
ar
X

iv
:h

ep
-t

h/
96

09
07

9v
1 

 1
0 

Se
p 

19
96

UCLA/96/TEP/27

Non–Critical Strings At High Energy

Kenichiro Aoki1 and Eric D’Hoker2

1Department of Physics, Hiyoshi Campus
Keio University

Hiyoshi, Kouhoku-ku
Yokohama 223, JAPAN

2 Theory Division, CERN
1211 Geneva 23, Switzerland

and
Department of Physics

University of California Los Angeles
Los Angeles, California 90024–1547, USA

Abstract

We consider scattering amplitudes in non-critical string theory of N external states in
the limit where the energy of all external states is large compared to the string tension. We
argue that the amplitudes are naturally complex analytic in the matter central charge c and
we propose to define the amplitudes for arbitrary value of c by analytic continuation. We
show that the high energy limit is dominated by a saddle point that can be mapped onto an
equilibrium electro-static energy configuration of an assembly ofN pointlike (Minkowskian)
charges, together with a density of charges arising from the Liouville field. We argue that
the Liouville charges accumulate on segments of curves, and produce quadratic branch cuts
on the worldsheet. The electro-statics problem is solved for string tree level in terms of
hyper-elliptic integrals and is given explicitly for 3- and 4-point functions. We show that
the high energy limit should behave in a string-like fashion with exponential dependence
on the energy scale for generic values of c.
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1. Introduction

Ever since string theory was reformulated in terms of a summation over random sur-
faces, [1], there has been a renewed and persistent interest in the construction of consistent
string theories away from the critical dimensions (26 for the bosonic string, 10 for super-
strings), [2], [3], [4], [5], [6], [7] [8], [9], [10]. Reviews on and extensive references to
work on non-critical string theory may be found in [11] and [12]. Several motivations are
driving these studies, of which we shall just mention the most immediate ones. There
is the uncovering of more general or new consistent string theories : for example a six
dimensional tensionless string theory has recently been considered [13]. There is the im-
provement of our understanding – perhaps at the non-perturbative level – of critical string
theory via models with fewer physical degrees of freedom. There is the reinterpretation
of the worldsheet properties of the string in terms of two-dimensional quantum gravity,
providing simple examples of quantized gravity [6]. There is the possibility of mapping the
scaling behavior of two-dimensional statistical mechanics models on random lattices onto
2D quantum gravity [7], [9]. There is the proposed reformulation of the critical behavior
of the three-dimensional Ising model in terms of fermionic strings [14][15][16]. There are
proposals to view non-critical string theory as a conformally invariant off-shell realization
of critical string theory [17], and as a critical string theory in a flat space-time background
metric with a dilaton field that grows linearly with time [18].

Our understanding of non-critical string theory to date is very advanced for bosonic
models with rational matter central charge c < 1. The mapping between discretized
random surfaces and random matrices, combined with the double scaling limit, produces
exact results for correlation functions, to all orders of perturbation theory [7], [9], see [12]
for a review. Surprisingly, it has turned out to be very difficult to reproduce, with the
help of the Liouville model of Polyakov’s proposal, even the simplest results obtained via
matrix models. Also, a direct reformulation of fermionic non-critical strings in terms of
matrix models seems problematic, if not impossible [19]. Finally, it has proven to be quite
difficult to cross the barrier at c = 1 and analyze the region of perhaps most pronounced
physical interest c > 1, for either the bosonic or fermionic strings.

One of the most basic obstacles to reaching beyond the c = 1 barrier (within the
Liouville field theory approach), is the appearance of conformal primary fields with complex
weights, and thus of string states with complex masses. In a series of ingenious papers [3]
and [4], it was proposed that the string spectrum may be restricted to a subset of “physical
states”, that have real conformal weights only. This restriction appears to be possible only
provided space-time dimension assumes certain special values : 1, 7, 13 and 19 for the
bosonic string, and 1, 3, 5 and 7 for the fermionic string. (The truncation of the spectrum
in [3]and [4]is analogous to the truncation of the Kac table of conformal primary fields
used in [6] for rational conformal field theories with c < 1.) 1

A truncation of the spectrum at the free string level will be consistent at the inter-
acting level, only if interactions between physical states produce only physical states. The
simplest direct check would be on the factorization of the four point function at tree level;
unfortunately, this amplitude is not available. Instead, it was verified in a series of papers
[21], and [22], that the algebra of operators corresponding to “physical states” closes under
operator product expansion, again provided the dimension of space-time belongs to the list
given above. This somewhat less direct check on the truncation of string states provides

1 See also [20], where a truncation, analogous to the GSO projection, was proposed for the

non-critical fermionic string.
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strong evidence that consistent string theories indeed exist in these special dimensions.
Clearly, however, it would be very valuable to have access to the four point function for a
more direct check of factorization.

The primary goal of this paper is to develop calculational methods that allow us to
evaluate scattering amplitudes in non-critical string theory. We shall show that this can
indeed be achieved, in the limit where the energies of the incoming and outgoing strings
is large.

We propose to define non-critical string amplitudes in the region 1 < c < 25 by
analytic continuation in c throughout the complex c plane, 2 starting from the line c < 1.
As was already shown in [23], the integral representation of the non-critical scattering
amplitudes in the Liouville formulation, is complex analytic in the central charge, and
thus naturally lends itself to such a definition. Also, this type of analytic continuation is
very similar to that required to defining scattering amplitudes for all values of external
momenta, already in the critical string. (See e.g. [25].)

The definition of non-critical string amplitudes by analytic continuation in the central
charge that we use as a starting point is a priori different from the one used in [21] and
[22]. There, substantial modifications occur in the structure of the Liouville field dynamics
as one crosses from the weak coupling phase (for c < 1) into the strong coupling phase
(for c > 1). In particular, the two chiralities of the Liouville field become uncoupled, a
new cosmological constant appears and the vertex operators are modified. Whether the
definition of the amplitudes by analytic continuation in the central charge c takes us to
the non-critical strings of [3] and [4] is an open and exciting question.

The exact evaluation of the scattering amplitudes, even to tree level, for general c
and general external momenta, would require that we can carry out a set of multiple
integrals that are more general than those available from [26], or from [27]. Evaluating
these integrals remains an open problem.

In this paper, we propose an evaluation of non-critical string amplitudes for any
complex c, in the limit where the energies of incoming and outgoing string states are
all large compared to the (square root of the) string tension.3 We shall show that the
Liouville approach lends itself naturally to taking the high energy limit, where the integral
representations for the amplitudes become tractable, for any complex value of c. To string
tree level, we succeed in producing explicit formulas for the limit in terms of hyper-elliptic
integrals. We shall not, at this stage, perform any truncation on the spectrum of states
in the non-critical string theory. Thus, our results are applicable to non-critical string
theories in general, including those in which the Liouville field is reinterpreted as an extra
dimension of space-time, as in [18].

For string theory in the critical dimension, the high energy limit of scattering ampli-
tudes is dominated by a saddle point in the positions of the vertex operators for external
string states, as well as in the moduli of the surface. This problem is equivalent to finding
the equilibrium configuration of an array of electro-static Minkowskian charges (attached
to the vertex operators) on a surface of variable shape. In a series of beautiful papers [29],
it was shown how the saddle point can be constructed by symmetry arguments, for the
four point function, to any order in perturbation theory.

2 Analytic continuations in the central charge were used in [23] as technical tools to prove the

validity of the continuation procedure of [24]. Here, we go one step further, and take the analytic

continuation as a definition of the amplitudes.
3 The high energy limit of non-critical string theories with c = 1 was considered in [28].

2



For non-critical string theory, the high energy limit is still dominated by a saddle point,
which is equivalent to the equilibrium configuration of an array of (complex) charges on a
surface of variable shape. In addition to the charges from the external vertex operators,
we now also have charges from the Liouville exponential operator. In fact, the number of
Liouville charges on the surface increases linearly with energy and, in the limit of large en-
ergy, accumulate onto a continuous charge density. We shall show that this Liouville charge
density consists of line segments, producing quadratic branch cuts on the worldsheet.

We shall solve explicitly the equivalent electro-statics problem for a worldsheet with
the topology of a sphere (tree level) in terms of hyper-elliptic functions, and use it to deduce
the high energy limit of tree level scattering amplitudes. The solution in this limit is valid
for any complex value of the matter central charge c, and we use analytic continuation
to define the non-critical string amplitudes throughout the complex c plane. For higher
genus topologies, the solution involves quadratic branch cuts of higher genus surfaces, but
we shall postpone a full derivation of this case to a later publication.

The main result is that, at least for generic values of the matter central charge c,
the non-critical amplitudes behave in a string like fashion, with exponential dependence
on the energy scale, in the limit of high energy. While it is logically possible that this
generic exponential behavior could be absent (and replaced by power-like behavior) at
isolated points in the complex c plane, we believe that this is unlikely to occur in the
region 1 < c < 25. It is thus unlikely that the non-critical string theories in this region
ever become “quantum field theories”.

