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ABSTRACT

Geometric Killing spinors which exist on AdSp+2 � Sd�p�2 sometimes may be identi-

�ed with supersymmetric Killing spinors. This explains the enhancement of unbroken

supersymmetry near the p-brane horizon in d dimensions. The corresponding p-brane

interpolates between two maximally supersymmetric vacua, at in�nity and at the hori-

zon. New case is studied here: p = 0, d = 5. The details of supersymmetric version

of the very special geometry are presented. We �nd the area-entropy formula of the

supersymmetric 5d black holes via the volume of S3 which depends on charges and

intersection matrix.
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1 Introduction

The enhancement of supersymmetry near the p-brane horizon is an interesting phenomenon. The

corresponding p-branes interpolate between two maximally supersymmetric vacua: Md at in�nity

and AdSp+2 � Sd�p�2 near the horizon [1, 2, 3]. The generic reason for the enhancement of su-

persymmetry is the following. Any anti-deSitter space as well as any sphere admit Killing spinors

which we will call geometric Killing spinors. The relation of this geometric Killing spinor, which

has a dimension of a Dirac spinor, to the Killing spinor of unbroken supersymmetry requires further

investigation. In theories with N=2 supersymmetry the unbroken supersymmetry of the p-brane

has dimension of one half of the Dirac spinor. If near the horizon the dimension of supersymmetric

Killing spinor becomes that of the Dirac spinor, we have a enhancement of supersymmetry. In

some cases it has already been established that the Killing spinor de�ned by the zero mode of

the gravitino transformation at the near horizon geometry of the p-brane solutions coincides with

the geometric spinors. These cases include : d=4, p=0 with AdS2 � S2 [1, 2]; d=10, p=3 with

AdS5�S5; d=11, p=2 with AdS3�S7 and d=11, p=5 with AdS7�S3 [3]. The near near horizon

geometry of these p-branes is known to be maximally supersymmetric. In d=4 the integrability

condition for the Bertotti-Robinson geometry near the black hole horizon AdS2�S2 was proved in

[4, 2] using the fact that this geometry is conformally 
at and that the graviphoton �eld strength

is covariantly constant.

Remarkably, the supersymmetry near the 5d black hole horizon has not yet been studied. More-

over, the unbroken supersymmetry of the 5d black holes was established in [5] only for black holes

of pure N=2, d=5 supergravity without vector multiplets. In particular the Strominger-Vafa 5d

black holes [6] and the rotating generalization of them [7] have not yet been embedded into a

particular 5d supersymmetric theory and the unbroken supersymmetry of either solution has not

been checked directly. An analogous situation holds with the more general 5d static and rotating

black holes found in [8]. There are various indications, however, that these solutions have unbroken

supersymmetry.

The purpose of this paper is to �nd out whether the 5-dimensional black holes near the horizon

show the enhancement of the supersymmetry. Speci�cally we will try to identify the supersymmetric

Killing spinors admitted by black holes near the horizon with the geometric Killing spinors of

AdS2 � S3. We will also derive the area formula for generic solutions in N=2 theory interacting

with arbitrary number of vector multiplets as the volume of the S3 and express it as the function

of charges and the intersection matrix.

For the d-dimensional manifold which is a product space AdSp+2�Sd�p�2 the geometric Killing

spinors are given by the product of Killing spinors on AdSp+2 and Sd�p�2. On AdSp+2 and on

Sd�p�2 the Killing spinor equations are

r̂a�(x) � (ra + c1~
a)�(x) = 0 ; a = 0; 1; : : : ; p+ 1 ; (1)

r̂�&(y) � (r� + c2
�)&(y) = 0 ; � = p+ 2; : : : ; d� 1: (2)

Here 
� is the 
-matrix of the d� p� 2-dimensional Euclidean space and the commutator [~
a; ~
b]

equals �[
a; 
b] where 
a is the 
-matrix of the p+ 2-dimensional Minkowski space.
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The integrability conditions for the geometric Killing spinors de�ned above is

