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We study the phenomenological constraints on a recently proposed model of open inflation in the
context of induced gravity. The main interest of this model is the relatively small number of param-
eters, which may be constrained by many different types of observation. We evaluate the complete
spectrum of density perturbations, which contains continuum sub-curvature modes, a discrete su-
per curvature mode, and a mode associated with fluctuations in the bubble wall. ¿From these, we
compute the angular power spectrum of temperature fluctuations in the microwave background, and
derive bounds on the parameters of the model so that the predicted spectrum is compatible with
the observed anisotropy of the microwave background and with large-scale structure observations.
We analyze the matter era and the approach of the model to general relativity. The model passes
all existing constraints.
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I. INTRODUCTION

The inflationary paradigm [1] not only provides a solu-
tion to the classical problems of the hot big bang cosmol-
ogy, but also predicts an almost scale invariant spectrum
of metric perturbations which could be responsible for
the observed anisotropy of the cosmic microwave back-
ground (CMB), as well as the origin of the large-scale
structure. Present microwave background anisotropy ex-
periments offer only weak constraints; for example the
COBE satellite [2] gives a very accurate determination
of the amplitude of large-angle anisotropies (which can
be used to normalize theories) but only weakly constrains
the shape of the spectrum. Information is beginning to
come in on degree scales, and from combining microwave
anisotropy constraints with those from large-scale struc-
ture, but the present situation still offers considerable
freedom. However, we can expect this to change dra-
matically in the near future, especially with the launch
of new-generation microwave anisotropy satellites MAP
[3] and COBRAS/SAMBA [4] which promise to measure
both cosmological parameters such as Ω0, H0 and ΩB,
and parameters associated with the primordial spectra
to great accuracy [5]. It is therefore desirable to provide
a variety of inflationary models with definite predictions,
which could be used to test and exclude them.

Until recently, inflation was always associated with a
flat universe, due to its ability to drive the spatial cur-
vature so effectively to zero. However, it is now un-
derstood that inflation comprises a wider class of mod-
els, some of which may give rise to an open universe at
present [6–8]. Observations suggesting a high value of
the Hubble parameter, such as those using the Hubble
Space Telescope [9], have motivated the idea of consider-

ing a low-density universe, in an attempt to make the age
compatible with globular cluster ages. Most frequently
a cosmological constant is introduced to restore spatial
flatness, but open inflation models (see Ref. [10] for an
introduction) offer the alternative of a genuinely open
universe. Such models generically contain a field trapped
in a false vacuum which tunnels to its true vacuum via
nucleation of a single bubble, inside which a second pe-
riod of inflation drives the universe to almost flatness.
This way one solves the homogeneity problem indepen-
dently from the flatness problem, allowing for an open
homogeneous universe inside the bubble.

In an open universe, the analysis of density pertur-
bations and microwave anisotropies is considerably more
complicated than in the usual flat space case. Early stud-
ies by Lyth and Stewart [11] and by Ratra and Peebles
[12] evaluated the spectrum for slow-roll models leading
to an open Universe, using the conformal vacuum as an
initial condition. In the single-bubble models a differ-
ent vacuum choice is appropriate, leading to a slightly
different spectrum [13,7]. It was later realised however
that extra perturbations, with discrete wavenumbers, can
also be generated. In all, three different types of pertur-
bation have been identified: a continuous spectrum of
modes with wavenumber k greater than the curvature
scale, known as sub-curvature modes; a super-curvature
mode associated with the open de Sitter vacuum [13,14],
and a mode associated with perturbations in the bubble
wall at tunneling [15–17]. The observed large-scale struc-
tures are due to the sub-curvature modes, but large-angle
microwave anisotropies are generated by all three types,
with observations seeing the combined total anisotropy.
The first computation of all three types of mode together
for a particular model was made in Ref. [15] for arbitrary
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Ω0 in the context of the two-field models of Linde and
Mezhlumian [8]. Later on, a thorough calculation of all
three contributions from the point of view of quantum
field theory in open de Sitter space was carried out by
Yamamoto et al. [17] (see also Ref. [18]). Here we shall
carry out a similar calculation for a different two-field
model, for which we shall also discuss some of the impli-
cations of large-scale structure observations.

In addition to scalar metric perturbations, we expect
open inflation to lead to the production of a gravitational
wave spectrum, as in conventional inflationary models.
Unfortunately, no-one has yet formulated a method of
calculating this spectrum even approximately, and so we
shall not be able to consider them here. In chaotic in-
flation models, gravitational waves are negligible in the
slow-roll limit (see e.g. Ref. [19]); one can hope that this
is also true in the open inflation case, but that remains
to be confirmed.

The particular open inflation model we shall study, in-
troduced in Ref. [20], is based on the induced gravity
Lagrangian [21]. The interest of this model is the rel-
atively small number of parameters, which can be con-
strained by several different types of observation. The in-
flaton is a dilaton field, whose vacuum expectation value
at the end of inflation determines the present value of
the gravitational constant. We will constrain the model
from CMB and large-scale structure observations, as well
as ensuring that post-Newtonian and oscillating gravita-
tional coupling bounds are satisfied.

