds on the parameters of the model so that the
predicted spectrum is compatible with the observed anisotropy of the microwave background and with large-
scale structure observations. We analyze the matter era and the approach of the model to general relativity. The
model passes all existing constrairft80556-282(97)05608-1

PACS numbdrs): 98.80.Cq, 98.70.Vc

[. INTRODUCTION universe. Such models generically contain a field trapped in
a false vacuum which tunnels to its true vacuum via nucle-
The inflationary paradigrfil] not only provides a solution ation of a single bubble, inside which a second period of
to the classical problems of the hot big bang cosmology, buinflation drives the universe to almost flatness. This way, one
also predicts an almost scale-invariant spectrum of metrisolves the homogeneity problem independently from the flat-
perturbations which could be responsible for the observedess problem, allowing for an open homogeneous universe
anisotropy of the cosmic microwave backgrol@MB), as inside the bubble.
well as the origin of the large-scale structure. Present micro- In an open universe, the analysis of density perturbations
wave background anisotropy experiments offer only weakand microwave anisotropies is considerably more compli-
constraints; for example, the Cosmic Background Exploregated than that in the usual flat-space case. Early studies by
(COBE) satellite[2] gives a very accurate determination of Lyth and Stewarf11] and by Ratra and Peeblgk2] evalu-
the amplitude of large-angle anisotropieghich can be used ted the spectrum for slow roll models leading to an open
to normalize theorigsbut only weakly constrains the shape njyerse, using the conformal vacuum as an initial condition.
of the spectrum. Information is beginning to come in 0Ny, the single-bubble models a different vacuum choice is
degree scales, and from combining microwave aanmp&ppropriate, leading to a slightly different spectr{&8,7]. It

C?Qﬁéﬁ'gtifu:{;gl ;Tmsgfézgrzofé%if;;f frsétélé?;reﬁ (?vl\J/tevtgr as later realized, however, that extra perturbations, with
P . . . : discrete wave numbers, can also be generated. In all, three
we can expect this to change dramatically in the near future

especially with the launch of new-generation microwave anglfferent types of perturbatlop have been identified: a con-
isotropy satellites MAR3] and Planc4] which promise to tinuous spectrum of modes with wave numkegreater'than
measure both cosmological parameters suc@sH,, and the curvature scale, kn_own as subcurvature modes, a super-
Qg, and parameters associated with the primordial spectra fgHrvature mode associated with the open de Sitter vacuum
great accuracy5]. It is, therefore, desirable to provide a [13:14, and a mode associated with perturbations in the
variety of inflationary models with definite predictions, Pubble-wall at tunneling15-17. The observed large-scale
which could be used to test and exclude them. structures are due to the subcurvature modes, but large-angle
Until recently, inflation was always associated with a flatmicrowave anisotropies are generated by all three types, with
universe, due to its ability to drive the spatial curvature sgobservations seeing the combined total anisotropy. The first
effectively to zero. However, it is now understood that infla-computation of all three types of modes together for a par-
tion comprises a wider class of models, some of which mayicular model was made in Ref15] for arbitrary ()4 in the
give rise to an open universe at presg8]. Observations context of the two-field models of Linde and Mezhlumian
suggesting a high value of the Hubble parameter, such d8]. Later on, a thorough calculation of all three contributions
those using the Hubble Space Telescfle have motivated from the point of view of quantum field theory in open de
the idea of considering a low-density universe, in an attempS8itter space was carried out by Yamametoal. [17] (see
to make the age compatible with globular cluster ages. Mosalso Ref[18]). Here, we shall carry out a similar calculation
frequently, a cosmological constant is introduced to restordor a different two-field model, for which we shall also dis-
spatial flatness, but open inflation modéiee Ref[10] for  cuss some of the implications of large-scale structure obser-
an introduction offer the alternative of a genuinely open vations.
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In addition to scalar metric perturbations, we expect open s 2
inflation to lead to the production of a gravitational wave V(e)= §(<P — v~ (7)
spectrum, as in conventional inflationary models. Unfortu-

nately, no one has yet formulated a method of calculatingyyring a radiation-dominated efd =0 and the scalar field

this spectrum even approximately, and so we shall not bgi sit at its minimum; matching the present-day Planck
able to consider them here. In chaotic inflation models455 demands,

gravitational waves are negligible in the slow roll linjgee,
e.g., Ref[19]); one can hope that this is also true in the open 8mwévi=mj, (8)
inflation case, but that remains to be confirmed.