[r̂a; r̂b]�(x) = 0 =) Rab
cd = 4(c1)

2(�a
c�b

d � �a
d�b

c) (3)

[r̂�; r̂�]&(y) = 0 =) R��

� = �4(c2)2(��
��� � ��

���

) (4)

and it is satis�ed by the geometries of the Anti-deSitter space and sphere. The full Killing spinor

is

�(x; y) = �(x)&(y) (5)

and it forms a Dirac spinor in a given dimension d. On the other hand the Killing spinor of

unbroken supersymmetry of the p-brane solution near the horizon is de�ned by the corresponding

supersymmetry transformation of the gravitino. If supersymmetric Killing spinor near the horizon

can be identi�ed with the geometric one of the maximally supersymmetric product space, we have

an enhancement of supersymmetry:

�	M = 0 =) r̂M�(x; y) = 0 =)
 
r̂��(x) = 0

r̂�&(y) = 0

!
: (6)

To study this issue we will work out some details of d=5 N=2 supergravity coupled to N=2 vector

multiplets in the framework of very special geometry, see Sec. 2. This formulation of the d=5 theory

is particularly adapted to d=11 supergravity compacti�ed on Calabi-Yau manifold characterized

by the intersection number CABC . In Sec. 3 we will identify the supersymmetric Killing spinors

admitted by black holes near the horizon with the geometric Killing spinors of AdS2� S3. We will

also perform detailed derivation of the area formula of the �ve-dimensional black holes [9] in terms

of the volume of S3 which we evaluate in terms of the charges and intersection number matrix.

In Sec. 4 we will consider a special case of the N=2 theory interacting with one vector multiplet,

which comes from the truncation of N=4, d=5 supergravity. This will allow us to embed some of

the known black holes into supersymmetric theories and study the enhancement of supersymmetry

near the horizon. We also study the N=4 theory interacting with arbitrary number n of N=4 vector

multiplets as a particular example of N=2 theory interacting with n+1 N=2 vector multiplets and

intersection matrix Coij = �ij, where �ij is the Lorenzian metric on (1; n). The duality invariant

area-entropy formula for the N=4 theory is truncated to N=2 theory as it was done before in

four-dimensional theory in [10]. In this way one describes the theory with very special geometry

O(1; 1)�O(1; n)=O(n). In the discussion section we explain the relation between the enhancement

of supersymmetries and �niteness of the area of the horizon and speculate about other cases as yet

not known.

2 Supersymmetric very special geometry in d=5

The action for d=5, N=2 supergravity coupled to N=2 vector multiplets has been constructed by

G�unaydin, Sierra and Townsend [11]. The bosonic part of the action has been adopted to the

very special geometry [12] and the compacti�cation of 11d supergravity down to �ve dimensions

on Calabi-Yau 3-folds [13] with Hodge numbers (h(1;1); h(2;1)) and topological intersection form
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CIJK. For our purpose, it will be extremely useful to adopt the full action and the supersymmetry

transformation laws of [11] to that of very special geometry. In what follows we will give the detailed

derivation of some formulae reported in [9].

The �elds of the theory are: e�
m; A�

I ; �i;  �r; �r
i where I = 0; 1; : : : ; h(1;1) � 1, i =

1; : : :, h(1;1) � 1, and r = 1; 2. The index r on the spinors is raised and lowevered with the

symplectic metric �rs and will be omitted.

The N=2 d=5 supersymmetric Lagrangian describing the coupling of vector multiplets to su-

pergravity is determined by one function which is given by the intersection form on a CY 3-fold:

V =
1

6
CIJKX

IXJXK : (7)