II. THE MODEL

We consider the model of Ref. [20], with an induced
gravity Lagrangian [21]

L =
1

2
ξϕ2R−

1

2
∂µϕ∂

µϕ+ V (ϕ) + Lmat . (1)

The dilaton field ϕ determines the effective gravitational
coupling, which is positive for ξ > 0. In the absence of
a potential, this action corresponds to the usual Brans–
Dicke action [22], where

Φ = 8πξ ϕ2 , ω =
1

4ξ
. (2)

The Einstein and scalar field equations are [23,24]

−ξϕ2Gµν = gµνV (ϕ) + ξ(∇µ∇ν − gµν∇
2)ϕ2

+
(
∂µϕ∂νϕ−

1

2
gµν(∂ϕ)2

)
+ Tµν , (3)

and

∇2ϕ = −V ′(ϕ) + ξϕR , (4)

where Gµν is the Einstein tensor. Using the identities
G ;ν
µν = 0 and Rµν∇νΦ = ∇µ(∇2Φ) − ∇2(∇µΦ), to-

gether with the ϕ equation of motion, we find that the
energy-momentum tensor is conserved,

T ;ν
µν = 0 , (5)

even in the presence of a potential for the scalar field.
Substituting R into the equation of motion of the scalar
field, we obtain

1

2
(1 + 6ξ)∇2ϕ2 = 4V (ϕ)− ϕV ′(ϕ) + T λλ . (6)

We will consider a potential of the type [21,20]

V (ϕ) =
λ

8
(ϕ2 − ν2)2 . (7)

During a radiation dominated era T λλ = 0 and the scalar
field will sit at its minimum; matching the present-day
Planck mass demands

8π ξν2 = m2
Pl . (8)

During a matter era, the scalar field oscillates around its
minimum with a large frequency and negligible ampli-
tude, passing all the tests associated with an oscillating
gravitational coupling [25] as we will show in Section VII.

III. INDUCED GRAVITY OPEN INFLATION

In the induced gravity open inflation model [20], the
initial period of inflation is driven by the false vacuum
energy of a second scalar field σ. This energy density is
able to hold the dilaton at a fixed location displaced from
the minimum of its potential. After the false vacuum
decays, the rolling of the dilaton to its minimum drives
the second period of inflation necessary to give Ω0 in the
desired range.

A. False vacuum inflation

Initially the scalar field σ is in its false vacuum. The
details of its potential are not particularly important;
we will parametrize them later. In the false vacuum,
the universe expands driving the spatial curvature and
any previous inhomogeneities to zero. Later on, the σ
field tunnels to its true minimum at V (σ) = 0, via the
production of a bubble.

The equations of motion of the dilaton field before and
after the tunneling can be written as [20]

H2 + 2H
ϕ̇

ϕ
+
K

a2
=

1

3ξϕ2

[
1

2
ϕ̇2 + V (ϕ) + V (σ)

]
, (9)

ϕ̈+ 3Hϕ̇+
ϕ̇2

ϕ
=

4V (ϕ)− ϕV ′(ϕ) + 4V (σ)

(1 + 6ξ)ϕ
. (10)

Here V (σ) = V0 in the false vacuum and vanishes in the
true vacuum, while the curvature K is effectively zero
before tunnelling and is negative afterwards. The basis
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for the open inflation model is the existence of a stable
static solution in the false vacuum [20], with

ϕ2
st = ν2

(
1 +

8V0

λν4

)
≡ ν2 (1 + α) , (11)

H2
st =

8πV0

3m2
Pl

. (12)

Its stability is best seen in the Einstein frame [20]. Under
the transformation

dt =
ν

ϕ
dt̃ , a(t) =

ν

ϕ
ã(t̃) , (13)

φ

ν
= (1 + 6ξ)1/2 ln

ϕ

ν
, (14)

the effective potential in the false vacuum becomes

UF(φ) =
λν4

8

[
1− 2

ν2

ϕ2
+ (1 + α)

ν4

ϕ4

]
, (15)

U ′F(φ) =
λν3

2(1 + 6ξ)1/2

ν2

ϕ2

[
1− (1 + α)

ν2

ϕ2

]
, (16)

U ′′F(φ) =
λν2

1 + 6ξ

ν2

ϕ2

[
2(1 + α)

ν2

ϕ2
− 1

]
, (17)

where primes denote derivatives with respect to the
Einstein-frame scalar field φ. It is clear that U ′F(φst) = 0
at the static value, while the effective square mass is pos-
itive ensuring stability. At the static point, we have

H2
F =

8πUF

3m2
Pl

=
λν2

24ξ

α

1 + α
, (18)

m2
F ≡ U

′′
F(ϕst) =

λν2

1 + 6ξ

1

1 + α
, (19)

where HF is the rate of expansion of the universe in the
Einstein frame and mF is the mass of the φ field at the
static point.

