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Geometric Killing spinors which exist on AdSp123Sd2p22 sometimes may be identified with supersym-
metric Killing spinors. This explains the enhancement of unbroken supersymmetry near thep-brane horizon in
d dimensions. The correspondingp-brane interpolates between two maximally supersymmetric vacua, at
infinity and at the horizon. A new case is studied here:p50, d55. The details of the supersymmetric version
of the very special geometry are presented. We find the area-entropy formula of the supersymmetric 5D black
holes via the volume ofS3 which depends on charges and the intersection matrix.@S0556-2821~97!00406-2#
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I. INTRODUCTION

The enhancement of supersymmetry near thep-brane ho-
rizon is an interesting phenomenon. The corresponding
p-branes interpolate between two maximally supersymmetric
vacua:Md at infinity and AdSp123Sd2p22 near the hori-
zon @1–3#. The generic reason for the enhancement of super-
symmetry is the following. Any anti–de Sitter space as well
as any sphere admit Killing spinors which we will call geo-
metric Killing spinors. The relation of this geometric Killing
spinor, which has a dimension of a Dirac spinor, to the Kill-
ing spinor of unbroken supersymmetry requires further
investigation. In theories withN52 supersymmetry the
unbroken supersymmetry of thep-brane has dimension
of one-half of the Dirac spinor. If near the horizon the
dimension of the supersymmetric Killing spinor becomes
that of the Dirac spinor, we have an enhancement of super-
symmetry. In some cases it has already been established that
the Killing spinor defined by the zero mode of the gravitino
transformation at the near horizon geometry of thep-brane
solutions coincides with the geometric spinors. These cases
included54, p50 with AdS23S2 @1,2#, d510, p53 with
AdS53S5, d511, p52 with AdS33S7, andd511, p55
with AdS73S3 @3#. The near horizon geometry of these
p-branes is known to be maximally supersymmetric. In
d54 the integrability condition for the Bertotti-Robinson ge-
ometry near the black hole horizon AdS23S2 was proved in
@4,2# using the fact that this geometry is conformally flat and
that the graviphoton field strength is covariantly constant.

Remarkably, the supersymmetry near the five-
dimensional~5D! black hole horizon has not yet been stud-
ied. Moreover, the unbroken supersymmetry of the 5D black
holes was established in@5# only for black holes of pure
N52, d55 supergravity without vector multiplets. In par-
ticular, the Strominger-Vafa 5D black holes@6# and the ro-
tating generalization of them@7# have not yet been embedded
into a particular 5D supersymmetric theory and the unbroken
supersymmetry of either solution has not been checked di-
rectly. An analogous situation holds with the more general
5D static and rotating black holes found in@8#. There are
various indications, however, that these solutions have un-
broken supersymmetry.

The purpose of this paper is to find out whether the five-
dimensional black holes near the horizon show the enhance-
ment of the supersymmetry. Specifically, we will try to iden-
tify the supersymmetric Killing spinors admitted by black
holes near the horizon with the geometric Killing spinors of
AdS23S3. We will also derive the area formula for generic
solutions inN52 theory interacting with an arbitrary num-
ber of vector multiplets as the volume of theS3 and express
it as the function of charges and the intersection matrix.

For thed-dimensional manifold which is a product space
AdSp123Sd2p22 the geometric Killing spinors are given by
the product of Killing spinors on AdSp12 andS

d2p22. On
AdSp12 and onSd2p22 the Killing spinor equations are

¹̂ah~x![~¹a1c1g̃a!h~x!50, a50,1, . . . ,p11,
~1!

¹̂a§~y![~¹a1c2ga!§~y!50, a5p12, . . . ,d21.
~2!

Herega is theg matrix of the (d2p22)-dimensional Eu-
clidean space and the commutator@ g̃a ,g̃b# equals
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2@ga ,gb# where ga is the g matrix of the
(p12)-dimensional Minkowski space.

The integrability conditions for the geometric Killing
spinors defined above are

@¹̂a ,¹̂b#h~x!50⇒Rab
cd54~c1!