The action is

e�1L = �1

2
R� 1

2
� ��

���D� � �
1

4
GIJF��

IF ��J � i

2
��i(gij�

�D� + ��@��
k�lkjgli)�

j

� 1

2
gij@��

i@��j � i

2
��i�

���@��
i +

1

4

�
3

4

�2=3

tI;i��
i����� �F

I
��

+
i

16 � 61=3
�
gijtI � 9CJKLt

J
;it

K
;j t

L
;kt

;k
I

�
� 3i

16 � 61=3 tI
�
� ��

���� �F
I
�� + 2 � � �F I

��

�

+
e�1

48
������CIJKF

I
��F

J
��A

K
� + : : : ; (8)

where we use dots for 4-fermionic terms. Here tI = tI(�) are the special coordinates subject to the

conditions

tItI = 1; CIJKt
ItJtK = 1 (9)

and tI are the \dual coordinates"

tI = CIJKt
J tK � CIJt

J ; tI = CIJtJ : (10)

We have introduced a notation

CIJ � CIJKt
K ; CIJCJK = �IK : (11)

The metric is derived from the prepotential (7) through the relation (@I � @
@XI )

GIJ = �
1

2
@I@J(lnV)jV=1 (12)

and XI is related to tI by

XI = 61=3tI jV=1 : (13)

Finally, the metric gij is given by

gij = GIJX
J
;iX

K
;j = �3CIJKt

ItJ ;it
K
;j : (14)

We can express GIJ in terms of tI through the equations

GIJ = �
61=3

2
(CIJ �

3

2
tItJ) (15)
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and the inverse metric acting on vectors is

GIJ = � 2

61=3
(CIJ � 3tItJ) ; GIKGKJ = �IJ : (16)

We will need in what follows the relation between the derivative of the special coordinate (tI);i and

that of the dual coordinate tI;i. Using the fact that CIJK is a symmetric numerical tensor we have

tI;i = 2CIJK(t
J);i t

K = 2CIJ(t
J);i ; (tJ);i =

1

2
CIJtI;i : (17)

Di�erentiating eqs. (9) we get

CIJKt
ItJ(tK);i = 0 ; tI(t

I);i = tI;it
I = 0 : (18)

The supersymmetry transformation laws are:

�e�
m =

1

2
���m � ;

� � = D�(!̂)�+
i

8 � 61=3 tI
�
��

�� � 4��
���

�
F̂��

I�

+
1

12
gij

�
1

4
�������

i����j � ������
i���j � �����i����

j + 2���i���
j

�
;

�AI
� = 61=3

�
1

2
tI ;i�����

i + i � �tI
�
;

��i = ��k �ki
l �l +

1

4

�
3

4

�2=3

tI;i�
���F I

�� �
i

2
gij�

�@��
j�

+
3i

16
tI ;i t

J
;j t

K
;k

�
�3���j�k + �����j���k +

1

2
������

j����k
�
;

��i =
i

2
���i : (19)

3 Near horizon geometry and supersymmetry

Double-extreme black holes (which have 1/2 of unbroken supersymmetry and have constant moduli

[14]) in �ve dimension have the geometry of the extreme Tangherlini solution [15]. It is a 5d analog

of the extreme Reissner-Nordstrom metric.

ds2 = �
�
1� (

r0

r
)2
�2

dt2 +

�
1� (

r0

r
)2
��2

dr2 + r2d
2
3 (20)

and

2
p�g GIJF

J
tr = qI ; �i = const : (21)

The horizon is at r = r0 where the parameter r0 de�ning the horizon as well as the constant values

of moduli depend on charges of the vector �elds and on the topological intersection form CIJK.

Our study of the near horizon geometry will allow us to determine this dependence.
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Note that the area of the horizon of the black hole is given by the volume of the 3-dimensional

sphere

A = 2�2r30 :

The area formula of 5d black holes was found in [9] from the observation that the unbroken super-

symmetry near the black hole horizon requires that the central charge Z � tIqI has to be extremized

in the moduli space, i.e. near the horizon @iZ = 0. This leads to the area formula in the form

A � (qIqJC
IJ j@iZ=0)

3=4, where CIJ is the inverse of CIJ = CIJKt
K . In the derivation of this area

formula it was assumed that the unbroken supersymmetry of the black hole solution is enhanced

near the horizon. This will be proved now. It will be also explained why the enhancement of

supersymmetry near the horizon requires the extremization of the central charge for describing the

area formula. By exactly solving the Killing equations for the near horizon geometry we will be

able to justify the area formula suggested in [9] and �nd the explicit area formula including the

numerical factor in front of it.