B. True vacuum inflation

Eventually the σ field tunnels to its true vacuum by
nucleating a bubble, inside which the universe inflates to
almost flatness. A sufficiently low tunneling rate ensures
that the bubble stays isolated [26,20]. After tunneling,
the effective potential in the true vacuum, again in the
Einstein frame, becomes

UT(φ) =
λν4

8

(
1−

ν2

ϕ2

)2

, (20)

U ′T(φ) =
λν3

2(1 + 6ξ)1/2

ν2

ϕ2

(
1−

ν2

ϕ2

)
, (21)

U ′′T(φ) =
λν2

1 + 6ξ

ν2

ϕ2

(
2
ν2

ϕ2
− 1

)
. (22)

The minimum of the potential is now at ϕ = ν < ϕst, and
the field slow-rolls from ϕst driving a second stage of in-
flation. The dynamics of this situation were investigated
long ago in Ref. [27]. The rate of expansion and effective
mass in the true vacuum immediately after tunneling are

H2
T =

8π UT

3m2
Pl

−
K

a2
=
λν2

24ξ

(
α

1 + α

)2

−
K

a2
, (23)

m2
T ≡ U

′′
T(ϕst) =

λν2

1 + 6ξ

1− α

(1 + α)2
. (24)

The curvature term quickly becomes negligible as the sec-
ond phase of inflation progresses.

For later use, we also define the usual slow-roll param-
eters [19] soon after tunneling

ε ≡
m2

Pl

16π

(
U ′T(φ)

UT(φ)

)2

=
8ξ

1 + 6ξ

1

α2
, (25)

η ≡
m2

Pl

8π

U ′′T(φ)

UT(φ)
=

8ξ

1 + 6ξ

1− α

α2
. (26)

The scalar field φ slow-rolls down the effective potential
given by Eq. (20) until it starts oscillating around its
minimum and inflation ends. The value of φ at the end of
inflation can be computed from the condition−ḢT ' H2

T

(or equivalently φ̇2 ' UT(φ)), giving

ϕ2
end = ν2

(
1 +

8ξ

1 + 6ξ

)
≡ ν2 (1 + β) . (27)

The number of e-folds during the second stage of inflation
from φst to φend can be computed in the Einstein frame,

N =
1

ξν2

∫ φst

φend

dφUT(φ)

U ′T(φ)

=
1

β

[
α− β − ln

(
1 + α

1 + β

)]
. (28)

In order to produce an open universe, the number of e-
folds after tunneling has to be around N = 60, the pre-
cise number depending on the reheating temperature and
other details of the post-inflationary evolution. We adopt
the number 60 for definiteness. This gives a relation be-
tween the two dimensionless parameters α and β.

IV. METRIC PERTURBATIONS AND
TEMPERATURE ANISOTROPIES

Quantum fluctuations of the inflaton field φ produce
long-wavelength curvature perturbations; we will use R
to denote the curvature perturbation on comoving hyper-
surfaces (in the Einstein frame).

Open inflation generates three different types of modes:
those that cross outside during the second stage of infla-
tion and constitute a continuum of sub-curvature modes;
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a discrete super-curvature mode associated with the open
de Sitter vacuum, and a mode associated with the bubble
wall fluctuations at tunneling. The mode functions are
eigenvalues of the Laplacian, with eigenvalue −k2 where
k is the wavenumber. Defining q2 = k2−1, then the sub-
curvature modes have positive q2 and the other modes
have negative q2. We label the former mode functions
Πql(r) and the latter Π̄|q|l(r). In Appendix A we give
explicit forms for these; see also Ref. [28].

The spectrum PR(q) of the curvature perturbation can
be defined from the mode expansion of R by [14]

〈RqlmRq′l′m′〉 =
2π2

q(q2 + 1)
PR(q) δ(q − q′)δll′δmm′ . (29)

In order to compare with observations, we must com-
pute the effect that such a perturbation has on the tem-
perature of the CMB, expanded as usual in spherical har-
monics

∆T

T
(θ, φ) =

∑
lm

alm Y
l
m(θ, φ) . (30)

The main contribution on large scales comes from the
Sachs–Wolfe effect [29]. The complete angular power
spectrum Cl ≡ 〈|alm|2〉 has contributions from the
continuum of sub-curvature modes, the super-curvature
mode and the bubble-wall mode,

Cl = C
(C)
l + C

(S)
l + C

(W )
l . (31)

The contribution of each mode to the Cl is measured
by a window function Wql, given by [29]

5Wql = Πql(η0) + 6

∫ η0

0

dr F ′(η0 − r) Πql(r) , (32)

for the sub-curvature modes; the same expression with
Π̄|q|l gives the window function W̄|q|l for the negative q2

modes. Here

F (η) = 5
sinh2 η − 3η sinh η + 4(coshη − 1)

(cosh η − 1)3
, (33)

gives the growth rate of perturbations during the mat-
ter era [30], and η0 = cosh−1(2/Ω0 − 1) is the distance
to the last scattering surface. The normalization of the
contribution to the Cl is given in the expressions below.

Sub-curvature modes

A detailed computation of the amplitude of the sub-
curvature modes gives the result [13,7,17]

PR(q) = coth(πq)
8UT

3 εm4
Pl

, (34)

where ε is the slow-roll parameter defined earlier and we
have dropped a small correction term from the change in

mass during tunneling [17]. The coth(πq) factor can be
interpreted as due to the initial transient behavior as the
curvature term dies away.

Notice that Eq. (34) has only been derived in the case
of perfect de Sitter expansion after tunneling [17]. It
seems very plausible that it also holds when there are
deviations from de Sitter, where the right hand side is to
be evaluated when k = aH. This is the only simple for-
mula which reduces to the correct result both for de Sitter
expansion and in the flat-space limit (see e.g. Ref. [31])
which must be attained after the curvature term has died
away sufficiently.