2~da
cdb

d2da
ddb

c!,
~3!

@¹̂a ,¹̂b#§~y!50⇒Rab
gd524~c2!

2~da
gdb

d2da
ddb

g!,
~4!

and it is satisfied by the geometries of the anti–de Sitter
space and sphere. The full Killing spinor is

e~x,y!5h~x!§~y! ~5!

and it forms a Dirac spinor in a given dimensiond. On the
other hand, the Killing spinor of unbroken supersymmetry of
the p-brane solution near the horizon is defined by the cor-
responding supersymmetry transformation of the gravitino. If
supersymmetric Killing spinor near the horizon can be iden-
tified with the geometric one of the maximally supersymmet-
ric product space, we have an enhancement of supersymme-
try:

dCM50⇒¹̂Me~x,y!50⇒S ¹̂mh~x!50

¹̂a§~y!50
D . ~6!

To study this issue we will work out some details of
d55, N52 supergravity coupled toN52 vector multiplets
in the framework of very special geometry, see Sec. II. This
formulation of thed55 theory is particularly adapted to
d511 supergravity compactified on Calabi-Yau manifold
characterized by the intersection numberCABC . In Sec. III
we will identify the supersymmetric Killing spinors admitted
by black holes near the horizon with the geometric Killing
spinors of AdS23S3. We will also perform a detailed deri-
vation of the area formula of the five-dimensional black
holes@9# in terms of the volume ofS3 which we evaluate in
terms of the charges and intersection number matrix. In Sec.
IV we will consider a special case of theN52 theory inter-
acting with one vector multiplet, which comes from the trun-
cation of N54, d55 supergravity. This will allow us to
embed some of the known black holes into supersymmetric
theories and study the enhancement of supersymmetry near
the horizon. We also study theN54 theory interacting with
arbitrary numbern of N54 vector multiplets as a particular
example ofN52 theory interacting withn11, N52 vector
multiplets and intersection matrixC0i j5h i j , whereh i j is
the Lorenzian metric on (1,n). The duality invariant area-
entropy formula for theN54 theory is truncated toN52
theory as it was done before in four-dimensional theory in
@10#. In this way one describes the theory with very special
geometry O(1,1)3O(1,n)/O(n). In the discussion section
we explain the relation between the enhancement of super-
symmetries and finiteness of the area of the horizon and
speculate about other cases as yet not known.

II. SUPERSYMMETRIC VERY SPECIAL GEOMETRY
IN d55

The action for d55, N52 supergravity coupled to
N52 vector multiplets has been constructed by Gu¨naydin,
Sierra, and Townsend@11#. The bosonic part of the action
has been adapted to the very special geometry@12# and the
compactification of 11D supergravity down to five dimen-
sions on Calabi-Yau threefolds@13# with Hodge numbers
(h(1,1) ,h(2,1)) and topological intersection formCIJK . For
our purpose, it will be extremely useful to adapt the full
action and the supersymmetry transformation laws of@11# to
that of very special geometry. In what follows we will give
the detailed derivation of some formulae reported in@9#.

The fields of the theory areem
m,Am

I ,f i ,cmr ,l r
i , where

I50,1, . . . ,h(1,1)21, i51, . . . , h(1,1)21, and r51,2. The
index r on the spinors is raised and lowered with the sym-
plectic metrice rs and will be omitted.

The N52, d55 supersymmetric Lagrangian describing
the coupling of vector multiplets to supergravity is deter-
mined by one function which is given by the intersection
form on a CY threefold:

V5
1

6
CIJKX

IXJXK. ~7!