Near the horizon at r! ro and one can exhibit the AdS2�S3 geometry using r̂ = (r� r0)! 0

ds2 = �(2r̂
r0
)2dt2 + (

2r̂

r0
)�2dr̂2 + r20d


2
3 : (22)

Since we deal with the product space we may use a = 0; 1 for the coordinates of the AdS2-space

and � = 2; 3; 4 for the coordinates of the 3-sphere (in tangent space). The vector �eld ansatz near

the horizon becomes

2(r0)
3 GIJF

J
ab = �abqI : (23)

Let us use this ansatz in the fermionic part of supersymmetry transformations with all vanishing

fermions and constant moduli. We start with gaugino and keep only relevant terms

��i =
1

4

�
3

4

�2=3

tI;i�
���F I

�� = 0 : (24)

We study the possibility that the zero mode of this equation is given by the full size spinor � without

linear constraints on it, i.e. that the unbroken supersymmetry is indeed enhanced near the horizon.

This is possible, provided that

tI;iG
IJqJ = 0 : (25)

The enhancement of unbroken supersymmetry near the horizon which can be deduced from

the gaugino part of supersymmetry, can be represented as the condition of the minimization of

the central charge, as found in [9]. Let us derive this here in a more detailed way. The gravitino

transformation

� � = D�(!)�+
i

8 � 61=3 tI
�
��

�� � 4��
���

�
F��

I� = 0 (26)

shows that the graviphoton �eld strength is given by the linear combination of vector �elds and

moduli tIF��
I , and therefore the central charge is proportional to tIqI . From eq. (25) we get

tI;i(C
IJ � 3tItJ)qJ = 0 : (27)

Using eqs. (17) and (18) we can conclude that

tI;i(C
IJ � 3tItJ)qJ = 2(tJ);iqJ = 0 =) @iZ = 0 : (28)
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Thus we have derived the condition of minimization of the central charge Z = tIqI in the moduli

space from the requirement that the gaugino supersymmetry transformation for constant moduli

has the full size spinor � as a zero mode, i.e. from the condition of enhancement of supersymmetry

near the black hole horizon. The central charge has to be independent of �i. Let us consider some

useful identities of the real special geometry which are valid only near horizon. Note that

gij@iZ@jZ = gijtI ;it
J
;j qIqJ � �IJqIqJ = 0 : (29)

Using eq. (18) we �nd that

�IJtI = 0 (30)

and we may look for the combination which is orthogonal to tI in the form �IJ = l(CIJ � tItJ).

To get the coe�cient l we use gij = 62=3tI ;it
J
;jGIJ and contract it with gij

gijg
ij = h(1;1) � 1 = 62=3�IJGIJ ; (31)

which leads to l = �1
3
. Thus we conclude that near the horizon where the central charge is moduli

independent we have an identity �
(CIJ � tItJ)qIqJ

�
@iZ=0

= 0 : (32)

What remains to be done to make the extremization of the central charge consistent is to check

what happens with the gravitino: does the gravitino transformation rule admit the Killing spinor

of the full supersymmetry in our background? And what are the conditions of that? Using the

ansatz for the vector �elds near the horizon (23) and taking into account that we have a product

space we get the following form of the gravitino transformations (26).