The particular open inflation model we shall study, intro-During a matter era, the scalar field oscillates around its
duced in Ref[20], is based on the induced gravity Lagrang- minimum with a large frequency and negligible amplitude,
ian [21]. The interest of this model is the relatively small passing all the tests associated with an oscillating gravita-
number of parameters, which can be constrained by severibnal coupling[25] as we will show in Sec. VILI.
different types of observation. The inflaton is a dilaton field,
whose vacuum expectation value at the end of inflation de- IIl. INDUCED GRAVITY OPEN INFLATION
termines the present value of the gravitational constant. We ] ) ) ) o
will constrain the model from CMB and large-scale structure N the induced gravity open inflation moded0], the ini-
observations, as well as ensuring that post-Newtonian anfi@l period of inflation is driven by the false vacuum energy

oscillating gravitational coupling bounds are satisfied. of a second scalar field. This energy density is able to hold
the dilaton at a fixed location displaced from the minimum of

its potential. After the false vacuum decays, the rolling of the

dilaton to its minimum drives the second period of inflation
We consider the model of Ref20], with an induced necessary to giv€l, in the desired range.

gravity Lagrangiari21]

Il. THE MODEL

A. False vacuum inflation

L= Eg(PZR_ l& 0"+ V(@)+ Lonar- (1) Initially, the scalar fieldo is in its false vacuum. The
2 2K details of its potential are not particularly important; we will
parametrize them later. In the false vacuum, the universe
The dilaton field ¢ determines the effective gravitational expands driving the spatial curvature and any previous inho-
coupling, which is positive fog>0. In the absence of a mogeneities to zero. Later on, tlefield tunnels to its true
potential, this action corresponds to the usual Brans-Dickeninimum atV(o)=0, via the production of a bubble.
action[22], where The equations of motion of the dilaton field before and
after the tunneling can be written 20|

1
d=87mé@?, w=-—. (2

4¢ K
—2:

a® 3¢¢?

® 1.
H2+2HE+ §¢2+V(¢)+V(U) .
The Einstein and scalar field equations 28,24

2 ’
. - e AV(p)—eV'(e)+4V(a)
_g(PZGp,V:g,u,VV(QD)+§(Vﬂvv_gpﬂ/v2)(p2 (P+3H(P+ ?: . (10)

(1+68)¢
+[0,00,0—39,,(0¢)?1+T,,, (3

Here,V(o) =V, in the false vacuum and vanishes in the true
and vacuum, while the curvatur¢ is effectively zero before tun-
neling and is negative afterwards. The basis for the open
V2p=—V'(p)+éoR, (4) inflation model is the existence of a stable static solution in
the false vacuun20], with
where G, is the Einstein tensor. Using the identities 8V
G,,"=0 and R,L_VVWI):VM_(VZCD)—V_Z(VMCD), together o2=v 1+ _2) —2(1+a), (11)
with the ¢ equation of motion, we find that the energy- AV
momentum tensor is conserved,
, 8wV
T =0, (5) Hst—W. (12

nv

even in the presence of a potential for the scalar field. Sulis stability is best seen in the Einstein fraf@®]. Under the
stituting R into the equation of motion of the scalar field, we transformations
obtain

di= —df. a(t)=£'5(?), (13)

1 2 2 2 A
§(l+6§)V e“=4V(p)— V' () + T, . (6)

e e

- 2. #
We will consider a potential of the tyd®1,2q (1+6¢) ZInV ' (149
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the effective potential in the false vacuum becomes m§| Ui(¢) 2 8¢ 1
Aot 2 o ezﬁ(UT(qﬁ)) :l+6§?' (25
S MUK BE 1-a
, \ o3 2 2 7= 87 U(h) 146 o (26)
Uete)= 2(1+6¢)"* ?{1_(1%){)? ' (19 The scalar fieldp slow rolls down the effective potential

given by Eq.(20) until it starts oscillating around its mini-
(17) mum and inflation ends. The value ¢fat the end of infla-

tion can be computed from the conditionH=H2 [or,

2 2 V2
Uk(¢) = W{Z(lﬂLQ)?—l

’

. N 2~ . .
where primes denote derivatives with respect to the Einsteirfauivalently,¢*=U(¢)], giving
frame scalar fieldp. It is clear thatU/(¢<) =0 at the static

value, while the effective square mass is positive ensuring o= ,,2<1+ 8¢ )Ey2(1+,3), (27
stability. At the static point, we have 1+6¢
, 8mUg A2 The number ofe-folds during the ;econd stage of inflation
F:3T§>|: 22 T+a’ (18)  from ¢ t0 peng can be computed in the Einstein frame:
N 1 f¢std¢UT(¢)
1 =72 TS
mIZZZUF((Pst):mé 1ia (19 EV°) peng Ut( )
] ] ) ] 1 1+«
where Hg is the rate of expansion of the universe in the ZE a—pB—In 175/ | (28
Einstein frame andng is the mass of the field at the static