The remainder of this paper is organized as follows. In Sect. 2, we establish the
equivalence between the high energy limit saddle point and the electro-static equilibrium
configuration of an array of charges, including Liouville charges, on a Riemann surface with
variable moduli. In Sect. 3, we solve the electro-statics problem at string tree level (i.e.
on the complex plane), find the configuration of charges and determine their electro-static
energy in terms of hyper-elliptic integrals. In Sect. 4, we work out the cases of the string
tree-level 3- and 4-point functions in detail, and use the symmetric scattering amplitude
as a simple explicit example. In Sect. 5, we present a brief discussion of open problems,
in particular of the higher loop case, of the possibility of power law behavior and of some
practical applications. Some useful formulas are derived in Appendix A.

2. High Energy Limit and Equivalent Electro-statics

We begin by reviewing some basic results in the Liouville field theory formulation of
bosonic non-critical string theory. The starting point is a “matter” conformal field theory,
describing Poincaré invariant string dynamics in a d-dimensional space-time. In addition
to the string coordinates xµ(z) with µ = 1, · · ·d, there may be further “internal degrees of
freedom”, collectively denoted by ψ(z) in what follows. The worldsheet metric is denoted
by gmn and the associated Laplacian on scalar functions by ∆g. The action for the string
coordinate x is given by free field theory4

SM =
T

4π

∫

d2z
√
g xµ∆gxµ (2.1)

4 The string tension T can naturally be absorbed into x, and will be set equal to 1 in the

remainder.
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The conformal primary fields are vertex operators of the type

Vδ = P∆(∂xµ, ψ)eik·x δ = ∆ +
1

2
k2 (2.2)

where P∆ depends on ψ and derivatives of xµ only. The conformal dimensions of Vδ and
P∆ are (δ, δ) and (∆,∆) respectively. Without loss of generality, we may consider vertex
operators associated to external string states of definite mass and spin; the factor P∆ then
grows with momenta (and energy) no faster than polynomially.

The above conformal field theory is coupled to a quantized worldsheet metric g, which,
in conformal gauge, decomposes into the Liouville field φ(z) and a fiducial metric ĝ(mj)
that only depends on the moduli mj of the Riemann surface Σ, with g = ĝ exp{2φ}. The
action for the Liouville field is

SL =
1

4π

∫

√

ĝ

[

1

2
φ∆ĝφ− κRĝφ+ µeαφ

]

(2.3)

Here Rĝ is the Gaussian curvature of the metric ĝ, and the coupling constants κ and α are
given in terms of the matter central charge c as follows

3κ2 = 25 − c α2 + κα+ 2 = 0 (2.4)

Each conformal primary field Vδ may be coupled to the worldsheet metric in a diffeomor-
phism invariant way. In conformal gauge this is achieved by multiplying Vδ by a Liouville
exponential exp{β(δ)φ}, and adjusting β(δ) in such a way that the resulting operator
has conformal weight (1, 1). This gravitationally dressed operator may be integrated in a
diffeomorphism invariant way and we obtain

Vδ ≡
∫

d2zVδ(z)e
βφ(z), β(δ) =

−
√

25 − c+
√

1 − c+ 24δ

2
√

3
(2.5)

The analytic continuation in c and the external momentum will dictate which branches
of the square roots should be chosen. When δ = 0, the operator V0 is just the Liouville
exponential interaction, present in the Liouville action.5

Correlation functions of the operators Vδ are obtained in standard fashion by combin-
ing matter and Liouville correlation functions6

〈
N
∏

i=1

Vi〉 =

∞
∑

h=0

∫

Mh

dmZgh(m)

∫

Σh

∏

i

d2zi〈
N
∏

i=1

eβiφ(zi)〉
L
〈
N
∏

i=1

Vi(zi)〉M (2.6)

5 For special values of c, it is possible to have primary fields other than just exponentials of

the Liouville field, so that combinations other than (2.5) may occur. This happens at c = 25

and c = −2 for example. Thus, the operators we are considering in (2.5) may not be the most

general physical operators possible in non–critical string theory. Also, we do not know in general

which operators correspond to the complete set of physical states in a particular theory. A careful

analysis of the tree level four point function which we compute below should shed light on these

questions.
6 To simplify notation, we denote Vδi , Vδi , and β(δi) by Vi, Vi and βi respectively.
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Here, Mh is the moduli space of compact Riemann surfaces Σh with h handles, dm stands
for the measure on moduli space, and Zgh(m) consists of Fadeev-Popov ghost determinants,
including their zero mode normalization factors (see e.g. [30]). The conformal field theory
correlation functions for the matter integrals and Liouville integrals are respectively defined
by

〈
N
∏

i=1

Vi(zi)〉M ≡
∫

Dĝx

∫

Dĝψ e−SM−Sψ
∏

i

Vi(zi)

〈
N
∏

i=1

eβiφ(zi)〉
L
≡

∫

Dĝφ e
−SL

∏

i

eβiφ(zi)

(2.7)

Sψ denotes the action for the additional internal degrees of freedom, but we shall not need
it here. The functional measures Dĝx Dĝψ and Dĝφ are built from the L2 norms on the
functions with respect to the fiducial metric ĝ (see [8], [31]).

2.1. Correlation functions as multiple integrals

In what follows, we shall compute Liouville and matter correlation functions in the
high energy limit, which will allow us to evaluate correlation functions in non–critical string
theory in the same approximation.

To evaluate the Liouville correlation functions, we follow the procedure of [24], [23][32]
(see also [33]). We split the Liouville field φ as follows φ = φ0 +ϕ, where φ0 is constant on
the worldsheet and ϕ is orthogonal to constants. The integration splits accordingly, and
the integral over φ0 may be carried out explicitly, as follows

∫

Dĝφ e
−SL

N
∏

j=1

eβjφ(zj) =
Γ(−s)µs
α(4π)s

∫

Dĝϕ e−S
′
L

(∫

√

ĝ eαϕ
)s N

∏

j=1

eβjϕ(zj) (2.8)

Here Dĝϕ denotes the integration over the field ϕ, which is orthogonal to constants, by
definition. The new Liouville action S′

L is a free action now, given by

S′
L =

1

4π

∫

d2z
√

ĝ

[

1

2
ϕ∆ĝϕ− κRĝϕ

]

(2.9)

The variable s is a scaling dimension, given in terms of α, κ, the genus h of the surface
and the energies βj as follows

αs = −κ(1 − h) −
N

∑

j=1

βj (2.10)

In general, s does not have to be integer, or does not even have to be rational. The
prescription of [24] is to proceed and carry out the functional integration over ϕ as if s
were an integer, and then later on continue in s. We are confident that this procedure is
reliable in view of the semi-classical analysis carried out in [23].
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The integration over ϕ is completely analogous to the Coulomb gas problem, but here
with generalized complex charges.

〈
N
∏

j=1

eβjφ(zj)〉
L

=
Γ(−s)µs
α(4π)s

Zs(m)−1/2

∫ s
∏

p=1

d2wa exp

{ N
∑

i,j=1

i<j

βiβjG(zi, zj)

+
s

∑

a=1

N
∑

j=1

αβjG(zj , wa) +
s

∑

a,b=1

a<b

α2G(wa, wb) + R
}

(2.11)

Here, Zs(m) represents the functional determinant of the scalar Laplace operator on a
surface with metric ĝ(m) and takes the form

Zs(m) =
Det′∆ĝ
∫

d2z
√
ĝ

(2.12)

The additional term R in (2.11) involves all the integrals over the Gaussian curvature Rĝ.
Clearly, this term is absent at string tree level where all curvature can be concentrated
at ∞. It is also absent at one loop level where we can take Rĝ = 0. Later on, we shall
establish that this term is subdominant in the high energy limit and may be omitted.

The integration over the matter fields will depend upon the precise nature of the
matter conformal field theory. Fortunately, in anticipation of the high energy limit of the
amplitudes, we shall only need to exhibit the part of the matter amplitudes that involves
the exponential factors.

〈
N
∏

j=1

V (zj)〉M = Zs(m)−d/2P(zi) exp

{

−
N

∑

i,j=1

i<j

kikjG(zi, zj)

}

(2.13)

Here, the function P(zi) involves all matter Green function factors other than exponential,
and Zs(m) represents the functional determinant of the scalar Laplace operator of (2.12).

Combining the Liouville and matter parts of the correlation functions, we obtain
our final expression for non-critical string correlation functions, given by the following
expression

〈
N
∏

i=1

Vi〉 =
Γ(−s)µs
α(4π)s

∞
∑

h=0

∫

Mh

dmZs(m)−(d−1)/2

∫

Σh

N
∏

i=1

d2ziP(zi)

∫

Σh

s
∏

p=1

d2wp exp
{

−Eh(zi, wp)
}

(2.14)
The total partition function Z(m) is given by

Z(m) = Zgh(m)Z−(d+1)/2
s (m) (2.15)

The argument of the exponential is given by

Eh(zi, wp) =

N
∑

i,j=1

i<j

uijG(zi, zj) −
N

∑

j=1

s
∑

p=1

αβjG(zj , wp) −
s

∑

p,q=1

p<q

α2G(wp, wq) −R (2.16)
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The uij are analogues of the Mandelstam variables extended to the case of non-critical
string theory and are given by

uij ≡ −βiβj + ki · kj (2.17)

Momentum conservation
∑

j kj = 0, Eq. (2.10) together with the defining equations for α

and β in (2.4) and (2.5), guarantee diffeomorphism invariance of the correlation function.
It is instructive to view the function Eh(zi, wp) as the electro-static energy of an array

of electric charge vectors K0 = (α; 0) placed at points wp and electric charge vectors
Ki = (βi; ki) placed at points zj . A natural inner product may be defined on these d+ 1-
dimensional vectors in the following way

Ki ·Kj ≡ −(βi +
κ

2
)(βj +

κ

2
) + ki · kj (2.18)

The on-shell condition for external states characterized by conformal dimension ∆i in (2.2)
is simply reads

Ki ·Ki = −m2
i m2

i =
1 − c

12
+ 2∆i (2.19)

Thus, the computation of correlation functions in non–critical string theory has been re-
duced to that of the free energy of an array of electric charge vectors in two dimensional
electrostatics. In addition to the charges associated with external vertex operators, which
are familiar from critical string amplitudes, the Liouville operator introduces additional,
internal, charges.