The action is

e21L52
1

2
R2

1

2
c̄mGmnrDncr2

1

4
GIJFmn

IFmnJ

2
i

2
l̄i~gi jG

mDm1Gm]mfkGk j
l gli !l

j

2
1

2
gi j ]mf i]mf j2

i

2
l̄iG

mGn]nf i

1
1

4 S 34D
2/3

t I ,i l̄
iGmGlrcmFlr

I 1
i

16•61/3

3~gi j t I29CJKLt ,i
J t , j

Kt ,k
L t I

,k!2
3i

16•61/3
t I

3~ c̄mGmnrscnFrs
I 12c̄mcnFmn

I !1
e21

48
emnrsl

3CIJKFmn
I Frs

J Al
K1••• , ~8!

where we use dots for four-fermionic terms. Heret I5t I(f)
are the special coordinates subject to the conditions

t I t I51, CIJKt
I tJtK51, ~9!

and t I are the ‘‘dual coordinates’’

t I5CIJKt
JtK[CIJt

J, t I5CIJtJ. ~10!

We have introduced a notation

CIJ[CIJKt
K, CIJCJK5d IK . ~11!

The metric is derived from the prepotential~7! through the
relation (] I[]/]XI)
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GIJ52
1

2
] I]J~ lnV!uV51 ~12!

andXI is related tot I by

XI561/3t I uV51 . ~13!

Finally, the metricgi j is given by

gi j5GIJX
J
,iX

K
, j523CIJKt

I tJ,i t
K
, j . ~14!

We can expressGIJ in terms oft I through the equations

GIJ52
61/3

2 SCIJ2
3

2
t I tJD ~15!

and the inverse metric acting on vectors is

GIJ52
2

61/3
~CIJ23t I tJ!, GIKGKJ5d I J . ~16!

We will need, in what follows, the relation between the de-
rivative of the special coordinate (t I) ,i and that of the dual
coordinatet I ,i . Using the fact thatCIJK is a symmetric nu-
merical tensor we have

t I ,i52CIJK~ tJ! ,i t
K52CIJ~ t

J! ,i , ~ tJ! ,i5
1

2
CIJtI ,i .

~17!

Differentiating Eqs.~9! we get

CIJKt
I tJ~ tK! ,i50, t I~ t

I ! ,i5t I ,i t
I50. ~18!

The supersymmetry transformation laws are

dem
m5

1

2
ēGmcm,

dcm5Dm~v̂!e1
i

8•61/3
t I~Gm

nr24dm
nGr!F̂mn

Ie

1
1

12
gi j S 14Gmnrel̄iGnrl j2Gmnel̄iGnl j

2Gnel̄iGmnl j12el̄iGml j D ,
dAm

I 561/3S 12 t I ,i ēGml i1 i c̄et I D ,
dl i5dfkGki

ll l1
1

4S 34D
2/3

t I ,iG
mneFmn

I 2
i

2
gi jG

m]mf je

1
3i

16
t I ,i t

J
, j t

K
,kS 23el̄jlk1Gmel̄jGmlk

1
1

2
Gmnel̄jGmnlkD ,

df i5
i

2
ēl i . ~19!

III. NEAR HORIZON GEOMETRY
AND SUPERSYMMETRY

Double-extreme black holes~which have 1/2 of unbroken
supersymmetry and have constant moduli@14#! in five di-
mensions have the geometry of the extreme Tangherlini so-
lution @15#. It is a 5D analogue of the extreme Reissner-
Nordstrom metric:

ds252F12S r 0r D 2G2dt21F12S r 0r D 2G22

dr21r 2dV3
2

~20!

and

2A2gGIJFtr
J 5qI , f i5const. ~21!

The horizon is atr5r 0 where the parameterr 0 defining the
horizon as well as the constant values of moduli depend on
charges of the vector fields and on the topological intersec-
tion formCIJK . Our study of the near horizon geometry will
allow us to determine this dependence.

Note that the area of the horizon of the black hole is given
by the volume of the three-dimensional sphere

A52p2r 0
3 .

