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1 Introduction

Stimulated by recent data [1, 2] from the Fermilab Tevatron collider and by the prospects
for future experiments with the CERN LHC, there is currently much interest in the possible
interpretations of hadronic jets at large transverse energy ET [3, 4]. It is premature to
focus on speculative interpretations of the CDF data [1] until they have been reconciled
satisfactorily with those from D∅ [2], and until there there is consensus whether it is possible
to make a new global fit to parton distributions within the proton which accommodates
the new data: for contrasting approaches, see [5, 6]. Nevertheless, it is appropriate to
ask whether there are other ways in which one could in principle distinguish between a
conventional QCD interpretation of large-ET jet data and possible new physics such as a Z ′

boson [3] or compositeness [7]. This question is also important for future experiments at the
LHC, which may well be confronted by it in their own large-ET data a decade or so hence.

The purpose of this paper is to publicize a diagnostic tool which has been proposed in the
literature but has not, to our knowledge, been discussed in connection with current large-ET

data: it is the pattern of hadronic energy flow around the large-ET jet axes.
It has been known for a long time [8, 9] that the structure of multi-jet events in hard

processes is influenced by the underlying colour dynamics at short distances. Detailed fea-
tures of the parton shower, in particular the flow of colour quantum numbers, control the
distributions of colour-singlet hadrons in the final state [10]. To leading order in the large-Nc

limit, the analytic results for such antenna patterns coincide with the Lund string picture
[11]. The first, and still the best, example of such a colour-related phenomenon is the so-
called string [12] or drag [13] effect in e+e− → q̄qg events, which is very well established
experimentally, see for example Refs. [14, 15]. Colour coherence effects have also been seen
very clearly in multi-jet events in p̄p collisions [16].

Patterns of hadron production in the large-ET event plane have been measured, and
shown [16] to differ significantly from the predictions of Monte Carlo models that do not
include colour coherence and interference effects. On the other hand, the measurements
agree very well with the predictions of Monte Carlo models, such as HERWIG [17], JETSET
[18], ARIADNE [19] and JETRAD [20], which incorporate QCD colour coherence with
interfering gluons1. In particular, initial/final-state colour interference effects have been
seen very clearly in the data. Thus the hadronic structure of a multi-jet event draws its
colour portrait, and can be regarded as a “partonometer” mapping the basic interaction
process.

A natural idea which has been proposed [8, 21, 22, 23, 24, 25, 26], is to use this “partonom-
etry’ to help distinguish new physics signals from backgrounds due to conventional QCD.
One example of particular interest to the LHC is the possible use of rapidity gaps to favour
Higgs production events [8, 23], and the pattern of QCD radiation in tt̄ production has been
examined [27]. Our suggestion here is to use “partonometry” to dissect the colour struc-
ture of the large-ET jet events observed by CDF [1] and D∅ [2], as a way to distinguish
between conventional QCD and possible new production mechanisms such as a Z ′ boson [3]
or compositeness [1, 7].

1There are interesting differences between Monte Carlo results and the exact analytical QCD expectations
[21], but these do not concern us here.
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For any given pattern of colour flow between the initial and final states, there is a charac-
teristic [21, 24, 26] pattern of gluon emission and hence hadronic energy flow in the transverse
event plane. This is universal for hadron energies in the range ΛQCD ≪ E ≪ ∑

ET , in the
approximation of a large number of colours Nc. This should be a good approximation for
secondary jet emission in the qq(qq̄), qg and gg scattering processes of most interest for
the Tevatron and the LHC. In this paper, we collect and compile the relevant formulae for
conventional QCD, Z ′ and composite-model contributions to the large-ET cross section, and
discuss how these may be used to distinguish between these possible production mechanisms.

2 An Example of the Diagnostic Power of Hadronic

Antenna Patterns

We begin by considering a simple illustrative example, the subprocess qq̄ → q′q̄′, where q and
q′ denote different quark flavours, which makes a distinctive contribution to the hadronic
energy flow in large-ET jet production at the Tevatron collider. In QCD, this process is
dominated by s-channel gluon exchange. Suppose that there is an additional non-standard
contribution from the s-channel exchange of a new, heavy Z ′ vector boson, qq̄ → Z ′ → q′q̄′.
If we assume, for simplicity, that the Z ′ has a vector coupling of strength g′ to the quarks,
then the matrix element squared is

∑

|M|2 =
g4

sCF

Nc

u2 + t2

s2
+ 2g′4

u2 + t2

(s−M2
Z′)2 +M2

Z′Γ2
Z′

, (1)

where CF = (N2
c − 1)/2Nc, and MZ′ and ΓZ′ are the Z ′ mass and width respectively. If

the final-state quarks are produced at wide angle with transverse energy ET then all the
kinematic invariants are of order E2

T . For ET (∼ √
s/2) ≪MZ′ , the QCD process dominates.