Following normal practice, we describe the variation in
the spectrum caused by the time variation of H and ε by
a power-law. Notice that this power-law is superimposed
on the coth behavior, so the complete spectrum does not
have a power-law form on very large scales. The power-
law index of PR(q)/ coth(πq) can be derived in the usual
way from the slow-roll parameters as [19]

n− 1 = −6ε+ 2η = −
8ξ

1 + 6ξ

2(2 + α)

α2
, (35)

and gives the standard result in the flat-space limit where
the coth term in Eq. (34) equals unity. This expression
is valid provided both ε and |η| are much less than one.

For later comparison, we write the spectrum as

PR(q) = A2
C coth(πq)

[
1 + q2

](n−1)/2
, (36)

where

A2
C =

8UT(φst)

3 ε(φst)m4
Pl

(37)

is a measure of the amplitude at the q = 0 limit. Formally
the spectrum diverges there, though not in a harmful way
thanks to the window function given by Eq. (32).

For our model, Eq. (37) becomes

A2
C =

λ

(16π ξ)2

1 + 6ξ

6ξ

(
α2

1 + α

)2

. (38)

The angular power spectrum for the continuum modes
can be written as [13]

C
(C)
l = 2π2

∫ ∞
0

dq

q(1 + q2)
PR(q)W 2

ql . (39)

We compute the angular power spectrum for different
values of Ω0 in the low-density range 0.2 ≤ Ω0 ≤ 0.6. In
Fig. 1 we show the first twelve multipoles, adopting the
notation Dl = l(l+ 1)Cl.

∗

∗Our calculation only includes the Sachs–Wolfe effect, as
is appropriate for computing the amplitude on the largest
angular scales. We therefore don’t include the rise to the
acoustic peak, caused by the first oscillation of the photon–
baryon fluid, which is known to induce an effective extra tilt
of around 0.15 [32]; see for example Fig. 8 in Ref. [33] (who
only consider sub-curvature modes).
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FIG. 1. The first 12 multipoles of the angular power spec-
trum associated with the continuum modes, normalized to the
tenth multipole, for Ω0 = 0.2, 0.3, 0.4, 0.5, 0.6 as read from top
to bottom at low l.

The normalization to COBE for tilted open models
has recently been given by Bunn and White [33], under
the assumption that only the continuum modes are im-
portant. They specify a quantity δH, which measures
the normalization of the present matter power spectrum.
The preferred value depends on n and Ω0; however our
model is nearly scale-invariant and the dependence on
Ω0 is quite weak and can be ignored at the accuracy we
are working. Therefore we take the value δH = 2× 10−5

regardless of Ω0. In an open universe δH is related to PR
as [33]

δH =
2

5
P1/2
R

g(Ω0)

Ω0
, (40)

where g(Ω0) is a function measuring the suppression in
the growth perturbations relative to a critical-density
universe, and PR is evaluated at around the 10th multi-
pole where coth(πq) ' 1. The Ω0 dependence can give a
factor of up to 1.5 in the region of interest, but we can ig-
nore it as we do not require such accuracy. Reproducing
the amplitude of temperature anisotropies is the main
constraint on the parameters of the model, and yields

√
λ = 6× 10−3

(
ξ3

1 + 6ξ

)1/2
1 + α

α2
, (41)

as found in Ref. [20]. This relation can readily be satisfied
for reasonable values of the parameters [20].

Super-curvature mode

We now consider the contribution to the CMB aniso-
tropies coming from the discrete super-curvature mode
associated with the dilaton field φ. This mode appears in
the open de Sitter spectrum when m2

F < 2H2
F in the false

vacuum [13]. The tunneling field σ does not have this

FIG. 2. As Fig. 1, but for the discrete supercurvature
mode, showing Ω0 = 0.6, 0.5, 0.4, 0.3, 0.2, reading from top
to bottom at in the centre of the figure.

mode in its spectrum, since its mass at the false vacuum
should be much larger than the rate of expansion in order
to prevent tunneling via the Hawking-Moss instanton [8].
The wavenumber associated with this mode is given by

k2 = 1−

[(
9

4
−
m2

F

H2
F

)1/2

−
1

2

]2

. (42)

The amplitude of this mode is [18]

A2
S '

8UF

3 εm4
Pl

= A2
C

UF

UT
. (43)

where the normalization of A2
S is defined through the

formula for the angular power spectrum of tempera-
ture anisotropies induced by this super-curvature mode,
namely [17,18]

D
(S)
l ≡ l(l+ 1)C

(S)
l = 4πA2

S W̄
2
1l . (44)

Fig. 2 shows the first twelve multipoles, showing quite
a complicated dependence. For example, it is not auto-
matic that the quadrupole receives the biggest contribu-
tion [34].

More important than the shape is the amplitude of
these anisotropies relative to the sub-curvature ones. We
will compare their contributions in Section V.

Bubble wall mode

In addition to the sub- and super-curvature modes,
there is a contribution from the bubble wall fluctua-
tions. These fluctuations contribute as a transverse trace-
less curvature perturbation mode with k2 = −3, see
Refs. [15–17], which still behaves as a homogeneous ran-
dom field [35,28].