The area formula of 5D black holes was found in@9# from
the observation that the unbroken supersymmetry near the
black hole horizon requires that the central chargeZ;t IqI
has to be extremized in the moduli space, i.e., near the hori-
zon ] iZ50. This leads to the area formula in the form
A;(qIqJC

IJu] iZ50)
3/4, where CIJ is the inverse of

CIJ5CIJKt
K. In the derivation of this area formula it was

assumed that the unbroken supersymmetry of the black hole
solution is enhanced near the horizon. This will be proved
now. It will be also explained why the enhancement of su-
persymmetry near the horizon requires the extremization of
the central charge for describing the area formula. By exactly
solving the Killing equations for the near horizon geometry
we will be able to justify the area formula suggested in@9#
and find the explicit area formula including the numerical
factor in front of it.

Near the horizon atr→r 0 and one can exhibit the
AdS23S3 geometry usingr̂5(r2r 0)→0

ds252S 2r̂
r 0

D 2dt21S 2r̂
r 0

D 22

dr̂21r 0
2dV3

2 . ~22!

Since we deal with the product space we may usea50,1 for
the coordinates of the AdS2 space anda52,3,4 for the co-
ordinates of the three-sphere~in tangent space!. The vector
field ansatz near the horizon becomes

2~r 0!
3GIJFab

J 5eabqI . ~23!

Let us use this ansatz in the fermionic part of supersymmetry
transformations with all vanishing fermions and constant
moduli. We start with gaugino and keep only relevant terms

dl i5
1

4 S 34D
2/3

t I ,iG
mneFmn

I 50. ~24!
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We study the possibility that the zero mode of this equation
is given by the full size spinore without linear constraints on
it, i.e., that the unbroken supersymmetry is indeed enhanced
near the horizon. This is possible, provided that

t I ,iG
IJqJ50. ~25!

The enhancement of unbroken supersymmetry near the hori-
zon which can be deduced from the gaugino part of super-
symmetry, can be represented as the condition of the mini-
mization of the central charge, as found in@9#. Let us derive
this here in a more detailed way. The gravitino transforma-
tion

dcm5Dm~v!e1
i

8•61/3
t I~Gm

nr24dm
nGr!Fmn

Ie50

~26!

shows that the graviphoton field strength is given by the
linear combination of vector fields and modulit IFmn

I , and
therefore the central charge is proportional tot IqI . From Eq.
~25! we get

t I ,i~C
IJ23t I tJ!qJ50. ~27!

Using Eqs.~17! and ~18! we can conclude that

t I ,i~C
IJ23t I tJ!qJ52~ tJ! ,iqJ50⇒] iZ50. ~28!

Thus we have derived the condition of minimization of the
central chargeZ5t IqI in the moduli space from the require-
ment that the gaugino supersymmetry transformation for
constant moduli has the full size spinore as a zero mode,
i.e., from the condition of enhancement of supersymmetry
near the black hole horizon. The central charge has to be
independent off i . Let us consider some useful identities of
the real special geometry which are valid only near horizon.
Note that

gi j ] iZ] jZ5gi j t I ,i t
J
, jqIqJ[P IJqIqJ50. ~29!

Using Eq.~18! we find that

P IJt I50 ~30!

and we may look for the combination which is orthogonal to
t I in the formP IJ5 l (CIJ2t I tJ). To get the coefficientl we
usegi j562/3t I ,i t

J
, jGIJ and contract it withgi j :

gi j g
i j5h~1,1!21562/3P IJGIJ , ~31!

which leads tol52 1
3 . Thus we conclude that near the ho-

rizon where the central charge is moduli independent we
have an identity

@~CIJ2t I tJ!qIqJ#] iZ5050. ~32!

What remains to be done to make the extremization of the
central charge consistent is to check what happens with the
gravitino: does the gravitino transformation rule admit the
Killing spinor of the full supersymmetry in our background?
And what are the conditions of that? Using the ansatz for the
vector fields near the horizon~23! and taking into account
that we have a product space we get the following form of
the gravitino transformations~26!:

dca5~¹̂a!h[~¹a1cg̃a!h50, a50,1,

dca5~¹̂a!§[S ¹a2
c

2
gaD §50, a52,3,4, ~33!

where

g̃a5 i eabg
b, Ga5ga

^ I , Ga5 ig0g1^ ga , ~34!

and

c52
1

62/3
t IqI
r 0
3 , ~35!

and theg matrices satisfy

$g̃a ,g̃b%52hab , hab5~2,1 !, g̃ [ab]52g [ab] ,
~36!