As ET increases, the Z ′ contribution becomes more important, becoming maximal when
ET ∼MZ′/2.

Next consider the emission of a soft gluon in the above process, i.e. q(p1) + q̄(p2) →
q′(p3) + q̄′(p4) + g(k). In the soft gluon and large-Nc approximations, the matrix element is

∑

|M|2 =
g6

sCF

Nc

(

u2 + t2

s2

)

{

2CF ([13] + [24])
}

+2g2

sg
′4

(

u2 + t2

(s−M2
Z′)2 +M2

Z′Γ2
Z′

)

{

2CF ([12] + [34])
}

. (2)

The distribution of soft gluon radiation is controlled by the basic antenna pattern (see for
example Ref. [10])

[ij] ≡ pi · pj

pi · k pj · k
=

1 − ni · nj

(1 − n · ni) (1 − n · nj)
(3)

which describes the emission of soft primary gluons with energies E: ΛQCD ≪ E ≪ Ei, Ej .
The production of soft hadrons is then described by extra multiplicative cascading factors
N ′

q(ET ) and N ′

g(ET ) within quark and gluon jets respectively (for details see Refs. [9, 13]):

N ′

q,g(ET ) =
dNq,g

d lnET

, (4)
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where Nq,g(E) is the particle multiplicity in an individual q, g jet with energy E. Asymptot-
ically

N ′

q(ET ) =
CF

Nc

N ′

g(ET ) (5)

with
N ′

g(ET )

Ng(ET )
=

√

4Ncαs(ET )

2π

[

1 +O
(
√

αs

π

)]

. (6)

Note that in the various asymmetry parameters (e.g. those used to describe the string effect)
the cascading factors normally cancel. In the present study we will mainly be interested in
the distribution of soft jets accompanying large-ET jet production. We shall assume that
this is well approximated by the distribution of a soft primary gluon which is given by matrix
elements such as (2).

Returning to the qq̄ → q′q̄′ process, we see from (2) that the radiation pattern is different
for the QCD and Z ′ contributions. At small ET , the distribution is given by the sum of the
[13] and [24] antennas. Soft gluon radiation is enhanced in the phase space region between
the directions of partons 1 and 3 (and also between 2 and 4). If, however, at large ET the
Z ′ contribution is dominant, then the distribution is given by the sum of the [12] and [34]
antennas, which yields a more symmetric radiation pattern. Thus the soft gluon distribution
acts as a “partonometer” for probing the hard scattering process. In general, each type of
2 → 2 scattering will have its own distinctive radiation pattern.

In order to make the study more quantitative we must define appropriate kinematic
distributions and then compute the contributions of the various subprocesses. In order to
fully understand the differences between these, we first consider the soft gluon distribution
at the parton-parton scattering level with fixed kinematics. The generic process is

a(p1) + b(p2) → c(p3) + d(p4) + g(k) , (7)

where the gluon is soft relative to the two large-ET partons c and d. Ignoring the gluon
momentum in the energy-momentum constraints, and using the notation pµ = (E, px, py, pz),
we write

pµ
1 = (ET cosh η, 0, 0, ET cosh η) ,

pµ
2 = (ET cosh η, 0, 0,−ET cosh η) ,

pµ
3 = (ET cosh η, 0, ET , ET sinh η) ,

pµ
4 = (ET cosh η, 0,−ET ,−ET sinh η) ,

kµ = (kT cosh(η + ∆η), kT sin ∆φ, kT cos ∆φ, kT sinh(η + ∆η)) . (8)

This is the appropriate form for studying the angular distribution of the soft gluon jet
relative to the large-ET jet 3, the separation between these being parametrized by ∆η and
∆φ. Alternative variables, more suited to the experimental analysis, are the radial and polar
angle variables in the “LEGO plot”:

∆η = ∆R cosβ ,

∆φ = ∆R sin β . (9)
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which are defined in such a way that that the LEGO–plot separation between soft jet k
and hard jet p3 is constant: R(k, p3) =

√
∆η2 + ∆φ2 = ∆R, (0 ≤ ∆R < ∞) , and the

azimuthal orientation of jet k around jet p3 in the LEGO plot is parametrized by the angle
β, (0 ≤ β < 2π).