� a = (r̂a)� � (ra + c~
a)� = 0 ; a = 0; 1;

� � = (r̂�)& � (r� �
c

2

�)& = 0 ; � = 2; 3; 4; (33)

where

~
a = i�ab

b ; �a = 
a 
 I ; �� = i
0
1 
 
� ; (34)

and

c = � 1

62=3
tIqI

r30
; (35)

and the 
-matrices satisfy

f~
a; ~
bg = 2�ab ; �ab = (�;+) ; ~
[ab] = �
[ab] ; (36)

f
�; 
�g = 2�ab ; � = 2; 3; 4: (37)

This is a special example of the general case presented in the introduction. We have identi�ed

the supersymmetric Killing spinor with the geometric Killing spinor. The integrability conditions

for the geometric Killing spinors de�ned above are

[r̂a; r̂b]�(x) = 0 =) Rab
cd =

4

64=3
(tIqI)

2

r60
(�a

c�b
d � �a

d�b
c) : (38)

[r̂�; r̂�]&(y) = 0 =) R��

� = � 1

64=3
(tIqI)

2

r60
(��


��
� � ��

���

) : (39)
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This can be contracted to give us the Ricci tensors on AdS2 and on S3:

Rab =
4

64=3
(tIqI)

2

r60
�ab ; R�� = � 2

64=3
(tIqI)

2

r60
��� ; (40)

with the result that the radii of AdS2 and S
3 are related:

R(2) = �
4

3
R(3) : (41)

This relation restricts the properties of geometric Killing spinors. They would exist without any

relation between these two product geometries. However, supersymmetric Killing spinors require

relation between geometries. The curvature can be calculated also directly from the metric (22):

Rab =
4

r20
�ab ; R�� = � 2

r20
��� : (42)

Comparing eqs. (40) with eqs. (42) we can express r0 via the values of the moduli near the horizon

and electric charges as follows:

r40 =
1

64=3

�
(tIqI)@iZ=0

�2
: (43)

This gives us the area of the horizon

A = 2�2r30 =
�2

3

n
(tItJqIqJ)@iZ=0

o3=4
: (44)

Near the horizon at @iZ = 0 we can rewrite it as

A =
�2

3

n
(CIJqIqJ)@iZ=0

o3=4
(45)

using identity (32).

Thus we have combined the supersymmetry analysis with the analysis of the geometry. In this

way we have con�rmed the structure of the area formula of �ve dimensional black holes in N=2

theories obtained in [9] and found the exact numerical coe�cient in front of it for supersymmetric

�ve dimensional black holes with �nite area of the horizon in the N=2 theory.

4 Truncation of N=4 supergravity to N=2

In some cases it is useful to consider those N=2 theories which can be obtained by truncation from

N=4 theories. We will �rst study the truncation of pure N=4 supergravity and later generalize the

result to the case of N=4 supergravity interacting with arbitrary number of vector multiplets as it

was done before in 4d theories in [10].

We focus on a a special example of the double extreme �ve dimensional black hole known as

Strominger-Vafa black hole [6]. The Lagrangian which allows a supersymmetric embedding of this
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black hole is obtained most easily by the truncation of N=4 supergravity in d=5 constructed by

Awada and Townsend [17]. The bosonic part of the action is

e�1L = �1

2
R� 1

4
e
2

3
�F��

ijFij
�� � 1

4
e�

4

3
�G��G

��

� 1

6
(@��)

2 +
e�1

4
p
2
������F��

ijF��ijB� ; (46)

where i; j = 1; : : : ; 4 and G�� is the �eld strength of B� and F��
ijis the �eld strength of A�

ij. The

supersymmetry transformation laws are:

�e�
m =

1

2
��i�m � ;

� �i = D�(!̂)�i +
i

6
(e

�

3F��ij �
1

2
p
2
e�

2

3
�G��
ij)

�
��

�� � 4��
���

�
�j + � � � ;

�Aij
� = � 1p

3
e�

�

3

�
��[i���

j] +
1

4

ij��k���k

�
� ie�

�

3

�
��[i j]

� +
1

4

ij��k �k

�
;

�B� =
1p
6
(e

2�

3

�
��i���i �

i
p
3

2
��i �i

�
;

��i = � i

2
p
3
��@���i +

1

2
p
3

�
e
�

3F��ij +
1p
2
(e�

2�

3 G��
ij

�
����j + � � � ;

�� =
i
p
3

2
��i�i : (47)