point. In order to produce an open universe, the number of

e-folds after tunneling has to be arouht=60, the precise
B. True vacuum inflation number depending on the reheating temperature and other
Eventually, theo field tunnels to its true vacuum by details of the post-inflationary evolution. We adopt the num-
nucleating a bubble, inside which the universe inflates td>er 60 for definiteness. This gives a relation between the two
almost flatness. A sufficiently low tunneling rate ensures thaglimensionless parametessand 3.
the bubble stays isolatd@6,20. After tunneling, the effec-
tive potential in the true vacuum, again in the Einstein frame, V. METRIC PERTURBATIONS AND TEMPERATURE

becomes ANISOTROPIES
AVt p2\2 Quantum fluctuations of the inflaton fietl produce long-
UT(d’):?( 1- (’7) : (200 wavelength curvature perturbations; we will i8eo denote
the curvature perturbation on comoving hypersurfdoethe
A3 V2 2 Einstein frame
Ur(o)= W?( 1- F) (21 Open inflation generates three different types of modes:

those that cross outside during the second stage of inflation
NERE T and constitute a continuum of subcurvature modes; a discrete
U )= v _2( 2— — 1)_ (22) supercurvature mode associated with the open de Sitter
1+68¢° o vacuum, and a mode associated with the bubble-wall fluctua-
tions at tunneling. The mode functions are eigenvalues of the
The minimum of the potential is now gt=v<¢g, and the | gp|acian, with eigenvalue-k? wherek is the wave num-
field slow rolls from e, driving a second stage of inflation. per. Definingg2=k2—1, the subcurvature modes then have
The dynamics of this situation were investigated long ago ifositive g2 and the other modes have negatife We label
Ref. [27]. The rate of expansion and effective mass in thethe former mode functionEly(r) and the Iatteﬂiq“(r). In

true vacuum immediately after tunneling are Appendix A we give explicit forms for these; see also Ref.

2 2 [28].
p 87Ur KMo a 17 K (23) The spectrunPx(q) of the curvature perturbation can be
T 2 2 2 1+ 2 ) N
3mp  a 4 a a defined from the mode expansion Bf by [14]
9\ im AP l-a 2 ,
mT:UT((PSt):l'f'Gg (1+a)2 (24) <ququ’l’m’>:q(q2+1)7DR(q)5(q_q )5II’5mm’-

29
The curvature term quickly becomes negligible as the second 29
phase of inflation progresses. In order to compare with observations, we must compute
For later use, we also define the usual slow roll paramthe effect that such a perturbation has on the temperature of
eters[19] soon after tunneling: the CMB, expanded as usual in spherical harmonics
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AT
T (0.8)=2 anYn(0,4)- (30

The main contribution on large scales comes from the Sachs-

Wolfe effect [29]. The complete angular power spectrum
C,={|lajm|?) has contributions from the continuum of sub-

curvature modes, the supercurvature mode, and the bubbleS

wall mode,
c=Cc{®+c{¥+ci". (3D

The contribution of each mode to tia is measured by a
window functionWy,, given by[29]

swq|=Hq|<no>+6fo”°drF'<no—r>Hq|(r>, (32

for the subcurvature modes; the same expression ETqi&h]

gives the window functioWq for the negativeg? modes.
Here,

sink?»— 3 ysinhy+ 4(coshy— 1)
(coshy—1)° ’

F(7)=5 (33
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FIG. 1. The first 12 multipoles of the angular power spectrum
associated with the continuum modes, normalized to the tenth mul-
tipole, for 13=0.2,0.3,0.4,0.5,0.6 as read from top to bottom at
low I.

and gives the standard result in the flat-space limit where the
coth term in Eq.(34) equals unity. This expression is valid
provided bothe and| 7| are much less than 1.

gives the growth rate of perturbations during the matter era For later comparison, we write the spectrum as

[30], and ny=arccosh(2),—1) is the distance to the last

scattering surface. The normalization of the contribution to

the C, is given in the expressions below.

A. Subcurvature modes

A detailed computation of the amplitude of the subcurva-

ture modes gives the resyilt3,7,17

8U;
4

3emp,

Pr(q)=coth(7q) (34

where € is the slow roll parameter defined earlier and we
have dropped a small correction term from the change in

mass during tunnelin§l7]. The cothq) factor can be in-

terpreted as due to the initial transient behavior as the curva-

ture term dies away.
Notice that Eq.(34) has only been derived in the case of
a perfect de Sitter expansion after tunnel[dd]. It seems

Pr(q)=AZcoth(7q)[1+¢?]"~ 17, (36)

where

,_ 8Ur(¢s)

< 3e(pomy 47
is a measure of the amplitude at ttpe O limit. Formally, the
spectrum diverges there, though not in a harmful way thanks
to the window function given by Eq32).