In terms of these variables, the soft gluon phase space is

1

(2π)3

d3k

2Ek

=
1

16π3
kTdkT ∆Rd∆R dβ . (10)

We will be particularly interested in the behaviour of the cross section as a function of β for
fixed kT ,∆R and fixed ET , η.

Note that the β distributions presented here should be considered only as instructive
examples. In the quantitative study of interference phenomena it may prove useful to exploit
other variables, for example the α variable used in the CDF analysis [16]. Another useful
discriminator for studying the underlying scattering dynamics is provided by correlations of
the type [9, 29]

NUR ±NLL −NUL ∓NLR

NUR +NLL +NUL +NLR

, (11)

where Nij is the number of events with the soft jet in the angular region ij of the scattering
plane (i denotes the upper (U) or lower (L) quadrant and j denotes the left (L) or right (R)
quadrant).

There are a large number of processes of type (7). The matrix elements are collected
in the Appendix. In addition to the QCD contributions, we include also the contributions
from Z ′ exchange to qq → qq scattering (including processes related by crossing), assuming
an interaction of the form

g′ ψqγµ(vq + aqγ5)ψq Z
′µ . (12)

For illustrative purposes in our numerical calculations, we use the set of parameters suggested
in Ref. [28] on the basis of a combined fit to LEP and CDF data:

vu = 1.2 , au = 3.2 , vd = −1 , ad = 1 , (13)

with g′ = e/ sin θW and MZ′ = 1 TeV.
We first show results for a very simple kinematic configuration, 2 → 2 scattering at 90◦

in the parton centre-of-mass frame, i.e. η = 0 in Eq. (8). We fix kT and ET at 10 GeV and
100 GeV respectively, so that kT ≪ ET , and study the angular (β) distribution of the soft
gluon jet around one of the two large-ET jets (p3), see Fig. 1. Following the D∅ analysis [2], we
use the variables ∆R and β defined above. For small ∆R, the radiation pattern is dominated
by the matrix-element singularity when k and p3 are parallel: the β distribution is constant
and simply reflects the colour charge of the emitting parton. For large ∆R, the pattern is
sensitive to the colour flow in the scattering process. We display results for ∆R = 1, which
is typical of the values used in the experimental analyses. Figure 2 shows the soft gluon
distribution for various 2 → 2 scattering processes as a function of β2. The quantity plotted
is the ratio of the 2 → 3 and 2 → 2 matrix elements, omitting an overall factor of g2

s . The

2For the choice of kinematics adopted here, the distribution is symmetric in β ↔ 2π − β.
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jet 2 (p )4

jet 1 (p )3

β

beam axis

  

jet 3 (k)

Figure 1: Jet configuration for the numerical studies described in the text.

characteristics of these distributions can be understood in terms of the colour strings linking
the initial- and final-state partons, see for example Ref. [10]. Notice in particular that the
distribution for the gg → gg process is approximately constant, reflecting the comparable
contributions to the radiation pattern from the incoming and outgoing gluons. For the
qg → gq and qg → qg processes, the distributions are peaked in the backward (cos β < 0)
direction. For the former, this corresponds to the colour string between an outgoing 8 and
8, as for gg → gg.