Unlike the modes we’ve discussed so far, these modes
need extra parameters for their description, because their
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FIG. 3. As Fig. 1, but for the discrete bubble wall mode,
for Ω0 = 0.6, 0.5, 0.4, 0.3, 0.2, from top to bottom at low l.

amplitude depends on the details of the bubble wall,
which is determined by the potential for the σ field. This
extra freedom allows the bubble wall fluctuations to be
tuned relative to the others.

The perturbation amplitude for the bubble wall mode
is given by [15,36,17]

A2
W =

4UT

a2bm4
Pl

[
a2 + (1 + a2b)2

]1/2
, (45)

where

a2 =
24πUT S

2
1

m2
Pl (UF − UT)2

, b =
UF − UT

4UT
. (46)

and S1 gives the bubble wall contribution to the bounce
action, Bwall = 2π2R3S1 (see e.g. Ref. [15]). In order
to compute S1, we will consider a symmetry breaking
potential of the type

U(σ) = UF +
γ

4
σ2(σ − σ0)2 − µU0

( σ
σ0

)4

, (47)

where σ0 = M
√

2/γ corresponds to the true vacuum and
U0 = M4/16γ is the value of potential at the maximum.
With µ� 1 for the thin-wall approximation to be valid,
S1 can be computed as [15]

S1 =

∫ σ0

0

dσ [2(U(σ)− UF)]1/2 '
M3

3γ
. (48)

In the limit a2b � 1 of small gravitational effects at
tunneling, we recover the result of Ref. [8], namely

A2
W =

2UT(UF − UT)

πm2
Pl S

2
1

= A2
C

3 ε

2 a2b
, (49)

where ε is the slow-roll parameter. However, in the op-
posite limit of strong gravitational effects, a2b � 1, we
have [15]

A2
W =

4UT

m4
Pl

= A2
C

3 ε

2
, (50)

which is much smaller than the amplitude of the contin-
uum modes.

The angular power spectrum associated with the bub-
ble wall mode is [15]

D
(W )
l ≡ l(l + 1)C

(W )
l =

4πA2
W

(l + 2)(l − 1)
W̄ 2

2l . (51)

Fig. 3 shows the first twelve multipoles. The quadrupole
has the largest amplitude for all Ω0.

We will compare their contribution to the CMB in the
next Section.

V. COMPARISON WITH OBSERVATIONS

A. Microwave background anisotropies

We can now examine constraints on the shape of the
combined spectrum. The COBE data alone do not offer
particularly strong constraints in this respect; for exam-
ple, although Yamamoto and Bunn [37] argued that the
inclusion of super-curvature modes could harm the fit to
COBE based on the two-year data, a recent comprehen-
sive analysis of the four-year data by Górski et al. [38]
finds no useful constraint. Those papers however dis-
cussed only a particular model for the super-curvature
modes and didn’t include the bubble-wall modes at all.
As Sasaki and Tanaka discussed [18], there can be in-
teresting constraints if the super-curvature modes have
their amplitude enhanced, and we shall also se that the
bubble wall modes are typically more important than the
super-curvature ones.

Unfortunately, the complicated structure of the per-
turbation spectra in open inflation models means that for
a full analysis each model would have to be confronted
with the COBE data set on a case-by-case basis. Such
an analysis is outside the scope of this paper. We shall
adopt a more simplistic approach, which is to demand
that the discrete modes do not dominate the quadrupole
while contributing negligibly to the tenth multipole. This
would give an unacceptable shape to the spectrum on the
scales sampled by COBE.

In Fig. 4, we show the contributions to the quadrupole
and to the tenth multipole, as functions of Ω0, normalized
to the size of the corresponding metric perturbation. It
does not require much effort to keep the contribution to
the tenth multipole from the discrete modes low (unless
Ω0 is very small), but we must ensure that the quadrupole
is not dominated by the discrete modes.

Considering first the super-curvature modes, across the
whole range of interesting Ω0 we find that the super-
curvature mode contributes about a factor thirty less
to the low multipoles than do the continuum modes,
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FIG. 4. The multipoles associated with each of the modes,
normalized to the corresponding metric perturbation (A2

C, A2
S

or A2
W as appropriate), as a function of Ω0. The top panel

shows the quadrupole, while the lower shows the tenth mul-
tipole.

for the same size of metric perturbation.† Unless Ω0 is
very small, then if the super-curvature mode contribu-
tion is comparable to that of the continuum modes for
the quadrupole, then it is negligible at the tenth multi-
pole. Conservatively then, we shall require

A2
S
<
∼ 100A2

C , (52)

independently of Ω0, to prevent the super-curvature
modes from dominating the low multipoles. In principle
this limit could become inappropriate at small enough
Ω0, because then the shape of the super-curvature spec-
trum is not so steep as to be ruled out by observations.
However, by then the super-curvature modes are con-

†Although there is a dip around Ω0 ' 0.4 caused by an ‘acci-
dental’ cancellation between intrinsic and line-of sight terms,
the dip is not at the same location for the l = 3, 4... multipoles
so the dip doesn’t allow one to weaken the constraint in its
neighborhood [34].

tributing substantially even to the tenth multipole, and
this will force down the normalization ot COBE and
make it impossible to fit large-scale structure observa-
tions. We can therefore adopt the above constraint even
at low Ω0 values. This imposes only a very mild con-
straint on the parameters of the model, namely

α > 0.01 , (53)

which is easy to satisfy as we will see in Section VI. Since
the value of Ω0 at present is not known with any rea-
sonable accuracy, it would be excessive to give a precise
Ω0-dependent constraint. However, in the future, with a
narrow range of values for Ω0, one would be able to give
a more refined constraint on the parameters of the model
from a full comparison of the detailed spectrum against
COBE or its successors.