Here 
ij is a symplectic matrix. The truncation of N=4 supergravity to N=2 supergravity in-

teracting with one vector multiplet is carried out by keeping  �i; �i with (i = 1; 2) only and

A�
12 = �A�

34 � 1
2
A�; B�; g�� and �. By inspecting the supersymmetry transformations of the

truncated �elds it is not di�cult to see that this is a consistent truncation. The bosonic action

becomes2:

e�1L = �1

2
R� 1

4
e
2

3
�F��F

�� � 1

4
e�

4

3
�G��G

�� � 1

6
(@��)

2 +
e�1

4
p
2
������F��F��B� : (48)

The supersymmetry transformations of the fermionic �elds with vanishing fermion are

� � = D�(!)��
i

12

�
��

�� � 4��
���

�
(e

�

3F�� �
1p
2
e�

2

3
�G��)� ;

�� = � i

2
p
3
��@����

1

4
p
3
���

�
e
�

3F�� +
p
2e�

2�

3 G��

�
� ; (49)

and we have omitted the symplectic index on the spinors (to avoid confusion with the index on �i

in the previous section).

Our action can be compared with the action used in [6] if we rewrite it as follows

e�1L =
1

2

 
�R � 1

4
e
2

3
�F 0

��F
0�� � 1

4
e�

4

3
�G0

��G
0�� � 1

3
(@��)

2 +
e�1

8
������F 0

��F
0

��B
0

�

!
; (50)

2This action is equivalent upon rescalings to the action of N=2 supergravity interacting with one vector multiplet
as presented in the Appendix of [16].
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where

F 0 =
p
2F ; G0 =

p
2G ; B0 =

p
2B : (51)

We observe a discrepancy in the kinetic term for the scalar �eld which is however harmless since

the solution has a constant moduli �eld. Thus the extreme black hole of Strominger-Vafa can be

embedded into the N=2 supergravity interacting with one constant vector multiplet.

To make contact with the formalism of previous section dealing with the general case of the

very special geometry, we make the following identi�cations: i = 1; I = 0; 1 and

i = 1; I = 0; 1 ; A�
1 � A� ; A�

0 � B� ;

G11 = e
2�

3 ; G00 = e�
4�

3 ; C011 = 2
p
2 ; g11 = 1 ; �1 =

1p
3
� ;

q1 = �
8
p
2QF

�
; q0 = 2

p
2QH : (52)

Comparing the supersymmetry transformations we must identify:

@t1

@�1
= � 1p

3

�
4

3

�2=3

e
�

3 ;
@t0

@�1
= �

s
2

3

�
4

3

�2=3

e�
2�

3 : (53)

To satisfy the relations of special geometry and in particular to have (tI);itI = 0 we get

t1 = �
�
4

3

�2=3

e
�

3 ; t1 =
2

3

�
3

4

�2=3

e�
�

3 ;

t0 =
1p
2

�
4

3

�2=3

e�
2�

3 ; t0 =

p
2

3

�
3

4

�2=3

e
2�

3 : (54)

The enhancement of supersymmetry near the horizon is provided by @tI
@�
GIJqJ = 0 and we get the

�xed value of the moduli near the horizon:

e� = � 1p
2

q1

q0
; t1q1 =

1

21=631=3

�
q0(q1)

2
�1=3

; t0q0 =
1

2
t1q1 : (55)

Now we can express the combination tIqI near the horizon required for the entropy as

tIqI =
32=3

27=6

�
q0(q1)

2
�1=3

(56)

and

r60 =
1

62
f(tIqI)horg3 =) 1

211=2
(�q0)2q1 =

8(QHQF )
2

�2
; (57)

and

A = 2�2(r0)
3 =

�2

2

0
@ q0p

2

"
q1p
2

#21A
1=2

: (58)

Thus we have reproduced the Strominger-Vafa area formula as an example of our general area

formula

A = 2�2(r0)
3 =

�2

3

n
(CIJqIqJ)@iZ=0

o3=4
=) 8�

s
QH(QF )2

2
; (59)
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and therefore this black hole solution �ts into our consideration of the very special geometry.