The problem of evaluating correlation functions in non-critical string theory is seem-
ingly reduced to the problem of computing a finite dimensional multiple integral with
respect to zi, wa over the Riemann surface. Since s is not, in general, an integer however,
the correlation function is not well defined as it stands. From the arguments presented in
[23], it is clear that the original expression for the amplitudes in (2.6) is complex analytic
in the external momenta and in the central charge c, even though the intermediate expres-
sions (2.8), (2.11) and (2.14) only make sense for integer s. Thus, the results obtained by
evaluating (2.14) for integer s will have to be analytically continued in s. This is achieved
through a combination of analytic continuation in the external momenta (just as in the
critical string, [25]) and in the central charge c.

For rational c < 1, and to string tree level, it was proposed in [24] to analytically
continue in the variable s, using certain rearrangement formulas for ratios of Euler Γ-
functions (that are specific to tree level). The validity of this procedure is justified, after
the fact, since it produces agreement with results from matrix models. More importantly,
agreement can be established from first principles, as was shown in [23], using a saddle
point approximation in the limit when α → 0, i.e. when c → ∞. We shall take these
analyticity properties as a definition for the amplitudes away from c < 1 and rational.

2.2. Correlation functions in the high energy limit

For tree level amplitudes, the above multiple integrals are of the same type as those
discussed by Selberg and in [26]. The 3-point function was obtained in their work for
arbitrary parameters, but results on the 4-point function are limited to c < 1 conformal
matter. In general, even to string tree level, the integrals of (2.14) and (2.16) are not
available in explicit form.
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We propose to evaluate the non-critical string correlation functions in the limit where
the energies and momenta of the external string states all become large compared to the
square root of the string tension. This limit is physically interesting and was extensively
explored in the case of the critical string [29]. Also, the limit of the amplitudes is calculable
and could be used as a starting point for a more systematic expansion in high energy.
In fact, we shall establish that the amplitudes, in the high energy limit, are given by
a saddle point, which corresponds to the electro-static equilibrium configuration of the
associated electro-statics problem. The saddle point configuration may be evaluated and
the associated electro-static energy — the quantity Eh entering (2.14) — may be obtained
explicitly, at least to tree level.

We shall define the high energy limit by rescaling all momenta ki by a common factor
λ→ ∞. We have the following asymptotic behavior

ki → λki βi → ±λ|ki| + O(1) (2.20)

In the high energy limit, K ≡ (β; k) naturally corresponds to the momentum of a massless
particle as expected. The scaling properties of other quantities are easily deduced from the
above : uij scales like λ2, s scales like λ1 while c and α scale like λ0. Notice that external
vertex operators always remain conformally invariant under this scaling.

To determine the high energy limit of the non-critical scattering amplitude in (2.14),
we begin by analyzing the high energy behavior of the electro-static energy function E0.
From the expression for E0 in (2.16), it can be readily show that Eh scales like λ2 for large
λ. This is manifest for the first term in Eh in (2.16). Actually, the next two terms in (2.16)
also scale like λ2 for large λ. Although the couplings in the second term only scale linearly
in λ, the number of Liouville insertion points, s, also grows like λ. In the third term, the
coupling α scales like λ0 = 1, but there are now s2 Liouville insertion points, so again this
term scales like λ2. The last term, R, can be neglected in what we do. Firstly, to tree and
one loop levels, the curvature term is irrelevant. Also, its scaling with λ is at most linear
in λ, as can be seen from combining (2.8) and (2.9).

The next ingredient needed in the determination of the high energy limit of the non-
critical scattering amplitudes is the degree of dependence of this limit on any specific matter
conformal field theory. The most important simplification in this respect comes from the
observation that the conformal primary fields P∆ involve and produce only polynomial
dependence on the space-time momenta ki. Thus, in the high energy limit, where the
contributions from the saddle point will be generically exponential (as we shall establish
below), we may neglect the polynomial contributions from the vertex functions P∆. Thus,
only the exponential vertex operator parts contribute to the high energy limit.

The fact that the entire function Eh scales in a homogeneous way for large λ, allows
us to use routine saddle point methods to calculate the limiting behavior.7 The leading

7 In [23], a saddle point approximation was applied to the Liouville functional integral directly

to the Liouville field in the limit semi-classical limit where α → 0. In the high energy limit

however, the Liouville action does not scale homogeneously and a similar procedure does not

yield a good valid saddle point formulation. To summarize, the limits taken are different; in [23],

the external states were fixed and c was taken to −∞ and here, c is fixed to be of order one while

the external momenta are taken to be large.
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order contribution will be given by the value of Eh at the saddle point, specified by the
vertex positions z0

i , Liouville insertion points w0
p and moduli m0 at the saddle.

〈
∏

i

Vi〉 = exp{−Eh
(

z0
i , w

0
p;m

0
)

} (2.21)

The values of z0
i , w

0
p and m0 are determined from the saddle-point equations

∂Eh
∂zi

∣

∣

∣

∣

z0
i
,w0
p,m

0

=
∂Eh
∂wp

∣

∣

∣

∣

z0
i
,w0
p,m

0

=
∂Eh
∂m

∣

∣

∣

∣

z0
i
,w0
p,m

0

= 0 (2.22)

Thus, the overall dependence on the momenta at high energy will be exponential. This
saddle point equation is just the expression for electro-static equilibrium for an array of
vector charges. In addition to the vertex operators present for the critical string, we now
also have a number s of Liouville charges.

The number of Liouville charges grows with increasing energy, and tends to ∞ in
the infinite energy limit. If we assume that the saddle point Riemann surface remains
compact in the high energy limit then the Liouville charges must accumulate somewhere
on the surface. What could be the limiting distribution of the Liouville charges ? A priori,
this distribution could be two-dimensional and fill regions of the surface; or it could lie
along line segments on the surface; or it might be arranged in more exotic configurations,
like Cantor sets. To find out which one of these distributions is physically realized, we
shall examine the case of tree level amplitudes first, where explicit formulas are readily
obtained.

3. Tree Level : Electro-statics on the Plane

To tree level, the worldsheet topology is that of the sphere (or by stereographic pro-
jection, of the complex plane), there are no moduli, and all determinant factors Z(m) are
constants. The Green function is the electro-static potential on the two dimensional plane,
given by8

G(z, z′) = − ln{|z − z′|2 + ǫ2} (3.1)

Tree-level non-critical amplitudes, – evaluated for vertex operators that are exponentials
only) then reduce to a simple multiple integral expression9

〈
N
∏

i=1

Vi〉 =
Γ(−s)µs
α(4π)s

∫ N
∏

i=1

d2zi

N
∏

i,j=1

i<j

|zi − zj |2uij

×
∫ s

∏

p=1

d2wp

N
∏

j=1

s
∏

p=1

|zj − wp|−2αβj
s

∏

p,q=1

p<q

|wp − wq|−2α2

(3.2)

8 We have made explicit in the definition of the Green function a short distance regulator ǫ,

which will not be exhibited in the sequel, but will always be subsumed.
9 Notice that these integrals resemble those evaluated in [26] and [27], but they involve more

general exponents. As a result, no explicit formulas appear to be available for their evaluation.
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The associated electro-statics problem is that of an array of charges at points zi and
wp, characterized by the following electrostatic energy function

E0(zi, wp) = −
N

∑

i,j=1

i<j

uij ln |zi − zj |2 +
N

∑

j=1

s
∑

p=1

αβj ln |zj − wp|2

+

s
∑

p,q=1

p<q

α2 ln |wp − wq|2
(3.3)

where α and βi were defined in (2.4) and (2.5) and uij = −βiβj +ki · kj . The saddle point
equations for the integral (3.2) are just the equations for electro-static equilibrium of the
associated electro-statics problem. They are given by

−
N

∑

j=1

j 6=i

2bij
zi − zj

+
1

s

s
∑

p=1

ai
zi − wp

=0

1

s

s
∑

q 6=p
q=1

2

wp − wq
+

N
∑

j=1

aj
wp − zj

=0

(3.4)

Here,10 we have defined parameters ai ≡ 2βi/(αs) and bij ≡ uij/(αs)
2 both of which scale

like λ0 in the limit of large λ. Also, each summation over the number of Liouville charges
at wp, p = 1, · · · s has been divided by a factor of s, so that the entire equations (3.4) scale
like λ0 in the limit of large λ.