Also shown in Fig. 2 is the radiation pattern for the process qq̄ → Z ′ → q′q̄′. In this case
the distribution has the simple analytic form

dW
dβ

= 2CF ([12] + [34]) =
4CF

k2
T

[

1 +
1

cosh2(∆R cos β) − cos2(∆R sin β)

]

. (14)

Note that the [12] antenna corresponding to gluon radiation from the initial-state qq̄ gives
a contribution which is independent of β. In the large-Nc limit, the corresponding QCD
process gives the distribution

dW
dβ

→ 2CF ([13] + [24]) =
4CF

k2
T

[

cosh2(∆R cosβ) + sinh(∆R cosβ) cos(∆R sin β)

cosh2(∆R cosβ) − cos2(∆R sin β)

]

. (15)

In contrast to (14), this distribution is not symmetric about β = 90◦. For a heavy Z ′

with sizeable couplings to quarks, we would expect a transition from the “QCD” radiation
pattern at low ET to the “Z ′” radiation pattern at high ET . This is illustrated in Fig. 3,
for the parton scattering process uū → dd̄. The distribution is obtained from Eq. (A4) and

5



0 20 40 60 80 100 120 140 160 180
0.00

0.05

0.10

0.15

0.20

0.25

q g → q g

q g → g q

g g → g g

q q → Z' → q' q'

q q → q' q'

|M
3|2  / 

|M
2|2

β  (degrees)

Figure 2: Ratio of the 2 → 3 and 2 → 2 matrix elements as a function of the soft gluon
azimuthal angle about the large-ET jet, for various QCD and Z ′ subprocesses.

contains the contributions from the QCD and Z ′ processes, and their interference. For these
simple kinematics, ET = MZ′/2 = 500 GeV corresponds to the resonance peak where the
Z ′ contribution is maximal. Notice the significant change in the shape of the distribution as
ET approaches this value from below.

The interference between the QCD and Z ′ contributions deserves further discussion. By
colour conservation, this is absent in the leading-order (no gluon radiation) amplitudes, and
at O(αs) is suppressed by a single power of Nc in the large-Nc limit, see Eq. (A4). The
corresponding antenna pattern is given by

dWint

dβ
→ 2CF ([13] + [24]− [14]− [23]) =

8CF

k2
T

[

sinh(∆R cosβ) cos(∆R sin β)

cosh2(∆R cosβ) − cos2(∆R sin β)

]

, (16)

where we have substituted the kinematic variables relevant to Fig. 3, i.e. η = 0. The
interference contribution vanishes on the Z ′ resonance (i.e. for ET = 500 GeV in Fig. 3) and
is everywhere numerically small relative to the sum of the QCD and Z ′ amplitudes squared.
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0 20 40 60 80 100 120 140 160 180
0.04

0.06

0.08

0.10

0.12

0.14

u u → d d (g)

700

200

400

300

600
500

ET = 100 GeV

|M
3|2  / 

|M
2|2

β  (degrees)

Figure 3: Ratio of the 2 → 3 and 2 → 2 matrix elements as a function of the soft gluon
azimuthal angle about the large-ET jet for the uū → dd̄(g) subprocess, including QCD and
Z ′ contributions.

As an illustration, Fig. 4 shows the decomposition of the uū → dd̄(g) radiation pattern for
ET = 400 GeV. For this kinematic configuration (90◦ scattering in the parton centre-of-mass
frame) the interference is antisymmetric about β = 90◦. Note that the antenna pattern in
Eq. (16) is asymmetric with respect to the interchange p3 ↔ p4 and therefore vanishes if one
does not distinguish the final-state jets. It also vanishes after integration over the angles
between the qq̄ and q′q̄′ antennae, see Ref. [27]. This can readily be seen by writing Eq. (16)
as

2CF ([13] + [24] − [14] − [23]) = −8CF

|~k|2

[

cosφ

sin θ1 sin θ3

]

, (17)

where θ1,3 is the polar angle between the ~k and and ~p1,3 vectors, and φ is the azimuthal angle

between the planes formed by ~k, ~p1 and ~k, ~p3.
More generally, the interference between diagrams with different colour flows at the am-

plitude level destroys the factorization of the radiation pattern into a product of the eikonal
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0.00

0.02

0.04

0.06

0.08

0.10

0.12

interference

QCD

Z'

total u u → d d (g)

|M
3|2  / 

|M
2|2

β  (degrees)

Figure 4: Decomposition of the uū → dd̄(g) radiation pattern of Fig. 3, for ET = 400 GeV.
The curves represent the various contributions to the 2 → 3 matrix element squared, nor-
malized in each case to the total QCD+Z ′ 2 → 2 matrix element squared.

antenna factors and the lowest-order cross sections. Note that an analogous interference
contribution induces “colour interconnection effects” in the pattern of gluon radiation ac-
companying e+e− → q1q̄2q3q̄4 events, see Ref. [30].