For the general case of n N=4 vector multiplets with duality groupO(1; 1)� O(5;n)

O(5)x)O(n)
the formula

for the largest eigenvalue of the central charge, extremized in the moduli space was presented in

[10]. This translates into the N=4 duality invariant area formula

A = 8�

s
QH(QF )2

2
; (60)

where QH is the singlet charge and (QF )
2 is the O(5; n) Lorenzian norm of the other 5+n charges

QF .

Upon truncation to N = 2 theory this gives a very special geometry with CIJK intersection of

the form (I; J = 0; 1; : : : ; n+ 1) and (i = 1; : : : n + 1)

CIJK =>

�
C0ij = �ij
0 otherwise

�
; (61)

where �ij is the Lorenzian metric of O(1; n) and the very special geometry is O(1; 1)� O(1;n)

O(n)
. Upon

truncation the area has the same form as in (60)

A = 8�

s
QH(QF )2

2
= 8�

s
QH(Qi�ijQj)

2
; (62)

where again QH is the singlet charge and (QF )
2 is the O(1; n) Lorenzian norm of the other 1 + n

charges Qi.

5 Discussion

Thus we have given a complete description of 5d static black holes near the horizon which can be

embedded into N=2 and N=4 supergravity with arbitrary number of vector multiplets. They all

show enhancement of supersymmetry near the black hole horizon. In N=2 as well as in N=4 case

the unbroken supersymmetry (1/2 in N=2 and 1/4 in N=4) is doubled. As the result in all cases

the dimension of the Killing spinor of unbroken supersymmetry is the dimension of the Dirac spinor

admitted by the anti-deSitter space and the sphere.

The signi�cance of the enhancement of supersymmetry near the horizon is related to the fact

that in all cases when we have found �nite horizon area of supersymmetric solutions there was also

the enhancement of supersymmetry present. This concerns all four- and �ve-dimensional static

black holes where we deal with the near-horizon geometries AdS2�S2 and AdS2�S3 respectively.

The area in both cases is given by the volume of the S2 and S3 sphere.

In more general situations when the near horizon geometry is given by AdSp+2 � Sd�p�2 the

area of the horizon is given by the volume of the Sd�p�2 sphere times the volume of the torus

of dimension p, which for the supersymmetric solutions shrinks to zero near the horizon. As the

11



result, in the class of solutions with AdSp+2 � Sd�p�2 near-horizon geometries one can not expect

�nite area of the horizon per unit volume except for black holes. Examples of such con�gurations

with enhancement of supersymmetry and still vanishing area of the horizon include: d = 10; p = 3;

d = 11; p = 2; p = 5. This geometric observation matches the recent analysis [19] of the cases of

the vanishing entropy in which a duality invariant expression in terms of integral charges does not

exist. In all these situations the extremum of the central charge does not occur at �nite rational

values of the moduli.

Few more con�gurations with near-horizon geometry AdSp+2 � Sd�p�2 are known [18]. They

include AdS3�S2 describing a 5d magnetic string and AdS3�S3 describing a 6d self-dual string. It

has not been established yet whether they have enhancement of supersymmetry near the horizon.

A calculation of the type which we have performed here for 5d black holes is required to identify

the supersymmetric Killing spinors with the geometric ones for the 5d and 6d strings.

From the perspective of this study it would be interesting to have a more careful look into

con�gurations with AdS2 � Sd�2 geometries near the horizon. These would have �nite non-

vanishing area related to the volume of the Sd�2 sphere. Such con�gurations of the Reissner-

Nordstrom-Tangherlini-type are known to solve equations of motion of Einstein-Maxwell theory in

any dimension.3 However in d > 5 they do not seem to have a supersymmetric embedding, at least

such embeddings have not been found so far.

In conclusion, we have studied the mechanism of enhancement of unbroken supersymmetry near

5d black hole horizon and we have found the entropy-area formula for solutions of N=2 supergravity

interacting with arbitrary number of vector multiplets.
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