The integral (3.2) and the saddle point equations (3.4) are invariant under simulta-
neous conformal transformations of zi and wp. Using these transformations, we may fix
three points (zN−2, zN−1, zN ) = (0, 1,∞), but we shall continue to denote 0 and 1 by zN−2

and zN−1 respectively.
We wish to solve the equations (3.4) in the limit where s→ ∞, while keeping ai, bij and

the number of vertex charges N fixed. The most difficult part of this problem is the solution
of the second equation in (3.4), for the following reasons. Since the number of Liouville
charges at wp tends to ∞, they must accumulate somewhere on the Riemann sphere.
(Viewing the sphere as the complex plane, the charges might accumulate at infinity.) We
do not know how they accumulate and what the limiting distribution of Liouville charges
at wp will look like.

A priori, the limiting distribution might correspond to two-dimensional regions of
charge, to one-dimensional line segments, to isolated points, or even to more exotic ar-
rangements such as Cantor sets. We shall start by providing an answer to this question
first, by carefully keeping the Liouville charges at wp isolated, and taking the limit only
when completely safe. We shall find that the distribution of Liouville charges at wp is
always of the form of a collection of curve segments, whose number is N − 2.

10 The variables z̄i and w̄p satisfy (3.4) with zi and wp replaced by z̄i and w̄p respectively.

When the charges ai and bij are real, those respective equations are just the complex conjugates

of one another. But when the charges ai and bij are taken to be complex, the equations are no

longer complex conjugates of one another, and z̄i and w̄p at the saddle point are no longer the

complex conjugates of zi and wp respectively.
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3.1. Solving the Electro-statics Problem for N = 3 by Jacobi Polynomials

The case of N = 3 may be solved for any finite integer s with the help of Jacobi
polynomials, as is shown in Appendix A. For charges a1 and a2 located at −1 and 1 (with
compensating charge at ∞), the positions of the Liouville charges at wp are given by the
zeros of the Jacobi polynomials

P (−1+a1s/2, −1+a2s/2)
s (w) = 0 (3.5)

For real positive a1 and a2, and integer s, it is clear that there are s solutions wp,
p = 1, · · · , s, all located such that −1 < wp < 1. In this case, one easily sees that
the zeros accumulate onto a line segment between −1 and 1, as shown schematically in
fig. 1. It is useful to keep this case in mind when generalizing to higher values of N .

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

(a) (b)

fig. 1(a),(b) (a) Positions of Liouville charges wp (p = 1, 2, . . . , 30) for a1 = 3, a2 = 1.
(b) The density of Liouville charges in the continuum limit for a1 = 3, a2 = 1.

3.2. Solving the Associated Electro-statics Problem for General N

To study equation (3.4) for general N , we make use of a complex potential W (z) for
the charges zi, defined by

W (z) ≡ −
N−1
∑

j=1

aj ln(zj − z) (3.6)

in terms of which the equation (3.4) for the Liouville charges at wp becomes

1

s

s
∑

q=1

q 6=p

1

wp − wq
=

1

2
W ′(wp) . (3.7)

This equation, for general W (z) is just the electro-statics condition for an assembly of
s charges in the presence of an external potential W (z) – given here by the potential
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generated by the charges at zi. We also introduce a complex analytic generating function
ω(z), defined by

ω(z) =
1

s

s
∑

p=1

1

wp − z
(3.8)

which, physically, is just the electric field produced by the Liouville charges at wp. Its
divergence is obtained by applying the Cauchy-Riemann operator,

ρ(2)(z) = − 1

2πi

∂

∂z̄
ω(z) =

1

s

s
∑

p=1

δ(2)(z − wp) (3.9)

and yields the (two-dimensional) electric charge density ρ(2)(z), with unit integral over the
plane.

One may re-express the set of s equations (3.7) in terms of the following Riccati
equation11 for ω(z)

ω2(z) − 1

s
ω′(z) +W ′(z)ω(z) +

1

4
R(z) = 0 (3.10)

The auxiliary potential R(z) is defined by

R(z) =
4

s

s
∑

p=1

W ′(wp) −W ′(z)

wp − z
(3.11)

For general W (z), it would not be possible to carry out the sum in the definition of R(z) in
any simple way. When W (z) is a rational function of z however, as is the case here, R(z)
is also rational, with poles at precisely the same locations as W (z). It is easy to determine
R(z) explicitly :

R(z) =
N−1
∑

i=1

Ri
z − zi

, where Ri =
4ai
s

s
∑

p=1

1

wp − zi
(3.12)

The fact that we have been able to determine the functional form of R(z) explicitly, in
terms of a finite number of parameters is perhaps the most important ingredient in our
solution of the associated electro-statics problem.12

All that precedes is still an exact transcription of the electro-statics equations (3.4),
valid for any finite number of Liouville charges at wp. We shall now bring about one
further simplification by using the approximation in which the number of charges s is
large. (Recall that, in the original non-critical string problem, this limit corresponds to
high energy of all external string states.)

11 Similar methods involving generating functions were used in the study of matrix model

spectral equations [12]. The potentials W (z) were typically polynomials in that case.
12 In the case of matrix model spectral equations, where W (z) it typically polynomial, the

analogous key ingredient is that R(z) is polynomial.
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The potential W (z) is independent of s, while the electric field ω(z) and the auxiliary
potential R(z) converge to finite limits as s → ∞. Thus, the electro-statics equation for
ω(z) of (3.10) can be simplified in this limit, as the term in ω′(z) is suppressed by a factor
of 1/s and may be dropped. Instead of the Riccati equation of (3.10), we obtain now an
algebraic equation

ω2(z) +W ′(z)ω(z) +
1

4
R(z) = 0 . (3.13)

This quadratic equation is easily solved, and we obtain the electric field ω(z) of the
Liouville charges at wp, given by

ω(z) =
1

2

[

−W ′(z) ±
√

W ′2(z) −R(z)
]

, (3.14)

The sign in front of the square root should be chosen so that the poles in ω(z), located at
the points zi, are absent when the charges ai are all real and positive. Indeed, for charges
of like sign at zi and wp, no Liouville charges at wp should coincide with any of the zi.

13

Eq. (3.14) also immediately determines the density of charges by Eq. (3.9). The analysis
of the structure of the density will be discussed in the next subsection.

The asymptotic behavior of the various functions yields simple relations between the
coefficients Ri, which we now determine. Since W ′(z) tends to 0 as 1/z for large z, we see
from (3.11) that R(z) must tend to 0 as 1/z2 for large z. This implies that the sum of all
Ri must vanish. Furthermore, using (3.10) and the fact that ω(z) ∼ −1/z as z → ∞, we
obtain a second relation between the Ri’s. Putting all together, we have

N−1
∑

i=1

Ri = 0
N−1
∑

i=1

ziRi = −4 − 4
N−1
∑

i=1

ai (3.15)

The remaining N−3 independent parameters Ri appear not to be determined by equation
(3.13). Their physical interpretation will be given in Subsection 3.3.

Since RN defined through (3.12) satisfies RN → 0, zNRN → −4aN when zN → ∞,
the sum in the above formulas may be naturally extended to be from one to N , making
these formulas conformally covariant. We also note from (2.10) that the sum of the charges
in the high energy limit is simply

N
∑

i=1

ai = −2 (3.16)

3.3. Structure of the Density of Liouville Charges at wp

From the explicit expression in Eq. (3.14) for the electric field ω(z) in the limit of
large s, we immediately read off the distribution of Liouville charges at wp for the saddle
point. The function ω(z) is holomorphic throughout the complex plane, except for branch
cuts arising from the square root in (3.14). Thus, the Liouville charges at wp accumulate
to lie on segments of curves that correspond to the branch cuts in the function ω(z).

13 The cases where ai are not all real and positive can be obtained by analytic continuation in

the charges ai. It is then in general possible for Liouville charges at wp to leak into the points zi,

so that also ω(z) will then have poles at these points.
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The positions of the associated branch points are most easily exhibited by recasting
the solution for ω(z) as follows :

W ′(z)2 −R(z) = Q2N−4(z) ×
N−1
∏

i=1

(z − zi)
−2 (3.17)

Here, Q2N−4(z) is a polynomial in z, which is of degree 2N − 4, in view of the fact that
the sum of all Ri vanishes, as shown in (3.15). Using also the second equation in (3.15),
we find

Q2N−4(z) = (a+ 2)2
2N−4
∏

k=1

(z − xk) a =
N−1
∑

i=1

ai (3.18)

The function ω(z) thus exhibits N − 2 branch cuts, Cp, spanned between pairs of branch
points x2p−1 and x2p, p = 1, · · · , N−2, of ω(z), which correspond to zeros of the polynomial
Q2N−4(z). Next, we shall address the more detailed issue as to exactly where the charges
lie.

Since the configuration of the Liouville charges at wp is one-dimensional, it is conve-
nient to use a notation where this fact is clearly brought out. Since the support of the
Liouville charge density is a collection of curve segments, C = C1 ∪ · · · ∪ CN−2, the two-
dimensional density of charges ρ(2)(z) of (3.9) can be rewritten in terms of a line density
of charges ρ(z) as follows

ρ(2)(z) =

∫

C

dw ρ(w)

=

∫

dt ẇ(t) ρ(w(t)) δ(2)(z − w(t))

(3.19)

Here, the curve segments of C are parametrized by a real parameter t, and ẇ denotes the
t-derivative of w. Given the solution for ω(z) in (3.14), it is straightforward to calculate
the linear density ρ(w), defined when w lies on C.