$ga ,gb%52dab , a52,3,4. ~37!

This is a special example of the general case presented in
the Introduction. We have identified the supersymmetric
Killing spinor with the geometric Killing spinor. The inte-
grability conditions for the geometric Killing spinors defined
above are

@¹̂a ,¹̂b#h~x!50⇒Rab
cd5

4

64/3
~ t IqI !

2

r 0
6 ~da

cdb
d2da

ddb
c!,

~38!

@¹̂a ,¹̂b#§~y!50⇒Rab
gd

52
1

64/3
~ t IqI !

2

r 0
6 ~da

gdb
d2da

ddb
g!.

~39!

This can be contracted to give us the Ricci tensors on
AdS2 and onS3:

Rab5
4

64/3
~ t IqI !

2

r 0
6 hab , Rab52

2

64/3
~ t IqI !

2

r 0
6 dab ,

~40!

with the result that the radii of AdS2 andS
3 are related:

R~2!52
4

3
R~3!. ~41!

This relation restricts the properties of geometric Killing
spinors. They would exist without any relation between these
two product geometries. However, supersymmetric Killing
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spinors require relation between geometries. The curvature
can be calculated also directly from the metric~22!:

Rab5
4

r 0
2hab , Rab52

2

r 0
2 dab . ~42!

Comparing Eqs.~40! with Eqs. ~42!, we can expressr 0 via
the values of the moduli near the horizon and electric charges
as

r 0
45

1

64/3
@~ t IqI !] iZ50#

2. ~43!

This gives us the area of the horizon

A52p2r 0
35

p2

3
$~ t I tJqIqJ!] iZ50%

3/4. ~44!

Near the horizon at] iZ50 we can rewrite it as

A5
p2

3
$~CIJqIqJ!] iZ50%

3/4 ~45!

using identity~32!.
Thus we have combined the supersymmetry analysis with

the analysis of the geometry. In this way we have confirmed
the structure of the area formula of five-dimensional black
holes inN52 theories obtained in@9# and found the exact
numerical coefficient in front of it for supersymmetric five
dimensional black holes with finite area of the horizon in the
N52 theory.

IV. TRUNCATION OF N54 SUPERGRAVITY TO N52

In some cases it is useful to consider thoseN52 theories
which can be obtained by truncation fromN54 theories. We
will first study the truncation of pureN54 supergravity and
later generalize the result to the case ofN54 supergravity
interacting with arbitrary number of vector multiplets as it
was done before in 4D theories in@10#.

We focus on a a special example of the double extreme
five-dimensional black hole known as the Strominger-Vafa
black hole@6#. The Lagrangian which allows a supersymmet-
ric embedding of this black hole is obtained most easily by
the truncation ofN54 supergravity ind55 constructed by
Awada and Townsend@17#. The bosonic part of the action is

e21L52
1

2
R2

1

4
e~2/3!fFmn

i j Fi j
mn2

1

4
e2~4/3! fGmnG

mn

2
1

6
~]mf!21

e21

4A2
emnrslFmn

i j Frs i j Bl , ~46!

where i , j51, . . . ,4 andGmn is the field strength ofBm and
Fmn

i j is the field strength ofAm
i j . The supersymmetry trans-

formation laws are

dem
m5

1

2
ē iGmcm ,

dcm i5Dm~v̂!e i1
i

6S e~f/3!Frs i j2
1

2A2
e2~2/3!fGrsV i j D

3~Gm
rs24dm

rGs!e j1•••,

dAm
i j52

1

A3
e2f/3S ē [ iGmx j ]1

1

4
V i j ēkGmxkD

2 ie2~f/3!S ē [ icm
j ]1

1

4
V i j ēkcmkD ,

dBm5
1

A6
e2f/3S ē iGmx i2

A3
2

ē icm i D ,

dx i52
i

2A3
Gm]mfe i1

1

2A3

3S ef/3Frs i j1
1

A2
e22f/3GrsV i j D Grse j1•••,

df5
A3
2

ē ix i . ~47!