The same arguments can be applied to the bubble-
wall modes; again we must prevent the domination of
the quadrupole by these modes. For the interesting Ω0

values (i.e. those not too close to one), we see from Fig. 4
that this simply requires

A2
W
<
∼ A

2
C , (54)

again independent of Ω0 in the interesting range. This
again imposes only a very mild constraint on the param-
eters of the model. For a2b � 1, we have 3ε < 2a2b
giving

γ < 9× 104 1 + 6ξ

6ξ

M3

m3
Pl

α5/2 , (55)

which is easy to satisfy for sufficiently large M . For
a2b � 1, the amplitude of the metric perturbation
Eq. (50) is completely negligible since ε � 1, see Sec-
tion VI.

B. Implications for large-scale structure

We can now combine the COBE normalization with
observations of large-scale structure. This has the ad-
vantage of being relatively insensitive to the inclusion
of super-curvature or bubble-wall modes, because with
the constraints above these modes affect only the low-
est multipoles, and while these can influence whether
or not the spectral shape is a good fit to observations,
they are not very significant at the higher multipoles
(around the tenth to fifteenth) which are most impor-
tant for determining the normalization. The drawback
though is that looking to large-scale structure introduces
a dependence on all the other cosmological parameters,
namely the Hubble parameter h, the baryon density ΩB

and the nature of the dark matter. Despite this, interest-
ing constraints can still be found, and two analyses have
appeared which discuss tilted open models — Liddle et
al. [39] who used the two-year COBE data and, more
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recently, White and Silk [40] who used an accurate nor-
malization to the four-year COBE data. Both of these
considered only cold dark matter; other choices tend to
strengthen the constraints so we shall do likewise.

In the model we are considering, the spectral index is
always tilted to n less than one, as seen from Eq. (35).
Whether or not this is allowed depends quite sensitively
on both Ω0 and h. If Ω0 is too low, below around 0.30,
then the open cold dark matter model fares badly against
observations; this conclusion is consistent with a similar
constraint from velocity flows [41] which is independent
of the power spectrum. For example, White and Silk [40]
find that this value is allowed only if the power spectrum
is ‘blue’, with n at least 1.10. This conclusion is enforced
both by the cluster abundance and by the shape of the
galaxy correlation function. Our model will therefore be
ruled out if it turns out that the universe is indeed as
open as this.

However, one does not have to increase Ω0 by very
much to radically change this conclusion. For Ω0 = 0.5,
for example, White and Silk find viable models for n
as low as 0.85, with the preferred value depending on
the Hubble parameter h. Our model can therefore be
comfortably compatible with the data for this Ω0, and at
least marginally compatible for Ω0 as low as 0.4.

VI. TWO POSSIBLE SCENARIOS

In this section we will explore two different scenarios.

A. ξ � 1

This case was considered in Ref. [20]. Here the dila-
ton expectation value ν is much larger than the present
Planck mass, see Eq. (8). For definiteness, we will choose
a particular value, 8ξ = 1/200. From the required num-
ber of e-folds, Eq. (28), this determines α to be of order
one.

Let us study now the contribution of the different
modes to the CMB anisotropies. We first consider the
continuum spectrum of sub-curvature modes. The slow-
roll parameters, given by Eqs. (25) and (26), become

ε '
1

200
, η ' 0 , (56)

which determine the tilt of the primordial spectrum of
density perturbations via Eq. (35) as

n− 1 ' −6ε ' −0.03 , (57)

which is compatible with large- and small-scale observa-
tions for Ω0

>
∼ 0.4, according to Ref. [40]. The constraint

on the amplitude of the angular power spectrum deter-
mines the value of λ via Eq. (41) as

λ ' 2.5× 10−5 6ξ3

1 + 6ξ
' 4× 10−14 . (58)

See Ref. [20] for a range of values, under the assumption
ξ � 1.

We now consider the de Sitter vacuum super-curvature
mode. This mode exists, since m2

F < 2H2
F for ξ � 1 from

Eqs. (18) and (19). The amplitude of curvature pertur-
bations that give rise to temperature anisotropies in the
CMB is constrained by Eq. (52), which imposes the con-
dition Eq. (53). This is satisfied as long as α > 0.01.
Since we are considering values of α ' 1, the contri-
bution from the super-curvature mode will be negligible
compared to that of the sub-curvature modes, regardless
of Ω0.‡

Consider now the bubble wall mode contribution to the
CMB anisotropies. There are two possibilities, depending
on the relative strength of the gravitational effects at
tunneling [15]. For a2b � 1 we are in the weak gravity
regime of Ref. [8], and the condition on the parameters
becomes, from Eq. (55),

γ < 105 1 + 6ξ

6ξ

M3

m3
Pl

. (59)

For M ' 10−3mPl this gives γ < 0.03, which is a rea-
sonable bound on the coupling γ. On the other hand,
for a2b � 1, condition Eq. (54) is easily satisfied for
ε ' 1/200, see Eq. (50).