We conclude this section with some remarks on the validity of the soft gluon and large-
Nc approximations. Consider, for example, the QCD 2 → 3 process qq′ → qq′g. The exact
matrix element is [31]

∑

|M|2(exact) =
g6

sCF

Nc

(

s2 + s′2 + u2 + u′2

2tt′

)

{

2CF ([14] + [23]) +
1

Nc

[12; 34]
}

, (18)

where

s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2,

s′ = (p3 + p4)
2, t′ = (p2 − p4)

2, u′ = (p2 − p3)
2. (19)
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The soft gluon approximation which we have used in the above calculations corresponds to

∑

|M|2(soft) =
g6

sCF

Nc

(

s2 + u2

t2

)

{

2CF ([14] + [23]) +
1

Nc

[12; 34]
}

, (20)

with s = s′ etc. Making the large-Nc approximation, the above expression simplifies further
to

∑

|M|2(soft, large-Nc) =
g6

sCF

Nc

(

s2 + u2

t2

)

{

2CF ([14] + [23])
}

. (21)

To test the validity of these approximations, we consider the ratios of the matrix elements
in (20) and (21) to that in (18). For the latter, we use exact 2 → 3 kinematics defined by

pµ
1 = (E, 0, 0, E) ,

pµ
2 = (E, 0, 0,−E) ,

pµ
3 = (ET cosh η, 0, ET , ET sinh η) ,

pµ
4 = (E4,−kT sin ∆φ,−ET − kT cos ∆φ,−ET sinh η − kT sinh(η + ∆η) ,

kµ = (kT cosh(η + ∆η), kT sin ∆φ, kT cos ∆φ, kT sinh(η + ∆η)) . (22)

with E4 = |p4| and 2E = E3 + E4 + Ek. Figure 5 shows the ratio of the approximate and
exact matrix elements as a function of β for η = 0, ∆R = 1, and kT/ET = 0.1, 0.2. The
solid lines indicate that the corrections to the radiation pattern in the soft approximation
scale as O(kT/ET ). The difference between the dashed and solid lines is O(10%), consistent
with O(1/N2

c ) corrections to the large-Nc approximation. The curves in Fig. 5 attain their
maximum deviation from unity at the end-points, cosβ = ±1, since for this choice of kine-
matics the ratio of the gluon energy to that of jet 3 is Ek/E3 = cosh(cosβ)kT/ET , which for
fixed kT/ET is maximal at large | cosβ|. In what follows we shall use the soft gluon matrix
elements listed in the Appendix, retaining the complete set of antennas valid for arbitrary
Nc.

3 Convolution with Parton Distributions

To obtain realistic predictions for the distribution of soft gluon radiation accompanying
large-ET jets at, say, the Tevatron p̄p collider, we must convolute the matrix elements with
appropriate parton distributions. This then gives a ET -dependent mixture of the various
distributions shown in Fig. 2. To avoid unnecessary complications from kinematics, and
to make contact with the parton-level results obtained above, we consider the production
of a pair of large-ET jets at zero rapidity in the laboratory frame, i.e. ET3 = ET4 = ET ,
η3 = η4 = 0. The leading-order inclusive two-jet cross section is

d3σ

dη3dη4dET

=
ET

8πx1x2s2

∑

a,b,c,d=q,q̄,g

fa(x1, µ
2)fb(x2, µ

2)

× 1

1 + δcd

∑

|M(ab→ cd)|2 , (23)

9
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Figure 5: Ratio of approximate and exact matrix elements, as described in the text.

with x1 = x2 = xT ≡ 2ET/
√
s for our choice of kinematics. The symmetry factor δcd is

1(0) for identical (non-identical) partons in the final state. Next-to-leading order corrections
to the inclusive cross section are approximately taken into account by the scale choice µ =
ET/2. We use the recent MRS(R2) parton set (αs(M

2
Z) = 0.120), which gives a good overall

description of the CDF and D∅ large-ET inclusive jet cross section [32]. The corresponding
two-jet + soft gluon inclusive cross section is

d6σ

dkTd∆Rdβdη3dη4dET

=
kT ∆RET

128π4x1x2s2

∑

a,b,c,d=q,q̄,g

fa(x1, µ
2)fb(x2, µ

2)