) 2

For our model, Eq(37) becomes
The angular power spectrum for the continuum modes can
be written a§13]

0[2
1+«

1+6¢

A
2_
A 6¢

¢ (16m¢)

(39

very plausible that it also holds when there are deviations
from de Sitter, where the right-hand side is to be evaluated
whenk=aH. This is the only simple formula which reduces

to the correct result both for de Sitter expansion and in the

flat-space limit(see, e.g., Ref:31]) which must be attained e compute the angular power spectrum for different values

after the curvature term has died away sufficiently. of Qg in the low-density range 020 ,=<0.6. In Fig. 1 we
Following normal practice, we describe the variation inshow the first 12 multipoles, adopting the notation

the spectrum caused by the time variationtbfande by a  p,=|(1+1)C;.

power law. Notice that this power law is superimposed on

the coth behavior, so the complete spectrum does not have-a——-

power-law form on very large scales. The power-law index 1oy caiculation only includes the Sachs-Wolfe effect, as is ap-

of Pr(q)/coth(mq) can be derived in the usual way from the propriate for computing the amplitude on the largest angular scales.

slow roll parameters g9 We do not include the rise to the acoustic peak, caused by the first

oscillation of the photon-baryon fluid, which is known to induce an

effective extra tilt of around 0.1532]; see, for example, Fig. 8 in

Ref.[33] (who only consider subcurvature mogles

dq

WPR(Q)Wér

ci®=2x? f (39

0

8¢ 2(2+a)

n—:l.:—66+27]=—:I__+_—6§ a2 ,

(39
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The normalization to COBE for tilted open models has =
recently been given by Bunn and Whitg3], under the as-
sumption that only the continuum modes are important. They
specify a quantityd,;, which measures the normalization of ©
the present matter power spectrum. The preferred value de-
pends om and{},; however, our model is nearly scale in-
variant, and the dependence 9y is quite weak and can be e
ignored at the accuracy we are working. Therefore, we take <

the value §,=2x10"° regardless of},. In an open uni- -
versedy is related toP; as[33]
2 9(Qo)
_cp2
n=gPr 0, (40)

whereg(Q,) is a function measuring the suppression in the ~ ©

growth perturbations relative to a critical-density universe,
and P is evaluated at around the tenth multipole where
coth(mg)=1. The(), dependence can give a factor of up to . .
1.5 in the region of interest, but we can ignore it as we do not FIG. 2. fs Fig. 1, but for the dlsprete supercurvature moqe’
. . . showing(,=0.6,0.5,0.4,0.3,0.2, reading from top to bottom at in
require such accuracy. Reproducing the amplitude of tem: !
. . . - the center of the figure.

perature anisotropies is the main constraint on the parameters

of the model, and yields

C. Bubble-wall mode

JA=6x10"3

£\ Y1+ In addition to the sub- and supercurvature modes, there is
116 z (41 a contribution from the bubble-wall fluctuations. These fluc-
tuations contribute as a transverse traceless curvature pertur-

as found in Ref[20]. This relation can readily be satisfied bation mode withk’=—3, see Refs[15-17, which stil
for reasonable values of the parame{@@]. behaves as a homogeneous random fig&j28|.
Unlike the modes we have discussed so far, these modes

need extra parameters for their description, because their am-

plitude depends on the details of the bubble-wall, which is
We now consider the contribution to the CMB anisotro- determined by the potential for the field. This extra free-

pies coming from the discrete supercurvature mode associtom allows the bubble-wall fluctuations to be tuned relative

ated with the dilaton fieldp. This mode appears in the open to the others.

de Sitter spectrum whem2<2H2 in the false vacuuri13]. The perturbation amplitude for the bubble-wall mode is

The tunneling fields does not have this mode in its spec- given by[15,36,11

trum, since its mass in the false vacuum should be much

a

B. Supercurvature mode

larger than the rate of expansion in order to prevent tunnel- ,  A4Ur 20\ 291/2
ing via the Hawking-Moss instantdi8]. The wave number Aw= azbm‘gl[a +(1+a%) (49
associated with this mode is given by
9 mﬁ 2 2 where
2: —_ —_—— —_——
k=1 (4 ﬁ,%) 2} ' 42 247wU+S2 Ue— U7
a = 2 21 = ) (46)
mMp(Ug—Ur) 4Ur

The amplitude of this mode s8]
andS; gives the bubble-wall contribution to the bounce ac-

A~ 8LF4: %E (43 tion, B, =272R3S; (see, e.g., Ref15]). In order to com-
3 emp, Ur pute S;, we will consider a symmetry-breaking potential of
the type

where the normalization &3 is defined through the formula

for the angular power spectrum of temperature anisotropies y o\

induced by this supercurvature mode; nanidly, 18, U(o)=Ug+ ZUZ(U—UO)Z—MUO(U—) , (47)