B. ξ � 1

This case was considered in Ref. [42]. The dilaton ex-
pectation value ν is much smaller than the present Planck
mass. For ξ � 1, we have β ' 4/3 and the value of α
is now determined from the required number of e-folds
Eq. (28),

4N

3
' α−

4

3
− ln

( 1 + α

1 + 4/3

)
, (60)

which gives α ' 85. This is a regime quite different from
the previous case.

We first consider the continuum spectrum of sub-
curvature modes. The slow-roll parameters are

ε ' 1.85× 10−4 , η ' −0.016 , (61)

which determine the tilt of the primordial spectrum of
density perturbations via Eq. (35) as

n− 1 ' 2η ' −0.032 . (62)

‡In the limit of small α and β, the e-foldings relation Eq. (28)
gives α ' 10

√
β, so the super-curvature constraint will even-

tually become important once ξ <∼ 10−7.
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This is very similar to the previous case and thus compat-
ible with large- and small-scale observations for Ω0

>
∼ 0.4.

However, the constraint on the amplitude of the angular
power spectrum now determines the value of the combi-
nation λ/ξ2 rather than λ alone, as

λ

ξ2
' 9× 10−10 . (63)

If we choose λ ∼ 1, we have ξ ∼ 3 × 104, which gives a
very reasonable expectation value for the dilaton, from
Eq. (8), of

ν ' 10−3mPl ' 1016GeV . (64)

We now consider the de Sitter vacuum super-curvature
mode. This mode also exists in this case, sincem2

F < 2H2
F

for α � 1 from Eqs. (18) and (19). The amplitude of
curvature perturbations is constrained by Eq. (52), which
imposes the condition Eq. (53). Since we have α � 1,
the contribution from this super-curvature mode will be
negligible.

Concerning the bubble wall mode contribution, again
there are two possibilities. In the weak gravity regime
a2b� 1, the condition on the parameters becomes

γ < 105 M
3

m3
Pl

α5/2 . (65)

which gives a trivial constraint of γ <
∼ 7 for M '

10−3mPl. For a2b� 1, the condition in Eq. (54) is easily
satisfied for ε ' 10−4.

VII. MATTER ERA

One of the remaining issues is to make sure that af-
ter inflation the scalar field ϕ remains close to the mini-
mum of its potential. Deviations from this would result
in time variations of the gravitational constant, which
are strongly constrained [43]. During the radiation era
the scalar field will remain at the minimum due to the
vanishing trace of the energy momentum tensor, as seen
from Eq. (6). However, during the matter era the dilaton
couples to the matter fluid and thus will be subject to a
force which shifts the field from its minimum.

However, it is easy to show that this effect is tiny. The
relevant equation, from Eq. (6), is

ϕ̈+ 3Hϕ̇+
ϕ̇2

ϕ
=

4V (ϕ)− ϕV ′(ϕ) + ρ

(1 + 6ξ)ϕ
. (66)

For a given ρ, there is a static solution at

ϕ2
st = ν2

(
1 +

2ρ

λν4

)
. (67)

Since the matter-era energy density is tiny in compari-
son to the inflationary energy density which determines

λν4, the fractional shift in the gravitational constant at
this static point is tiny, and so too is the energy density
associated with the potential, which contributes only a
minute fraction (perhaps 10−100!) of the critical density.

We have analyzed the detailed behavior, described in
Appendix B. When matter domination starts, the field
rises from its minimum to oscillate about the static point,
which it does on a very rapid timescale. As ρ de-
creases, the static point moves towards the true minimum
(with the oscillation amplitude also decreasing though
rather more slowly). At all times, the oscillations are
of such small amplitude that general relativity holds to
extremely high accuracy.

VIII. CONCLUSIONS

In this paper we have analyzed a variety of phenomeno-
logical constraints on a recently proposed model of open
inflation in the context of induced gravity theories [20].
The most stringent constraints come from observations
of the temperature anisotropies in the microwave back-
ground. The model predicts a matter power spectrum
tilted to n < 1, which will be incompatible with observa-
tions if the universe turns out to have Ω0

<
∼ 0.4. Other-

wise, it is possible to choose the parameters of the model
so that it is in agreement with observations.

During the matter era, the large dilaton mass and the
extremely small amplitude of oscillations around its vac-
uum expectation value ensure that the theory approaches
general relativity very efficiently, passing all the post-
Newtonian and oscillating gravitational coupling tests.