ρ(w) =
1

2π

√

R(w) −W ′(w)2 (3.20)

The requirement that C lie along branch cuts of ω does not determine the precise position
of C. In fact, any analytic curve that joins pairs of branch points would do. To find the
saddle point distribution of the charges, an additional ingredient must be clarified.

From the fact that the Liouville charges at the points wp are all of unit strength times
1/s, it follows that the charge density must be real and positive along C. This supple-
mentary condition requires that the position of the branch cut C, supporting the Liouville
charges at wp, must be such that dwρ(w) is real as w is varied along C. Parametrizing C
again by a real parameter t, we have

ẇ(t)ρ(w(t)) = ẇ(t)ρ(w(t)) (3.21)

Equivalently, this condition may be expressed in terms of the (Abelian) integral14 associ-
ated with the (Abelian) differential dwρ(w) :

I(w(t)) = I(w(t)) I(w) =

∫ w

x1

dvρ(v) (3.22)

14 A more complete study of these integrals will be carried out in Subsection 3.5.
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When α and βi are real and positive , this simply implies that the Liouville charges at
wp are concentrated on the real axis, as was expected. However, (3.21) and (3.22) also
provide consistent prescriptions for the case when α, βi as well as the external momenta,
are analytically continued to complex values.

We conclude this subsection by providing a semi-quantitative description of the lo-
cations of the branch points and branch cuts of ω(z). The simplest case is when all the
parameters ai are real and positive, and when all zi are real as well. On physical grounds,
and by symmetry arguments, the Liouville charge density lies on the real axis, and consists
of N − 2 line segments Cp, p = 1, · · · , N − 2, located in between the charges at zi. The
charge segments do not touch the points zi. This configuration is schematically represented
in fig. 2.
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fig. 2 Schematic representation of the positions of the branch points and the branch cuts
for N = 5 and real charges ai(i = 1, 2, . . . , 5).

On the other hand, when the parameters ai and the points zi are complex, the branch
points move out into the complex plane, away from the real axis. The positions of the
branch points are given by roots of polynomials of degree 2N − 4, and cannot, in general,
be exhibited explicitly. Qualitatively however, and using analyticity arguments, we may
continuously turn on the complex parts of the parameters ai and zi, and follow the branch
points and branch cuts as they move off into the complex plane. This effect is represented
schematically in fig. 3.
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fig. 3 Schematic representation of the positions of the branch points and the branch cuts
for N = 5, but ai and complex charges zi(i = 1, 2, . . . , 5).

3.4. Closure of Equations

It is convenient to re-express the basic equations we have obtained for the charges at
wp and zi in terms of the line density ρ(w). With the help of equation (3.6) defining W (z),
we have the following expressions for ρ(w)

ρ(w) =
1

2π

√

−Q2N−4(w)

N−1
∏

i=1

1

w − zi

Q2N−4(w) =

{

W ′(w)2 −
N−1
∑

i=1

Ri
w − zi

}

N−1
∏

i=1

(w − zi)
2

(3.23)

The total Liouville charge, obtained by integrating along all the curve segments of C, is
normalized to 1 :

∫

C

dwρ(w) = 1 (3.24)

The electric field ω(z) is defined by

ω(z) =

∫

C

dw ρ(w)
1

w − z

= − 1

2
W ′(z) ± 1

2

√

Q2N−4(z)
N−1
∏

i=1

1

z − zi

(3.25)
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It satisfies the following equations, which are obtained as the s → ∞ limit of equations
(3.7) and (3.9).

W ′(w) = −{ω(w+) + ω(w−)} = 2

∫

−
C

dw′ρ(w′)
1

w − w′

ρ(w) =
1

2πi
{ω(w+) − ω(w−)}

(3.26)

Here, the integral is performed with principal value prescription, so that w± are taken just
above and just below the curve C of Liouville charges; the above equation for ρ(w) holds
for w on C.

It remains to clarify the physical significance of the constants Ri, which enter the
function R(z) in (3.12) and the polynomial Q2N−4(z) in (3.17). By construction, they are
given via the s→ ∞ limit of (3.12), which can be expressed in terms of ω(zi) :

Ri = 4ai

∫

C

dwρ(w)
1

w − zi
= 4aiω(zi) (3.27)

These relations are automatically satisfied by the construction of ω(z), as can be checked
easily by taking the limit of (3.25) when z → zi. It thus appears that the N−3 independent
parameters Ri, entering the solution of the second set of equations in (3.4), for the position
of the Liouville charges at wp, are undetermined by these equations.

How can this indeterminacy be understood ? It is easiest to analyze first the case
where all zi, and all ai are real. By construction, the Ri are then real, as can be seen from
(3.12) and (3.23). When all ai, i = 1, · · · , N − 1 are positive, (and only the compensating
charge at ∞ is negative) the possible locations for the Liouville charges are on the N − 2
line segments Cp, p = 1, · · · , N − 2, in between pairs of consecutive positive charges at
zi. However, exactly how the total Liouville charge (which is fixed to be 1) is partitioned
among the N − 2 line segments is not à priori determined. Indeed, the positive Liouville
charges cannot cross over from one line segment into another, since crossing would involve
passing through a charge configuration of infinite electro-static energy when a Liouville
charge is on top of a charge zi. Thus, for any partition of the Liouville charges among the
N − 2 intervals, there must be an equilibrium configuration, and the N − 3 independent
parameters Ri precisely specify the possible partitions of the Liouville charges over the
N − 2 intervals.

When the points zi move into the complex plane, and the charges ai are allowed to
become complex as well, the allowed line segments on which the Liouville charges can lie
move into the complex plane and become more general curve segments. Reality of the
Liouville charges continues to impose the constraint that the Abelian integral of (3.22)
is real. In particular, the complete Abelian integrals (or A-periods) encircling any given
branch cut, must always be real. This condition will be made more explicit in sect. 3.6 :
it imposes N − 3 reality relations between the complex variables Ri. The remaining N − 3
free parameters in Ri specify the partition of the Liouville charges among the various curve
segments, just as was the case for real ai and zi. To summarize, N −3 real relations exists
amongst the N − 3 complex parameters Ri, and the remaining N − 3 real parameters of
Ri are undetermined and specify the partition of the Liouville charges.

In fact, the values of the parameters Ri are determined by the first set of equations
in (3.4), which give the positions of the external vertex charges zi, i = 1, · · · , N − 1.
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Expressing them in terms of the high energy limit, where s→ ∞, we have

N−1
∑

j=1

j 6=i

2bij
zi − zj

+
1

4
Ri = 0 (3.28)

Notice that the conditions in (3.15) are automatically satisfied in (3.28), in view of the
symmetry of bij , momentum conservation and (2.10). Therefore, out of the original N − 1
equations in (3.28), two correspond to the asymptotic conditions (3.15), leaving N − 3
equations. In view of the analysis of the previous paragraph, only N − 3 real parameters
amongst theN−3 complexRi are determined by the electrostatics equations and the reality
conditions, leaving N − 3 real parameters undetermined. The saddle point equations for
the correlation function of non–critical string theory in the high energy limit comprise of
(3.26) and (3.28).

3.5. Electro-static Energy

The tree level correlation function, in the saddle point approximation, is given by

〈
N
∏

i=1

Vi〉 =
Γ(−s)µs
α(4π)s

e−E0 (3.29)

where all the quantities are to be evaluated at the saddle point. In particular, the electro-
static equilibrium energy is given in terms of ρ(w) and W (w) by

− E0

2(αs)2
=

1

2

N−1
∑

i,j=1

i 6=j

bij ln |zi − zj |2 +

∫

C

dwρ(w){W (w) + W̄ (w)}

− 1

2

∫

C

dvρ(v)

∫

C

dwρ(w) ln |v − w|2
(3.30)

Now, there is a very important simplification that can be administered to this expression.
The key observations were already made previously. First, the saddle point equations for
z̄i and w̄p are the same as for the quantities zi and wp, even when the charges ai and bij
are complex. Second, the integration measure dwρ(w) must be real along the line segments
of charge density, as pointed out in (3.21).

We see that, as a result, the entire electro-static energy is a sum of a contribution from
zi and wp on the one hand, and the same functional form, evaluated on z̄i and w̄p on the
other hand. Thus, given the identity of the equations for barred and unbarred quantities,
the electro-static energy is just twice that evaluated on unbarred quantities only :

− E0

2(αs)2
=

N−1
∑

i,j=1

i 6=j

bij ln(zi − zj) + 2

∫

C

dwρ(w)W (w)

−
∫

C

dvρ(v)

∫

C

dwρ(w) ln(v − w)

(3.31)
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This simplified expression for the electro-static energy at equilibrium has the advantage
that it has been recast in terms of complex analytic integrals only, involving zi, ρ(v) and
ln(v − w).