× 1

1 + δcd

∑

|M(ab→ cd+ g)|2 . (24)

For the additional factor of αs coming from the soft gluon emission we use µ = kT . As
before, we consider the ratio of the cross sections in (24) and (23) as a function of the soft

10



0 20 40 60 80 100 120 140 160 180
0.040

0.045
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 QCD
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Figure 6: Radiation pattern for the soft gluon jet in large-ET dijet production in p̄p colli-
sions at 1.8 TeV. All scattering processes are included, weighted by the appropriate parton
distributions.

gluon variables:

dΣ

dkTd∆Rdβ
≡
[

d3σ

dη3dη4dET

]

−1
d6σ

dkTd∆Rdβdη3dη4dET

. (25)

Figure 6 shows the distribution kTdΣ/dkTd∆Rdβ as a function of β for kT = 10 GeV, ∆R = 1
and various values of ET . The solid curves are the QCD predictions, and the dashed curves
include also the Z ′ contribution with same parameters as in the previous figures. We note
the following.

(i) All the distributions are symmetric about β = 90◦. This is due to our choice of
symmetric large-ET jet kinematics, and because we have summed over all combinations
of partons (jets) in the initial and final states, e.g. qg, gq → qg, gq.3

3By varying the jet rapidities one can preferentially select, say, the qg initial state over the gq initial state
and expose the asymmetries of the qg radiation pattern in Fig. 2.
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(ii) For the QCD curves, the radiation pattern decreases in magnitude as ET increases.
This is simply a colour charge effect: as one moves from small ET to large ET the
dominate subprocess scattering changes from gg to qg to qq̄.

(iii) The effect of the Z ′ contribution is clearly visible in the dashed curves at large ET . As
already seen in Fig. 2, the Z ′ radiation pattern has a peak at β = 90◦. The effect is
most significant for ET = MZ′/2, as expected. But note also a similar (though weaker)
peak structure in the QCD ‘background’. This arises from the qq̄ → qq̄ + g process
which, for the t-channel gluon exchange contribution, has a dominant CF ([12] + [34])
antenna pattern as for qq̄ → Z ′ → qq̄. The effect only arises for the identical quark
process – there is no such t-channel contribution for qq̄ → q′q̄′ + g.

(iv) This latter comment suggests a method for further enhancing the Z ′ signal, or other
new physics contributions, over the QCD background. Figure 7 shows the effect of
selecting only the bb̄ component of the final state in Fig. 6. Such a selection could in
principle be achieved experimentally by means of a vertex detector. At small ET the
dominant process is gg → bb̄ with a large, approximately flat β distribution. At large
ET , the QCD process qq̄ → bb̄ has a dominant antenna pattern given by CF ([13]+[24]),
which is very different from the CF ([12] + [34]) pattern of qq̄ → Z ′ → bb̄. We note in
passing that purely in the context of QCD, a bb̄ subsample of the large-ET dijet events
should exhibit a markedly different distribution of soft hadronic radiation.

4 Application to Composite Models

If the quarks and leptons of the Standard Model are composite objects, one would expect
to see new four-fermion contact interactions well below the scale Λ characterizing the size
of the composite states [7]. In particular, a four-quark contact interaction would produce
a flattening of the large-ET jet distribution at scales ET ∼ Λ. The colour structure of
such a contact interaction would generate a distinctive antenna pattern of soft radiation,
which could be used to distinguish between standard QCD and different types of contact
interactions between quarks.

It is straightforward to write down the most general SU(3)×SU(2)×U(1) invariant four-
quark contact interaction, see for example Ref. [33]. The generic form is

Lc =
4π

2Λ2

∑

q̄γµq q̄γµq , (26)

where the sum is over the colour, flavour and helicity labels carried by the quark fields.
There are two possible colour structures for such interactions:

q̄iγ
µqi q̄jγµqj, q̄iT

a
ikγ

µqk q̄jT
a
jlγ

µql , (27)

where i, j, k, l = 1, 2, 3 are colour labels and the T a
ij (a = 1, .., 8) are the SU(3) colour

matrices of QCD. The two terms in Eq. (27) correspond to colour singlet and octet exchange
respectively. Combining these new contact interactions with those of standard QCD, one
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Figure 7: As for Fig. 6, except that only the large-ET bb̄ final state is included. The QCD
(solid) curves for ET = 300 GeV and 500 GeV are indistinguishable.

obtains additional contributions to the 2 → 2 scattering processes involving quarks. For
example, for the qq → qq amplitude squared, the additional contributions are or order Λ−4

(contact interaction squared) and (tΛ2)−1, (uΛ2)−1 for the QCD-contact interference.
The additional contributions to the radiation pattern can be calculated in the same way.