0
D{S=1(1+1)C(¥=47AZW?,. (44)

where og=M+/2/y corresponds to the true vacuum and

Figure 2 shows the first 12 multipoles, showing quite a com—UO_ M?/16y is the value of potential at the maximum. With

plicated dependence. For example, it is not automatic that <1 f(t)r(jthe$'tlrg]r1-wall approximation to be valid, can be
guadrupole receives the biggest contributigd]. computed a

More important than the shape is the amplitude of these VE
anisotropies relative to the subcurvature ones. We will com- S = fgoda[Z(U(a)— Up]¥2=—. (48)
pare their contributions in Sec. V. 0 3y
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bubble wall E

continuum
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super—curvature
35 .
O F E
L2
'o 1 1 1 )
= 02 0.4 0.6 0.8
l (a) Q
FIG. 3. As Fig. 1, but for the discrete bubble-wall mode, for -F ? T ! T " T i
0,=0.6,0.5,0.4,0.3,0.2, from top to bottom at ldw : \ 3
In the limit a?b<1 of small gravitational effects at tun- SE continuum E
neling, we recover the result of RéB]; namely, E
2U(U 3 «3F 3
— <L OE E
2= ( : ZUT) =A2 i , (49) S bubble wall
7Tmp|Sl 2a b Ovla B
e super—curvature E
wheree is the slow roll parameter. However, in the opposite
limit of strong gravitational effectsa’b>1, we have[15] L J
4U 3e [
A\z}v: 4T: é_ (50) "l’o . L .
Mp) 2 2 02 0.4 0.6 0.8
Q0

which is much smaller than the amplitude of the continuum (P)
modes.

The angular power spectrum associated with the bubble- FIG. 4. The multipoles associated with each of the modes, nor-
wall mode is[15] malized to the corresponding metric perturbatié (A2, or A2, as

appropriatg as a function of),. The top panel shows the quadru-

2 pole, while the lower shows the tenth multipole.
w) W) 4TAY —
DW=I(+1)C! =i War- (51)
(I+2)(1-1) modes have their amplitude enhanced, and we shall also see
i , i that the bubble-wall modes are typically more important than
Figure 3 shows the first 12 multipoles. The quadrupole hag,g supercurvature ones.

the largest amplitude for afllp. _ Unfortunately, the complicated structure of the perturba-
We will compare their contribution to the CMB in the ion spectra in open inflation models means that for a full
next section. analysis each model would have to be confronted with the
COBE data set on a case-by-case basis. Such an analysis is
V. COMPARISON WITH OBSERVATIONS outside the scope of this paper. We shall adopt a more sim-

plistic approach, which is to demand that the discrete modes
do not dominate the quadrupole while contributing negligi-
We can now examine constraints on the shape of the conbly to the tenth multipole. This would give an unacceptable
bined spectrum. The COBE data alone do not offer particushape to the spectrum on the scales sampled by COBE.
larly strong constraints in this respect; for example, although In Fig. 4, we show the contributions to the quadrupole and
Yamamoto and Bunf37] argued that the inclusion of super- to the tenth multipole, as functions 6¥,, normalized to the
curvature modes could harm the fit to COBE based on theize of the corresponding metric perturbation. It does not
two-year data, a recent comprehensive analysis of the fourequire much effort to keep the contribution to the tenth mul-
year data by Grski et al. [38] finds no useful constraint. tipole from the discrete modes lofunless() is very smal),
Those papers, however, discussed only a particular model fdaut we must ensure that the quadrupole is not dominated by
the supercurvature modes and did not include the bubblghe discrete modes.
wall modes at all. As Sasaki and Tanaka discugsig], Considering first the supercurvature modes, across the
there can be interesting constraints if the supercurvaturehole range of interestin€,, we find that the supercurva-

A. Microwave background anisotropies
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ture mode contributes about a factor 30 less to the low multhese modes affect only the lowest multipoles, and while
tipoles than do the continuum modes, for the same size dhese can influence whether or not the spectral shape is a
metric perturbatios.Unless(), is very small, and then if the good fit to observations, they are not very significant at the
supercurvature mode contribution is comparable to that ohigher multipolesiaround the 10th to 15ihwhich are most
the continuum modes for the quadrupole, then it is negligiblémportant for determining the normalization. The drawback
at the tenth multipole. Conservatively then, we shall requirghough is that looking to large-scale structure introduces a
) ) dependence on all the other cosmological parameters,
A3<1007%, (52)  namely, the Hubble parameteythe baryon densit§2g, and
the nature of the dark matter. Despite this, interesting con-

independently oif}, to prevent the supercurvature modes g qintg can still be found, and two analyses have appeared

from dominating the low multipoles. In principle, this limit which discuss tilted open models — Liddé al. [39] who

could become inappropriate at small enougl, because | seq the two-year COBE data and, more recently, White and
then the shape of the supercurvature spectrum is not so stegfy [40] who used an accurate normalization to the four-
as to be ruled out by observations. However, by then thg, cOBE data. Both of these considered only cold dark

supercurvature modes are contributing substantially even ty4yer- other choices tend to strengthen the constraints so we
the tenth multipole, and this will force down the normaliza- shall do likewise.