To make this reformulation more explicit, we introduce the holomorphic potential

Ω(z) =

∫

C

dwρ(w) ln(z − w) (3.32)

of the Liouville charges at wp. This potential is the analogue of the potential W for the
charges zi, and its derivative is ω(z) = Ω(z)′. In terms of this function, we may evaluate
the electro-static potential of the wp-charges in a simplified way. We begin with15

ReΩ(z) =
1

2

∫

C

dwρ(w) ln |z − w|2 (3.33)

By the electro-static equilibrium equation (3.26) for the Liouville charges at wp, its deriva-
tive is related to W ′(v), when v is on the curve C :

2
∂

∂v
Re Ω(v) =

∫

−
C

dwρ(w)
1

v − w
=

1

2
W ′(v) (3.34)

Upon integration along the curve C, we find that

Ω(v) =
1

2
W (v) +W0 (3.35)

where v is on C, and W0 is a complex constant. An interesting relation for W0 is obtained
by summing (3.35) over the zeros xk, k = 1, · · · , 2N − 4 of the polynomial Q2N−4(v). We
find that

(2N − 4)W0 =
N−1
∑

i=1

ai lnai − (a+ 2) ln(a+ 2) +
N−1
∑

i=1

ai
∑

j 6=i

ln(zi − zj)

+

∫

C

dw ρ(w) lnQ2N−4(w)

(3.36)

As a result, the electro-static energy may be re-written in terms of a single integration
over w

− E0

2(αs)2
=

N−1
∑

i,j=1

i 6=j

bij ln(zi − zj) −W0 −
N−1
∑

i=1

aiΩ(zi) (3.37)

These quantities are now all holomorphic, and as such will not be changed upon continuous
changes in the curve C. Thus, any curve C, connecting the branch points can be used in
the expression above, which greatly simplifies its calculability.

15 We arrange the logarithm so that ln(z − w) = ln(z̄ − w̄).
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3.6. Solution in Terms of Hyper-Elliptic Integrals

The above electro-statics problem of charges zi and wp on the plane, with N − 2
quadratic branch cuts, is naturally reformulated in terms of Abelian integrals on an asso-
ciated hyperelliptic Riemann surface Σ of genus N − 3. The surface is most easily defined
by an algebraic equation in C ×C (or more accurately in CP2), given by

y2 = Q2N−4(w) = (a+ 2)2
2N−4
∏

k=1

(w − xk) (3.38)

The branch cuts, associated with the curve segments Cp, (spanned between pairs of branch
points x2p−1 and x2p) p = 1, · · · , N − 2, may be double covered, and used as a basis for
the “A-cycles” of the surface Σ, denoted by Ap. (The cycle AN−2 also enters in our cal-
culations since we deal with punctures on the surface.) The remaining curve segments,
(spanned between the pairs of branch points x2p and x2p+1) p = 1, · · · , N − 2, may also
be doubled on the second sheet of Σ and used as a basis for the “B-cycles” of the surface
Σ, denoted by Bp, p = 1, · · · , N−3. This construction is schematically represented in fig. 4.
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fig. 4 Double cover of the complex w–plane with branch cuts (a) and its associated hy-
perelliptic Riemann surface (b).

On the cut sphere, the one form ρ(w)dw has simple poles at the points zi, i =
1, · · · , N − 1 with residues ai/(2πi) and a simple pole at ∞ with residue −(a + 2)/(2πi);
away from these N poles, ρ(w)dw is holomorphic. The Liouville line charge density ρ(w)
naturally defines a meromorphic Abelian differential 1-form, ρ(w)dw, on the Riemann
surface Σ, with the following properties. ρ(w)dw is holomorphic on Σ apart from the
simple poles at the 2(N − 1) points corresponding to zi, i = 1, · · · , N − 1 with the residues
±ai/(2πi) and at the two points corresponding to ∞ with the residues ∓(a + 2)/(2πi).
Thus, the differential ρ(w)dw must be a superposition of Abelian differentials on Σ of
the first and the third kind. More concretely, denoting the 2N points that correspond to
zi (i = 1, 2, . . . , N) on the Riemann surface itself as z±i ,

dwρ(w) =

N
∑

i=1

aiτz+
i
z−
i

+

N−3
∑

p=1

γpωp (3.39)
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where ωp’s are the abelian differentials of the first kind normalized in the canonical fashion

∫

Ap

ωq = δpq,

∫

Bp

ωq = Ωpq, p, q = 1, 2, . . . , N − 3 (3.40)

(Ωpq)p,q=1,2,...N−3 is called the period matrix of the Riemann surface. τxy(z) is the Abelian

differential of the third kind with simple poles at x, y with residues 1,−1

τxy(z) ≡ dz
∂

∂z
ln

E(z, x)

E(z, y)
= dz

∂

∂z
ln
ϑ[b](z − x)

ϑ[b](z − y)
(3.41)

Here, E(x, y) is the prime form on the Riemann surface and b is any odd half period. τxy
satisfies the normalization condition

∫

Ap

τxy = 0, p = 1, 2, . . . , N − 3 (3.42)

The reality condition (3.21) corresponds to

γp ∈ IR, p = 1, 2, . . . , N − 3 (3.43)

The γp’s may be completely determined by computing the charge in each line segment,
namely

γp = 2

∫ x2p

x2p−1

dw ρ(w) (3.44)

Since only N − 3 of the Ap cycles are homologically independent, the condition on the
integral of ρ(w) on AN−2 is determined as a consistency condition from the total charge
(3.16).

The physical requirement that the density ρ(w) should represent real, positive Liouville
charges, demands that ρ(w)dw be real along the equilibrium configuration of the curve
segments Cp. As a result, the contour integrals of ρ(w)dw along any Cp, or equivalently,
along any Ap-cycle, must be real. In addition, with the proper orientation (clockwise), the
integrals should be positive and add up to 1 along the curves Cp, or 2 along the closed
cycles Ap.

∫

Ap

ρ(w)dw ≥ 0
N−2
∑

p=1

∫

Ap

ρ(w)dw = 2 (3.45)

Of course, this requirement of reality will follow as soon as the reality conditions (3.21) and
(3.22) hold. However, the two reality conditions have a somewhat different interpretation.
The integral in (3.45) is unchanged under continuous deformations of the cycles Ap, and
thus gives a restriction on the differential ρ(w)dw itself, specifically on the parameters Ri,
as explained in sect. 3.4. Thus, eq. (3.45) is a necessary condition on the differential
ρ(w)dw, which must be satisfied if (3.21) and (3.22) are to hold for any curve segments
Cp. Then, once (3.45) is satisfied, the proper interpretation of (3.21) and (3.22) is that
they determine the curves Cp, within the general homology class 1

2
Ap, such that also the

local charge density corresponds to real positive Liouville charges.
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Next, we study the integrals in (3.25) and (3.32) defining ω(z) and Ω(z), since they are
required in the calculation of the electro-static energy. It may, at first, appear surprising
that the integral (3.25), for the electric field ω(z), yields an algebraic result, even though it
involves Abelian integrals over the Abelian differential ρ(w)dw. The reason that the result
is algebraic can be understood from the fact that the integration contour C surrounds all
branch cuts at once. Thus, by contour deformation, C may be unfolded onto a sum of the
pole contributions at points zi, which may be carried out in an elementary way, yielding
algebraic results (see Fig. 4 for the configuration of branch cuts and poles).16

By a similar type of contour deformation, we may also simplify the calculation of the
integral (3.32), defining Ω(z), and reexpress it in terms of Abelian integrals only. Since
the contributions on the contour from w → ∞ do not vanish in this case, we shall have to
proceed with additional care here. To do so, we introduce an auxiliary point z0, which we
may take to ∞ in the end. (see fig. 5.)
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fig. 5 Complex w–plane with branch cuts due to Liouville charges and due to logarithm
for the evaluation of Ω(z).

16 Note that the contributions from the contour at ∞ vanish here.
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We evaluate the integral around the sum of all Ap-cycles : A = A1 + · · · + AN−2, and
consider the difference integral

Ω(z) − Ω(z0) =
1

2

∫

A

dwρ(w) ln
z − w

z0 − w
(3.46)

This integration may be unfolded onto contributions from the poles at zi and the contour
D around the logarithmic cut (see Fig. 5). The contribution from the contour A′ vanishes,
since it converges to zero in the ∞ radius limit. Thus, we obtain a formula reexpressing
the difference of Ω at z and z0 in terms of an Abelian integral :

Ω(z) − Ω(z0) = −1

2

N−1
∑

i=1

ai ln
z − zi
z0 − zi

− iπ

∫ z

z0

dwρ(w) (3.47)

We recover the expression for Ω(z) alone by considering the limit z0 → ∞, where Ω(z0) ∼
ln z0 + O(1/z0) and we have

Ω(z) =
1

2
W (z) − iπ

∫ z

z0

dwρ(w) +
1

2
(a+ 2) ln z0 as z0 → ∞ (3.48)

This formula reproduces the result, derived in (3.35), that Ω and 1
2W are equal up to a

constant, as z is restricted to lie on C. To see this, notice that the contribution of the
Abelian integral of ρ is purely real as z is varied along C, in view of (3.22). It is easy to see
that such integrals are trigonometric when N = 3 (the three-point function), elliptic when
N = 4 (the four-point function), and hyper-elliptic when N ≥ 4. The tree level correlation
function of non-critical string theory in the high energy limit is obtained as (3.29), where
E0 is

− E0

2(αs)2
=

N−1
∑

i,j=1

j 6=i

bij ln(zi − zj) −
N−1
∑

i=1

aiΩ(zi)

− 1

2N − 4







N−1
∑

i=1

ai ln ai − a ln(a+ 2) +

N−1
∑

i=1

ai

N−1
∑

j=1

j 6=i

ln(zi − zj) +

2N−4
∑

l=1

Ω(wl)







(3.49)
In view of (3.48), it remains to perform only the integral of the density function. In Sect.
4, we shall produce explicit formulas for the cases N = 3, 4.