As a specific example, we consider the most widely used interaction of type (26), involving
the product of left-handed, colour-singlet, isoscalar first-generation quark currents:

Lc =
4πη

2Λ2

∑

i,j=1,3

q̄iLγ
µqiL q̄jLγµqjL , (28)

where q = (u, d) and η = ±1 determines whether the interference with the standard QCD
interaction is constructive or destructive. In fact the effect of such an interaction can be
readily obtained as a limiting case of the Z ′ results listed in the Appendix, specifically by
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setting v′ = −a′ = 1 and taking the limit

MZ′ , g′ → ∞ with

(

2g′

MZ′

)2

= −4πη

Λ2
fixed. (29)

Thus for ud→ ud+ g we obtain (cf. A5)

∑

|M|2 =
g6

sCF

Nc

(

s2 + u2

t2

)

{

2CF ([14] + [23]) +
1

Nc

[12; 34]
}

+
(4π)2g2

ss
2

Λ4

{

2CF ([13] + [24])
}

+
4πηg4

ss
2

tΛ2

CF

Nc

{

2([14] + [23] − [12] − [34])
}

.

(30)

Radiation patterns for the other quark interactions can be obtained in a similar way. The
numerical results will be qualitatively similar to those for the heavy Z ′ presented in Sections
2 and 3.

For a four-quark interaction corresponding to colour octet exchange, the effect on the
radiation pattern at large ET will be much less dramatic, since the antenna structure for,
say, qq̄ → qq̄ scattering will be the same for both standard gluon exchange and for the
contact interaction. In principle, therefore, the radiation pattern provides a unique method
for unravelling the colour structure of a new four-quark interaction.

5 Conclusions

We have demonstrated in this paper how the hadronic antenna pattern due to gluon radiation
may be used as a diagnostic tool which reveals the short-distance colour flow dynamics, and
hence may be used to discriminate between different production mechanisms for large-ET jets
in p̄p or pp collisions. In particular, we have discussed in some detail the hadronic antenna
pattern associated with the production of a Z ′ boson decaying into jet pairs, and contrasted
it with that predicted by conventional QCD. We have also related contact interactions with
different colour exchanges to the QCD and Z ′ cases, so that they may also be distinguished
by their hadronic antenna patterns.

The diagnostic tool provided by these hadronic antenna patterns may be useful in the
analysis of current large-ET jet events at the Fermilab p̄p. If they turn out to have some
component beyond conventional QCD, gluon radiation may help pin down the additional
production mechanism. Even if the current large-ET data turn out to be satisfactorily fitted
within conventional QCD, this tool may be a useful addition to the kit of analysis methods
to be applied to future hadronic-jet data at even larger ET at the LHC.

Finally, we note that the technique of using hadronic antenna patterns as a probe of
new physics has many other applications other than those discussed in detail in this study.
For example, in Higgs production by gluon-gluon fusion at hadron colliders the density of
hadrons in the plateau corresponding to the incoming partons (the [12] antenna) should be
approximately twice as large as for Z ′ production. Another application is to final states
in deep-inelastic scattering, where the technique could be used, for example, as a probe of
“rapidity-gap” physics.
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Appendix

The following expressions are for the spin/colour summed/averaged matrix elements for the
scattering processes

a(p1) + b(p2) → c(p3) + d(p4) + g(k) (A1)

in the soft gluon approximation. The QCD matrix elements are taken from Refs. [8, 21, 26].
The antennae are defined by

[ij] =
pi · pj

pi · k pj · k
,

[ij; kl] = 2[ij] + 2[kl] − [ik] − [il] − [jk] − [jl] . (A2)

and
s = (p1 + p2)

2 , t = (p1 − p3)
2 , u = (p1 − p4)

2 . (A3)

The Z ′ couplings are defined in Eq. (12), with (v, a) and (v′, a′) denoting the vector, axial
couplings of the Z ′ to quarks q and q′ respectively. Only a subset of all the possible processes
are listed; the rest can be obtained by crossing.