tion ot COBE and make it impossible to fit large-scale struc- |, the model we are considering, the spectral index is
ture observations. We can, therefore, adopt the above Cor?;ﬂways tilted ton less than one as, seen from EG5)

straint even at lovf), values. This imposes only a very mild \yhether or not this is allowed depends quite sensitively on
constraint on the parameters of the model, namely, bothQ, andh. If Q is too low, below around 0.30, then the
a>0.01, (53) open cqld dark maitter mode_l fares _badly _ag_ainst obser_va-
tions; this conclusion is consistent with a similar constraint

which is easy to satisfy as we will see in Sec. VI. Since thefrom velocity flows[41] which is independent of the power
value of Q, at present is not known with any reasonablespectrum. For example, White and S[KO] find that this
accuracy, it would be excessive to give a precisevalue is allowed only if the power spectrum is “blue,” with
Q,-dependent constraint. However, in the future, with a nar at least 1.10. This conclusion is enforced both by the clus-
row range of values foﬂO, one would be able to give a ter abundance and by the Shape of the galaxy correlation
more refined constraint on the parameters of the model frorfinction. Our model will, therefore, be ruled out if it turns
a full comparison of the detailed spectrum against COBE oput that the universe is indeed as open as this.
its successors. However, one does not have to incre&sgby very much

The same arguments can be applied to the bubble-walp radically change this conclusion. Fél,=0.5, for ex-
modes; again, we must prevent the domination of the quacdmple, White and Silk find viable models for as low as
rupole by these modes. For the interesting values(i.e.,  0.85, with the preferred value depending on the Hubble pa-
those not too close to) lwe see from Fig. 4 that this simply rameterh. Our model can, therefore, be comfortably com-
requires patible with the data for thi€),, and at least marginally

compatible for(), as low as 0.4.
A3 =AZ, (54)
- . . . . . VI. TWO POSSIBLE SCENARIOS

again independent dB in the interesting range. This again
imposes only a very mild constraint on the parameters of the In this section we will explore two different scenarios.
model. Fora?b<1, we have < 2a?b, giving

<9X1041+6§M3 5 59 A £<1
Y 6¢& Hg“ ' This case was considered in RE20]. Here, the dilaton

o ) o expectation valuer is much larger than the present Planck
w2h|ch is easy to satisfy for sufficiently largdl. For  mass, see Eq8). For definiteness, we will choose a particu-
a“b>1, the amplitude of the metric perturbation, £50), is  |ar value, &= 1/200. From the required number effolds,

completely negligible since<1, see Sec. VI. Eq. (28), this determines to be of order one.
Let us study now the contribution of the different modes
B. Implications for large-scale structure to the CMB anisotropies. We first consider the continuum

We can now combine the COBE normalization with ob- SPectrum of subcurvature modes. The slow roll parameters,

servations of large-scale structure. This has the advantage 8fVen Py Eqs(25) and(26), become
being relatively insensitive to the inclusion of supercurvature 1

or bubble-wall modes, because with the constraints above €= 500’ 7n=0, (56)

2 . - — “ H . . . . .
Although there is a dip aroun,=0.4, caused by an “acciden- \yhjch determine the tilt of the primordial spectrum of den-
tal” cancellation between intrinsic and line-of-sight terms, the dipsity perturbations via Eq35) as

is not at the same location for the-3,4, ... multipoles so the dip
does not allow one to weaken the constraint in its neighborhood
[34]. n—1=—-6e=-0.03, (57
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which is compatible with large- and small-scale observationgver, the constraint on the amplitude of the angular power
for ;=0.4, according to Refl40]. The constraint on the spectrum now determines the value of the combination
amplitude of the angular power spectrum determines tha/¢&? rather thamk alone, as

value of\ via Eq.(41) as

A
63 7= 9% 10 1° (63
1+6§:4><1o—14. (59

A=2.5x10"°

If we choosex ~1, we havet~3x 10*, which gives a very
See Ref[20] for a range of values, under the assumptionreasonable expectation value for the dilaton, from @y. of
£<1.
We now consider the de Sitter vacuum supercurvature v=10"mp=10"'® GeV. (64)
mode. This mode exists, sincegg<2H2 for é<1 from Egs. . .
(18) and(19). The amplitude of curvature perturbations that We now consider the' de .Sltt(.ar vacuum supecm:urvature
mode. This mode also exists in this case, simée 2HZ for

give rise to temperature anisotropies in the CMB is con- ;
strained by Eq(52), which imposes the condition equation @>1 from Eqgs.(18) and (19). The amplitude of curvature
perturbations is constrained by E&2), which imposes the