4. Tree Level Three- and Four-Point Functions

To illustrate the general methods developed in the previous sections, we shall here
compute the tree level 3- and 4-point amplitudes, in the high energy limit. Actually, the
three point function is already known : it was calculated [24] for rational conformal field
theories with c < 1, and it was shown [23], by analytic continuation, that this formula
extends to all values of c. Thus, the calculation of the three point function will provide a
non-trivial check that our methods are indeed consistent with known result.
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The 4-point amplitude, on the other hand, is not known for general values of c, because
of the following reasons. For rational conformal field theories with c < 1, the 4-point
function is known : it satisfies a generalized hypergeometric differential equation. The order
of this differential equation varies with c in a discontinuous way : if c = 1−6(p−q)2/(p+q)2,
the order is essentially p+ q+ 1, which varies discontinuously with c. In particular, unless
c is rational, the order of the equation is in fact infinite. This is why the expressions for
the 4-point function for rational conformal field theories cannot, in any direct way, be
continued away from c rational. We shall show below, however, that in the high energy
limit, our formalism allows us to evaluate these functions, and provides simple analytic
continuation rules which allow us to define the amplitudes throughout the complex plane.

4.1. The 3-Point Function

Using conformal invariance, we choose the three external vertex insertion points at
(z1, z2, z3) = (0, 1,∞). Thus, the electro-statics problem of the previous section reduces
to finding the equilibrium configuration of a density of charges, in the presence of 3 fixed
charges, located at 0, 1 and ∞. The general formalism of the previous section readily
provides the answers for the distribution of these charges.

We begin by obtaining the values for the parameters Ri of (3.12) by solving just the
asymptotic conditions, given in (3.15). Using the definition a = a1+a2 of (3.18), we obtain

R1 = −R2 = 4(a+ 1) (4.1)

The electric field function ω(z) is readily given by (3.14), and we find

ω(z) =
1

2

[

a1

z
+

a2

z − 1
− (a+ 2)

√

(z − x1)(z − x2)

z(z − 1)

]

(4.2)

The branch points x1, x2, which correspond to the endpoints of the lineal distribution of
Liouville charges, are given by an algebraic function of the charges ai as follows

x1,2 =
(a1 + 2)a+ 2 ± 2

√

(a1 + 1)(a2 + 1)(a+ 1)

(a+ 2)2
(4.3)

The distribution of charges is located on a quadratic branch cut curve C between the points
x1, x2, and the lineal density of charges is given by

ρ(z) =
1

2π
(a+ 2)

√

(z − x1)(x2 − z)

z(1 − z)
(4.4)

where it is assumed that z is restricted to the branch cut curve C.
When the charges ai are all real and positive, we have

0 < x1 < x2 < 1 (4.5)

and the branch cut curve C naturally lies on the real axis, between the points x1, x2, as
required by the reality condition (3.21). In fact, the endpoints x1, x2 stay away from the
fixed charges at 0 and 1.
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When the charges ai are extended into the complex plane, the end-points x1, x2

also move into the complex plane. In general, the location of the branch cut curve C
is now not naturally given by symmetry arguments alone. Nonetheless, our formalism
is still well-defined and the reality requirement of (3.21) determines the position of the
branch cut curve C in a unique way. To find it, we require that the indefinite integral of
ρ(w) be real along the curve C parametrized by some real parameter t, as given in (3.22).
Unfortunately, this equation is not easy to solve in any analytic way. However, we do not
actually need the precise location of these curves to compute the final electro-static energy
of the configuration.

To compute the integrals that yield the electro-static energy E0, in the correlation
function (3.29), we need to evaluate integrals involving dw ρ(w), rational functions of w
and logarithms. It is standard procedure to uniformize the integral by making the following
change of variables from w to a variable t (which is not necessarily real)

t ≡
√

w − x1

x2 − w
(4.6)

Clearly, the integration range where w goes from x1 to x2 converts into an integration
range where t goes from 0 to ∞. Thus, a definite integral in w along the full branch cut
may be converted as follows

∫ x2

x1

dw ρ(w)f(w) =
a+ 2

π

∫ ∞

0

dt

[

1

t2 + 1
− x1

t2 + x1/x2

− 1 − x1

t2 + (1 − x1)/(1 − x2)

]

f

(

x2t
2 + x1

t2 + 1

) (4.7)

We find the following basic integral, valid for x, y arbitrary complex variables, to be useful
∫ ∞

0

dt
1

t2 + x
ln(t2 + y) =

π√
x

ln(
√
x+

√
y) (4.8)

Combining all integrals, we obtain a closed expression for the electric potential

Ω(z) =(a+ 2) ln(
√
z − x1 +

√
z − x2)/2

− a1 ln

√
x1

√
z − x2 +

√
x2

√
z − x1√

x1 +
√
x2

− a2 ln

√
1 − x1

√
z − x2 +

√
1 − x2

√
z − x1√

1 − x1 +
√

1 − x2

(4.9)

Using the explicit expressions for Ω(w) in (3.30) we obtain the expression for the three
point function as

E0 = −2(αs)2
[

(a1 + 1)2 ln(a1 + 1) − a2
1 ln a1 + (a2 + 1)2 ln(a2 + 1) − a2

2 ln a2

+ (a+ 1)2 ln(a+ 1) − (a+ 2)2 ln(a+ 2)

]

= 2(αs)2
3

∑

i=1

[

(ai + 1)2 ln(ai + 1) − a2
i lnai

]

(4.10)
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which agrees with the result obtained in [23]. In obtaining the last equality, we used the
sum of the charges in (3.16). We note that the final formula is symmetric in the three
“charges” ai, as it should be.

4.2. The 4–Point Function

The electrostatics problem corresponding to the 4–point function is to find the elec-
trostatic energy of the equilibrium configuration of the point charges ai (i = 1, 2, 3, 4) and
the Liouville charge density ρ(z). The location of the point charges may be taken to be
(z1, z2, z3, z4) = (z1, 0, 1,∞) using conformal invariance. The point z1 and the Liouville
charge density need to be determined from the condition of electrostatic equilibrium. Us-
ing the asymptotic conditions on the electric field function ω(z) given in (3.15), we may
eliminate R1 and R2 in terms of the ai and R3. Making use of the definition a = a1+a2+a3

of (3.18), we find

R2 = 4 + 4a+ (z1 − 1)R1 R3 = −4 − 4a− z1R1 (4.11)

Unlike the case of the three point function, we can not determine all the Ri’s solely from
the asymptotics of ω(z). The density function ρ(z) may be obtained as

ρ(z) =
1

2π

√

−Q4(z)

z(z − 1)(z − z1)
(4.12)

where

Q4(z) = (a+ 2)2
4

∏

i=1

(z − xk)

=
[

a1z(z − 1) + a2(z − z1)(z − 1) + a3(z − z1)z
]2

+ z(z − 1)(z − z1)
[

(4 + 4a)(z − z1) +R1z1(1 − z1)
]

(4.13)

and

R1 = −8

[

b12
z1

+
b13

z1 − 1

]

(4.14)

The locations of the zeros of ρ(z)dz, {xk|k = 1, 2, 3, 4} may be determined algebraically
as a function of z1 by solving the fourth order polynomial equation Q4(z) = 0, albeit
cumbersome. These zeros, together with the reality condition (3.21) determine the support
for the Liouville charge density C.

The quadratic branch cuts may be chosen along the intervals [x1, x2] and [x3, x4]; A-
and B-periods of the elliptic curve may be taken as the contours around [x1, x2] and the
closed contour (along the first and second sheets) [x2, x3].

The modulus τ of the curve is then determined from the periods, which are given in
turn by the elliptic integrals

τ =

∫

B
dz/

√

Q4(z)
∫

A
dz/

√

Q4(z)
(4.15)

with the reality requirement on the A-period
∫

A

dz/
√

Q4(z) real (4.16)
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An alternative determination of the modulus τ that does not require explicit knowledge of
the roots of Q4(z) proceeds from the discriminant ∆ of the curve y2 = Q4(z). In general,
the discriminant is given in terms of the roots xi as follows

∆ = 16

4
∏

i<j

i,j=1

(xi − xj)
2 (4.17)

The explicit expression for the zeros is however not needed, and ∆ may be expressed as
a polynomial in the coefficients of Q4(z). Equivalently, using a Möbius transformation,
one of the zeros of Q4(z) may be moved to ∞ and the polynomial may be put in Jacobi
standard form

Q̃4(w) = 4w3 − g2w − g3 (4.18)

so that ∆ = g3
2 − 27g2

3. The coefficients g2, g3 may be related to the coefficients of the
original polynomial Q4(z); let

Q4(z) ≡ q0z
4 + 4q1z

3 + 6q2z
2 + 4q3z + q4 (4.19)

then

g2 = q0q4 + 3q22 − 4q1q3, g3 = det





q0 q1 q2
q1 q2 q3
q2 q3 q4



 (4.20)

It is straightforward but cumbersome to reexpress g2, g3 in terms of physical quantities
using (4.13) and we shall not do so here.