Here V i j is a symplectic matrix. The truncation ofN54
supergravity toN52 supergravity interacting with one vec-
tor multiplet is carried out by keepingcm i ,x i with ( i51,2)

only and Am
1252Am

34[ 1
2Am , Bm , gmn and f. By in-

specting the supersymmetry transformations of the truncated
fields it is not difficult to see that this is a consistent trunca-
tion. The bosonic action becomes1

e21L52
1

2
R2

1

4
e~2/3!fFmnF

mn2
1

4
e2~4/3!fGmnG

mn

2
1

6
~]mf!21

e21

4A2
emnrslFmnFrsBl . ~48!

The supersymmetry transformations of the fermionic fields
with vanishing fermion are

dcm5Dm~v!e2
i

12
~Gm

rs24dm
rGs!

3S e~f/3!Frs2
1

A2
e2~2/3!fGrsD e,

dx52
i

2A3
Gm]mfe2

1

4A3
Grs~ef/3Frs

1A2e22f/3Grs!e,

1This action is equivalent upon rescalings to the action ofN52
supergravity interacting with one vector multiplet as presented in
the Appendix of@16#.
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and we have omitted the symplectic index on the spinors~to
avoid confusion with the index onf i in the previous sec-
tion!.

Our action can be compared with the action used in@6# if
we rewrite it as follows:

e21L5
1

2 S 2R2
1

4
e~2/3!fFmn8 F8mn2

1

4
e2~4/3!fGmn8 G8mn

2
1

3
~]mf!21

e21

8
emnrslFmn8 Frs8 Bl8 D , ~50!

where

F85A2F, G85A2G, B85A2B. ~51!

We observe a discrepancy in the kinetic term for the scalar
field which is, however, harmless since the solution has a
constant moduli field. Thus the extreme black hole of
Strominger-Vafa can be embedded into theN52 supergrav-
ity interacting with one constant vector multiplet.

To make contact with the formalism of previous section
dealing with the general case of the very special geometry,
we make the following identifications:i51, I50,1 and

i51, I50,1, Am
1[Am , Am

0[Bm ,

G115e2f/3, G005e2~4f/3!, C01152A2, g1151,

f15
1

A3
f, q152

8A2QF

p
, q052A2QH . ~52!

Comparing the supersymmetry transformations we must
identify

]t1
]f1 52

1

A3
S 43D

2/3

ef/3,
]t0
]f1 52A2

3S 43D
2/3

e22f/3.

~53!

To satisfy the relations of special geometry and in particular
to have (t I) ,i t I50 we get

t152S 43D
2/3

ef/3, t15
2

3S 34D
2/3

e2f/3,

t05
1

A2
S 43D

2/3

e22f/3, t05A2

3S 34D
2/3

e2f/3. ~54!

The enhancement of supersymmetry near the horizon is pro-
vided by (]t I /]f)GIJqJ50 and we get the fixed value of
the moduli near the horizon:

ef52
1

A2
q1
q0
, t1q15

1

21/631/3
@q0~q1!

2#1/3,

t0q05
1

2
t1q1 . ~55!

Now we can express the combinationt IqI near the horizon
required for the entropy as

t IqI5
32/3

27/6
@q0~q1!

2#1/3 ~56!

and

r 0
65

1

62
$~ t IqI !hor%

3⇒ 1

211/2
~2q0!

2q15
8~QHQF!2

p2 ,

~57!

and

A52p2~r 0!
35

p2

2 S q0A2 F q1A2G
2D 1/2. ~58!

Thus we have reproduced the Strominger-Vafa area for-
mula as an example of our general area formula

A52p2~r 0!
35

p2

3
$~CIJqIqJ!] iZ50%

3/4⇒8pAQH~QF!2

2
,

~59!

and therefore this black hole solution fits into our consider-
ation of the very special geometry.