(53). This is satisfied as long as>0.01. Since we are con- o i : >

sidering values ofr=1, the contribution from the supercur- condition equatior(s3). Since we haver>1, the contribu-

vature mode will be negligible compared to that of the subion from this supercurvature mode will be negligible.
Concerning the bubble-wall mode contribution, again

curvature modes, regardlésst Q. ubb : _
Consider now the bubble-wall mode contribution to thetéré aré two possibilities. In the weak gravity regime
2hb<1, the condition on the parameters becomes

CMB anisotropies. There, are two possibilities, depending of

the relative strength of the gravitational effects at tunneling M3

[15]. Fora?b<1 we are in the weak gravity regime of Ref. y<10°—5a®?, (65)

[8], and the condition on the parameters becomes, from Eq. Mg

55), . . o : _

®9 which gives a trivial constraint of<7 for M=10"3mp,.

051+6§ M3 For a’b>1, the condition in Eq(54) is easily satisfied for

<10 —— —%. 59 ~104

For M=103mj,, this givesy<0.03, which is a reasonable VII. MATTER ERA

bound on the couplingy. On the other hand, foa?b>1,
condition equation(54) is easily satisfied foe=1/200, see
Eq. (50).

One of the remaining issues is to make sure that after
inflation the scalar field> remains close to the minimum of
its potential. Deviations from this would result in time varia-
tions of the gravitational constant, which are strongly con-

B.&>1 strained[43]. During the radiation era the scalar field will

This case was considered in REf2]. The dilaton expec- remain at the minimum due to the vanishing trace of the
tation valuev is much smaller than the present Planck massenergy-momentum tensor, as seen from &). However,

For £>1, we haveB=4/3 and the value of is now deter- during the matter era the dilaton couples to the matter fluid

mined from the required number effolds, Eq.(28), and thus will be subject to a force which shifts the field from
its minimum.
4N 4 1+ a However, it is easy to show that this effect is tiny. The
R §—In 1+4/3)° 60 relevant equation, from Ed6), is
which givesa=85. This is a regime quite different from the ; . 9% AV(e)—eV'(e)tp
previous case. pt3He+ o (14600 : (66)
We first consider the continuum spectrum of subcurvature
modes. The slow-roll parameters are For a givenp, there is a static solution at
€=1.85<10"%  =-0.016, (61) 2p
_ _ _ _ _ (p§t= 2 1+ F) : (67
which determine the tilt of the primordial spectrum of den- v

sity perturbations via Eq35) as Since the matter-era energy density is tiny in comparison to

n—1=27»n=—0.032. (62  the inflationary energy density which determines®, the
fractional shift in the gravitational constant at this static point
This is very similar to the previous case and thus compatiblés tiny, and so too is the energy density associated with the
with large- and small-scale observations fd§=0.4. How-  potential, which contributes only a minute fractiqguerhaps
10199 of the critical density.
We have analyzed the detailed behavior, described in Ap-
3In the limit of smalla and B, the e-foldings relation, Eq(28), pendix B. When matter domination starts, the field rises from
gives =108, so the supercurvature constraint will eventually its minimum to oscillate about the static point, which it does
become important oncé<10". on a very rapid time scale. As decreases, the static point



55 COMPLETE POWER SPECTRUM FOR AN INDUQE. . . 4611

moves towards the true minimufwith the oscillation am- - cothr singr — qcosyr
plitude also decreasing though rather more slowht all Hga(r)= Snfr : (A4)
times, the oscillations are of such small amplitude that gen-
eral relativity holds to extremely high accuracy. through the recurrence relation
VIIl. CONCLUSIONS g (r)=(2l=1)cothr Ty, 4(r)—[(1-1)*+ qz]Hq,I—ZEL)S-)
In this paper we have analyzed a variety of phenomeno-
!ogicgl c_onstraints on a _recently prop_osed m_odel of open 2. Supercurvature modes
inflation in the context of induced gravity theorig20]. The ] ]
most stringent constraints come from observations of the The first (=1) multipoles arg34]
temperature anisotropies in the microwave background. The
: - — 1 r
model predicts a matter power spectrum tilted riec1, 4(r)= = | cothr — ———|, (AB)
which will be incompatible with observations if the universe 2 sintrr
turns out to haveé),<0.4. Otherwise, it is possible to choose 1 3(1 ttr)
o . — —rco
the parameters of the model so that it is in agreement with Mr)==|1+ _ (A7)
observations. 2 sinkPr