Final note: We commented in the introduction that
no method had been formulated to compute the gravi-
tational wave spectrum, which we therefore did not con-
sider. As we were revising for the final version of this pa-
per, preprints appeared [44] making significant progress
in this direction. It will be interesting to apply these new
results to specific open inflation models including the one
discussed in this paper.
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APPENDIX A: OPEN UNIVERSE MODE
FUNCTIONS

The open universe mode functions are discussed in
Refs. [14,28]
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Sub-curvature modes

The sub-curvature modes can be written as [45,14]

Πql(r) = Nql Π̃ql(r) , (A1)

with

Nql =

√
2

π

l∏
n=1

(n2 + q2)−1/2 , Nq0 =

√
2

π
, (A2)

where the unnormalized modes Π̃ql(r) can be generated
from the first two

Π̃q0(r) =
sin qr

sinh r
, (A3)

Π̃q1(r) =
coth r sin qr − q cos qr

sinh r
, (A4)

through the recurrence relation

Π̃ql(r) = (2l− 1) coth r Π̃q,l−1(r)

− [(l − 1)2 + q2] Π̃q,l−2(r) . (A5)

Super-curvature modes

The first (l ≥ 1) multipoles are [34]

Π̄11(r) =
1

2

[
coth r −

r

sinh2 r

]
, (A6)

Π̄12(r) =
1

2

[
1 +

3(1− r coth r)

sinh2 r

]
. (A7)

The rest can be obtained with the recurrence relation

Π̄1l(r) =
2l− 1

l − 1
coth r Π̄1,l−1(r)

−
l

l − 1
Π̄1,l−2(r) . (A8)

Bubble wall modes

The first (l ≥ 2) multipoles are [15]

Π̄22(r) =
sinh 4r − 8 sinh 2r + 12r

4 sinh3 r
, (A9)

Π̄23(r) = (A10)

sinh 5r− 15 sinh 3r − 80 sinh r + 120r cosh r

8 sinh4 r
.

The rest can be obtained from the recurrence relation

Π̄2l(r) =
2l − 1

l − 2
coth r Π̄2,l−1(r)

−
l + 1

l − 2
Π̄2,l−2(r) . (A11)

APPENDIX B: MATTER ERA OSCILLATIONS
OF THE GRAVITATIONAL COUPLING

Here we carry out a detailed analysis of the evolution
of the dilaton during the radiation and matter eras. Here
we shall assume that the oscillations are damped only by
the Hubble expansion and not by any particle decays –
if such decays were present the general relativistic limit
would be even more quickly approached.

The energy-momentum tensor conservation Eq. (5) in
the Jordan frame ensures ρa3(1+w) = constant during the
radiation (w = 1/3) and matter (w = 0) eras. In order
to study the cosmological evolution during these eras, let
us redefine our variables as

u =
ϕ2

ν2
− 1 , z = mt , (B1)

where m is given by

m2 =
λν2

1 + 6ξ
. (B2)

The ϕ equation of motion Eq. (6) and the Friedman equa-
tion become

u′′ + 3
a′

a
u′ + u =

2(ρ− 3p)

λν4
, (B3)[

2
a′

a
+

u′

1 + u

]2

=
1 + 6ξ

6ξ
×[(

u′

1 + u

)2

+
u2

1 + u
+

8ρ

λν4(1 + u)

]
, (B4)

where primes denote derivatives w.r.t. z. During the
radiation era, the right hand side of Eq. (B3) vanishes
and u = u′ = 0 is a stable fixed point. Very soon one
can neglect the u-terms in the Friedman equation, and
we find the radiation era attractor, a′/a = 1/2z. The
scalar field equation of motion, u′′+ 3u′/2z+u = 0, has
an exact solution,

z1/4 u(z) = c1 J 1
4
(z) + c2 Y 1

4
(z) , (B5)

where {J, Y } are Bessel functions. Its amplitude decays
asymptotically as u(z) ∝ z−3/4, so we expect the matter
era to start with initial conditions at u = u′ = 0.

During the matter era, u = u′ = 0 is a spiral attractor
and we can always neglect the u-terms in the Friedman
equation, (

a′

a

)2

'
(1 + 6ξ

6ξ

) A
a3

=
4

9z2
, (B6)

where A = 2ρa3/λν4 is a constant of order 10−120 in
Planck units. The equation of motion for u becomes

u′′ +
2

z
u′ + u =

A

a3
=
K

z2
, (B7)
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where K = β/3, see Eq. (27). There is an exact solution,

z u(z) = c1 sin z + c2 cos z +K f(z) , (B8)

where f(z) is related to the Sine and Cosine Integral
functions by [46]

f(z) = Ci(z) sin z − Si(z) cos z =

∫ ∞
0

e−z t

1 + t2
dt . (B9)

The late time (z → ∞) behavior of u is u(z) ∝ sin z/z,
with a large frequency of oscillations

m =
[ λ

8πξ(1 + 6ξ)

]1/2
mPl � H0 , (B10)

and an amplitude |u′| ∼ |u| ∼ A/a3
0, which later decays

as 1/z at large z. The contribution of the scalar field
to the total energy density is therefore suppressed by an
extra factor A with respect to the ordinary matter en-
ergy density, see Eq. (B4). Since A is so tiny, there are
no constraints on the parameters of the model from lo-
cal experiments, see Ref. [25], and general relativity is a
strong attractor of the equations of motion.

Note that during the matter era the background dila-
ton field oscillates very quickly, which might be thought
could produce other particles, like at the end of infla-
tion. However, due to the extremely small amplitude of
oscillations, |u| ∼ A ∼ 10−120, there is no significant par-
ticle production and the field’s energy can only decay by
redshifting away.
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