For the general case ofn, N54 vector multiplets with
duality group O(1,1)3O(5,n)/@O(5)x#O(n) the formula for
the largest eigenvalue of the central charge, extremized in the
moduli space was presented in@10#. This translates into the
N54 duality invariant area formula

A58pAQH~QF!2

2
, ~60!

whereQH is the singlet charge and (QF)
2 is the O(5,n)

Lorenzian norm of the other 51n chargesQF .
Upon truncation toN52 theory this gives a very special

geometry with CIJK intersection of the form
(I ,J50,1, . . . ,n11) and (i51, . . . , n11)

CIJK⇒S C0i j5h i j

0 otherwiseD , ~61!

whereh i j is the Lorenzian metric of O(1,n) and the very
special geometry is O(1,1)3O(1,n)/O(n). Upon truncation
the area has the same form as in Eq.~60!,

A58pAQH~QF!2

2
58pAQH~Qih i j Qj !

2
, ~62!

where againQH is the singlet charge and (QF)
2 is the

O(1,n) Lorenzian norm of the other 11n chargesQi .

V. DISCUSSION

Thus we have given a complete description of 5D static
black holes near the horizon which can be embedded into
N52 andN54 supergravity with arbitrary number of vector
multiplets. They all show enhancement of supersymmetry
near the black hole horizon. In theN52 as well as in the
N54 case, the unbroken supersymmetry~1/2 in N52 and
1/4 inN54) is doubled. As the result in all cases the dimen-
sion of the Killing spinor of unbroken supersymmetry is the
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dimension of the Dirac spinor admitted by the anti–de Sitter
space and the sphere.

The significance of the enhancement of supersymmetry
near the horizon is related to the fact that in all cases when
we have found finite horizon area of supersymmetric solu-
tions there was also the enhancement of supersymmetry
present. This concerns all four- and five-dimensional static
black holes where we deal with the near-horizon geometries
AdS23S2 and AdS23S3, respectively. The area in both
cases is given by the volume of theS2 andS3 sphere.

In more general situations when the near horizon geom-
etry is given by AdSp123Sd2p22, the area of the horizon is
given by the volume of theSd2p22 sphere times the volume
of the torus of dimensionp, which for the supersymmetric
solutions shrinks to zero near the horizon. As the result, in
the class of solutions with AdSp123Sd2p22 near-horizon
geometries one cannot expect finite area of the horizon per
unit volume except for black holes. Examples of such con-
figurations with enhancement of supersymmetry and still
vanishing area of the horizon include:d510, p53;
d511, p52, p55. This geometric observation matches
the recent analysis@19# of the cases of the vanishing entropy
in which a duality invariant expression in terms of integral
charges does not exist. In all these situations the extremum
of the central charge does not occur at finite rational values
of the moduli.

Few more configurations with near-horizon geometry
AdSp123Sd2p22 are known@18#. They include AdS33S2

describing a 5D magnetic string and AdS33S3 describing a
6D self-dual string. It has not been established yet whether
they have enhancement of supersymmetry near the horizon.
A calculation of the type which we have performed here for
5D black holes is required to identify the supersymmetric

Killing spinors with the geometric ones for the 5D and 6D
strings.

From the perspective of this study it would be interest-
ing to have a more careful look into configurations with
AdS23Sd22 geometries near the horizon. These would have
finite nonvanishing area related to the volume of theSd22

sphere. Such configurations of the Reissner-Nordstrom-
Tangherlini type are known to solve equations of motion of
Einstein-Maxwell theory in any dimension.2 However in
d.5 they do not seem to have a supersymmetric embedding,
at least such embeddings have not been found so far.

In conclusion, we have studied the mechanism of en-
hancement of unbroken supersymmetry near the 5D black
hole horizon and we have found the entropy-area formula for
solutions of N52 supergravity interacting with arbitrary
number of vector multiplets.
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