During the matter era, the large dilaton mass and the ex-
tremely small amplitude of oscillations around its vacuumThe rest can be obtained with the recurrence relation
expectation value ensure that the theory approaches general
rela.tivit.y very effici.ently, pass_ing all the post-Newtonian and ﬁu(f): _ 1cothﬁl|,1( )— I—ﬁufz(r)- (A8)
oscillating gravitational coupling tests. -1 ’ =1

Note addedWe commented in the introduction that no
method had been formulated to compute the gravitational 3. Bubble-wall modes
wave spectrum, which we, therefore, did not consider. As we i .
were revising for the final version of this paper, papers ap- The first (=2) multipoles are 1]

peared[44] making significant progress in this direction. _ sinh4r — 8sinha + 12r
These new results have been applied to the model discussed IL(r)= i , (A9)
in this paper in Ref[45], which confirms compatibility with 4sinfrr
observations. i " sinh5 —15sinh3 — 80sintr + 120r costr
23N = : .
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APPENDIX B: MATTER-ERA OSCILLATIONS
OF THE GRAVITATIONAL COUPLING

APPENDIX A: OPEN UNIVERSE MODE FUNCTIONS

The open universe mode functions are discussed in Refs.

(14,28 Here, we carry out a detailed analysis of the evolution of

the dilaton during the radiation and matter eras. Here, we

shall assume that the oscillations are damped only by the

1. Subcurvature modes Hubble expansion and not by any particle decays, if such
The subcurvature modes can be writter[ 46,14 decays were present the general relativistic limit would be
- even more quickly approached.
I gi(r)=NgIg(r), (A1) The energy-momentum tensor conservation equatyn
in the Jordan frame ensurpa® ") = const during the ra-
with diation (w=1/3) and matter\=0) eras. In order to study

the cosmological evolution during these eras, let us redefine

5! s o1 2 our variables as
Ng=\ LI (n*+a®) ™% Neo=+/ 7, (A2) ,

_ u=%—1, Z=mt, (B1)
where the unnormalized moddd,(r) can be generated
from the first two wherem is given by
~ _sinqr , N
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The ¢ equation of motion, Eq(6), and the Friedman equa- whereK= B/3, see Eq(27). There is an exact solution,
tion become

. Zu(z) =cqSinz+ cy,coz+Kf(z), (B8)
, o .al 2(p—3p)
u'+3—u'+u=——7—, (B3) ) . L .
a Av wheref(2z) is related to the sine and cosine integral functions
by [47]
2a’ u' |2 1+6£[( U\ u? 8p
2 T1ru "6 |\Tru) TTou T A I v g2t
(B4) f(z)=C|(z)smz—S|(z)cosz=f Wdt' (B9)
0

where primes denote derivatives with respectztduring
the radiation era, the right-hand side of Hg3) vanishes The late time ¢—) behavior ofu is u(z)«sinzz with a
andu=u’=0 is a stable fixed point. Very soon one can large frequency of oscillations

neglect thau terms in the Friedman equation, and we find the
radiation era attracton’/a=1/2z. The scalar field equation
of motion,u”+3u’/2z+u=0, has an exact solution:

12
mp>Ho, (B10)

A

M= 8me(1+6¢)

s
2'u(2)=Cc1dud(2) + ¢2Yud2), B9 and an amplitudgu’|~|u|~A/ad, which later decays as

where{J,Y} are Bessel functions. Its amplitude decays as-1/z at largez. The contribution of the scalar field to the total

ymptotically asu(z)<z~ % so we expect the matter era to €nergy density is, therefore, suppressed by an extra factor

start with initial conditions ati=u’=0. A with respect to the ordinary matter energy density, see Eq.
During the matter eraj=u’=0 is a spiral attractor and (B4). Since A is so tiny, there are no constraints on the

we can always neglect theterms in the Friedman equation: Parameters of the model from local experiments, see Ref.
[25], and general relativity is a strong attractor of the equa-

A 4 tions of motion.

23 972 (B6) Note that during the matter era the background dilaton
field oscillates very quickly, which might be thought could

whereA=2pa®/\v* is a constant of order 13?°in Planck  produce other particles, such as at the end of inflation. How-

2

!

a

a

1+6¢
6&

units. The equation of motion far becomes ever, because of the extremely small amplitude of oscilla-
tions, |u|~A~ 1012 there is no significant particle produc-
. 2, A K tion and the field's energy can only decay by redshifting
u'+-u'+u= 3=, (B7)
z a® z away.
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