The discriminant then determines the modular invariant function J as follows

J =
g3
2

g3
2 − 27g2

3

(4.21)

and J determines the modulus τ in terms of a hyperelliptic expression

τ = e2πi/3
F (J) − µeiπ/3J1/3F̃ (J)

F (J) − µe−iπ/3J1/3F̃ (J)
(4.22)

where

F (J) ≡ 2F1(
1

12
,

1

12
;
2

3
; J), F̃ (J) ≡ 2F1(

5

12
,

5

12
;
4

3
; J) (4.23)

and

µ ≡ (2 −
√

3)
F (1)

F̃ (1)
= (2 −

√
3)

Γ(11/12)2Γ(2/3)

Γ(7/12)2Γ(4/3)
(4.24)

While these expressions are not elementary, they are completely explicit.
The density may be obtained in terms of geometric objects as in (3.39)

dwρ(w) =

N
∑

i=1

aiτz+
i
z−
i

+ γ1ω1 (4.25)

where

γ1 = 2

∫ x2

x1

dw ρ(w) (4.26)

This determines γ1 in terms of the external charges ai’s and R1. Given the density dwρ,
it remains to integrate this function to obtain the correlation function as in (3.49) —
numerically if necessary. We shall not attempt to do this here, but consider a simplified
scattering configuration instead.

28



4.3. Symmetric Scattering : A Solvable Case

While the most general four point function does not seem to be calculable analytically,
we will treat an illustrative example of a class of four point functions which is solvable
algebraically. It corresponds to the case where the external momentum distributions are
symmetrical, and involve only symmetric scattering.

We treat the case when the charge distribution of the electrostatics problem corre-
sponding to the 4–point function has a ZZ2 symmetry. For the class of 4–point functions
whose saddle points have this property, we may obtain the Liouville charge density ρ(z)
and the four point function algebraically. Without loss of generality, we may choose the
point charges {ai|i = 1, 2, 3, 4, a3 = a1} to be at (z1, z2, z3, z4) = (−1, 0, 1,∞). The
ZZ2 symmetry operation interchanges z and −z. This class of charge configuration spans
a subspace with complex codimension two of the full configuration space. The external
momenta need to satisfy

k1k2 = k2k3 (4.27)

Since β1 = β3, particles 1 and 3 should be regarded as both incoming and (4.27) corre-
sponds to the condition of transverse scattering in the center of mass frame.

From the asymptotics of ω(z), (3.15), and the ZZ2 symmetry we obtain Ri’s as

R2 = 0, R1 = −R3 = 2 (a+ 1) (4.28)

Th is allows us to determine the zeros of the ρ(z) and hence ρ(z) itself as

ρ(z) =
1

2π
(a+ 2)

√

(z2 − x2
1)(x

2
2 − z2)

z(1 − z2)
(4.29)

where

x2
1, x

2
2 =

a(a2 + 2) + 2 ±
√

2(a1 + 1)(a2 + 1)(a+ 1)

(a+ 2)2
(4.30)

The support for the density, C is determined by the zeros of ρ(z) and the condition (3.22).
In particular, for any real values of a1, a2 (not necessarily positive) it may be shown that
0 ≤ x1, x2 ≤ 1 so that the support for ρ is C = [−x2,−x1] ∪ [x1, x2]. We note that this
particular class of the 4–point function is identical to the three point function except that
a1 and z are “doubled” to 2a1 and z2. There are two further conditions that need to be
satisfied for consistency; namely R2 defined by the integral as in (3.27) needs to agree with
R2 obtained above from the asymptotics of ω(z) and the integral of ρ(w) over C needs to be
one. A straightforward analysis suffices to show that these identities are indeed satisfied.

Once we have obtained the density ρ(w), we may proceed to compute the 4–point
function using (3.30). The computation may be carried out completely analytically as in
the 3–point function case:

E0 = −2(αs)2
[

(2a1 + 1)2 ln(2a1 + 1) − 2a2
1 ln(2a1) + (a2 + 1)2 ln(a2 + 1) − a2

2 ln a2

+ (a+ 1)2 ln(a+ 1) − (a+ 2)2 ln(a+ 2)

]

= −2(αs)2
[

(2a1 + 1)2 ln(2a1 + 1) − 2a2
1 ln(2a1) +

∑

i=2,4

(

(ai + 1)2 ln(ai + 1) − a2
i ln ai

)

]

(4.31)
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The above result may be naturally be continued to the complex domain analogously to
the three point function case. The electrostatic energy behaves linearly as a function of
the Mandelstam variables uij , in the high energy limit, and thus the 4-point amplitude for
symmetrical scattering behaves exponentially as a function of the Mandelstam variables.
This behavior is the one obtained for the high energy limit of critical strings, yet the precise
behavior of the two amplitudes is clearly different. Also, even though exponential behavior
was established through explicit formulas only for the symmetric 4-point function, it is clear
that the expression for the general 4-point function also exhibits exponential behavior of
the amplitudes. We shall expand further on this behavior in the next section.

5. Discussion

In the present paper, we have derived explicit formulas for the high energy limit of
non-critical string theory, on worldsheets with the topology of the sphere. It is found that,
for generic values of the matter central charge c, the amplitudes behave exponentially in
the Mandelstam variables u, for large energy.

〈
N
∏

i=1

Vi〉 ∼ κ1e
κ0u (5.1)

This behavior is analogous to that of critical strings at high energies. However, the precise
argument κ0 of the exponential is different than in the critical case. In general, the large
energy limit is given in terms of hyper-elliptic integrals, which, as we showed here, can
be described concretely. Many very interesting questions remain, which we shall briefly
address below.
(1) While the high energy asymptotic behavior of the non-critical amplitudes is generi-

cally exponential, it is in principle possible that the argument of the exponential κ0,
or that the prefactor in front of the exponential κ1 vanishes at certain special values
of the central charge c. We have shown, by explicit calculation, that the argument
of the exponential κ0 does not vanish for the 4-point function of a symmetrical scat-
tering process. By analyticity, it is then expected that the argument will in fact be
generically non-zero for any value of the central charge.

Cancellations of the prefactor κ1 on the contrary are expected to occur at certain
isolated values of the central charge c, such as at c = 1, where the behavior of the
amplitude is known to be polynomial in the Mandelstam variables. Within the limi-
tations of the leading behavior of the high energy limit of the scattering amplitudes,
this prefactor κ1 is not accessible. Instead, its study would require going to next
order and studying the small oscillation problem around the semi-classical dominant
configuration. Zeros in κ1 may then occur through the existence of zero modes of
the small oscillation problem (which would be relatively easy to see). They could
also arise through the vanishing of the regularized functional determinant of the small
oscillation problem, such as could occur in ζ-function regularization (which would be
much more difficult to see).

(2) In this paper, we have calculated explicitly only in the case of tree level amplitudes.
The higher loop case will be dealt with in a forthcoming publication. We shall just
point out here that, in the case of higher loop amplitudes, the high energy limit of
the amplitudes again corresponds to an electro-statics problem, this time on a higher
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genus Riemann surface. On physical grounds, it is easy to argue that the presence of
the Liouville interaction will again produce an infinite number of charges, just as in the
tree level case. The Liouville charges accumulate onto curve segments which produce
quadratic branch cuts on the Riemann surface. This may be seen, for example, by
using the method of images to represent the charges on higher genus surfaces, or
may be worked out directly in terms of the prime form on the surface. From these
considerations, it is to be expected that the general behavior of the loop amplitudes
is again exponential in the Mandelstam variables at high energy.

(3) Finally, the questions of practical importance, such as the implications of our results
for the 3-D Ising model and off-shell string theory remain to be worked out in a
concrete way. We expect that the high energy limit, derived here, can be used as the
starting point for a systematic expansion to physical correlation functions. Clearly,
much work remains to be done to achieve this goal, but we regard our results so far
as a promising step in the right direction.
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Appendix A. 3-Point Function by Jacobi Polynomials

For the case of the 3-point function (N = 3), the electro-statics problem may be solved
explicitly for any finite number s, and general complex valued charges. The method is a
generalization to complex charges of a technique presented in [34]. One introduces the
polynomial Ps(w) with roots wp

Ps(w) =

s
∏

p=1

(w − wp) (A.1)

We show that this polynomial satisfies the differential equation for Jacobi polynomials

(1 − w2)y′′ + (β − α− (α+ β + 2)w)y′ + s(s+ α+ β + 1)y = 0 (A.2)

in the following way. Since Ps is of degree s, the polynomial on the left hand side of (A.2)
obtained by setting y(w) = Ps(w), is at most of degree s. Thus, it suffices to check that
it vanishes on s points, which we choose to be wp, p = 1, · · · , s. At these points, the third
term in y vanishes; working out the derivatives using (A.1), and then using (A.2), we have

P ′′
s (wp)

P ′
s(wp)

=
s

∑

q 6=p

1

wp − wq
=

−1 − α

wp − 1
+

−1 − β

wp + 1
(A.3)
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The above equation can be identified with the electro-statics equilibrium equation for the
wp for three external points (z1, z2, z3) = (−1, 1,∞) and charges related by

α = −1 +
a1s

2
, β = −1 +

a2s

2
(A.4)

Thus, the Liouville charges at wp are located at the zeros of the Jacobi polynomials Ps(w) =

P
(α β)
s (w). Jacobi polynomials are perfectly well-defined for general complex α and β. For
α, β real and > −1, the zeros are real and between −1 and 1; this is in fact the case
originally considered in [34] of all repulsive charges. For general complex values of the
charges, the zeros move into the complex plane. For large s however, the zeros always
accumulate on a curve of charge density, converging towards ρ(w)dw of (4.4).
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