q(p1) + q̄(p2) → q′(p3) + q̄′(p4) + g(k)

∑

|M|2 =
g6

sCF

Nc

(

u2 + t2

s2

)

{

2CF ([13] + [24]) +
1

Nc

[14; 23]
}

+2g2

sg
′4

(

(u2 + t2){(v2 + a2)(v′2 + a′2)} + (u2 − t2){4vav′a′}
(s−M2

Z′)2 +M2
Z′Γ2

Z′

)

×
{

2CF ([12] + [34])
}

+
g4

sg
′2

Nc

2Re

(

(u2 + t2){vv′} + (u2 − t2){aa′}
s[s−M2

Z′ + iMZ′ΓZ′]

)

×
{

2CF ([13] + [24] − [14] − [23])
}

(A4)
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q(p1) + q′(p2) → q(p3) + q′(p4) + g(k)

∑

|M|2 =
g6

sCF

Nc

(

s2 + u2

t2

)

{

2CF ([14] + [23]) +
1

Nc

[12; 34]
}

+2g2

sg
′4

(

(s2 + u2){(v2 + a2)(v′2 + a′2)} + (s2 − u2){4vav′a′}
(t−M2

Z′)2 +M2
Z′Γ2

Z′

)

×
{

2CF ([13] + [24])
}

+
g4

sg
′2

Nc

2Re

(

(s2 + u2){vv′} + (s2 − u2){aa′}
t[t−M2

Z′ + iMZ′ΓZ′]

)

×
{

2CF ([14] + [23] − [12] − [34])
}

(A5)

q(p1) + q(p2) → q(p3) + q(p4) + g(k)

∑

|M|2 =
g6

sCF

Nc

(

s2 + u2

t2
− 1

Nc

s2

tu

)

{

2CF ([14] + [23]) +
1

Nc

[12; 34]
}

+
g6

sCF

Nc

(

s2 + t2

u2
− 1

Nc

s2

tu

)

{

2CF ([13] + [24]) +
1

Nc

[12; 34]
}

−g
6
sCF

Nc

s2

tu

(

1 − 1

N2
c

)

{

[12; 34]
}

+
g4

sg
′2

Nc

2Re

(

(s2 + u2){v2} + (s2 − u2){a2}
t[t−M2

Z′ + iMZ′ΓZ′]

)

×
{

2CF ([14] + [23] − [12] − [34])
}

+
g4

sg
′2

Nc

2Re

(

(s2 + t2){v2} + (s2 − t2){a2}
u[u−M2

Z′ + iMZ′ΓZ′]

)

×
{

2CF ([13] + [24] − [12] − [34])
}

+g4

sg
′2
CF

Nc

2Re

(

2s2{v2 + a2}
t[u−M2

Z′ + iMZ′ΓZ′]

)

×
{

2CF ([23] + [14]) +
1

Nc

([12] + [34] − [13] − [24])
}

+g4

sg
′2
CF

Nc

2Re

(

2s2{v2 + a2}
u[t−M2

Z′ + iMZ′ΓZ′]

)

×
{

2CF ([13] + [24]) +
1

Nc

([12] + [34] − [23] − [14])
}

+2g2

sg
′4

(

(s2 + u2){(v2 + a2)2} + (s2 − u2){4v2a2}
(t−M2

Z′)2 +M2
Z′Γ2

Z′

)

×
{

2CF ([13] + [24])
}

16



+2g2

sg
′4

(

(s2 + t2){(v2 + a2)2} + (s2 − t2){4v2a2}
(u−M2

Z′)2 +M2
Z′Γ2

Z′

)

×
{

2CF ([23] + [14])
}

+
g2

sg
′4

Nc

2Re

(

s2{(v + a)4 + (v − a)4}
[u−M2

Z′ + iMZ′ΓZ′][t−M2
Z′ − iMZ′ΓZ′]

)

×
{

2CF ([13] + [14] + [23] + [24] − [12] − [34])
}

(A6)

q(p1) + q̄(p2) → g(p3) + g(p4) + g(k)

∑

|M|2 = g6

sCF (t2 + u2)

[(

1 − 1

N2
c

)

1

tu
− 2

s2

]

{

2CF [12] + 2Nc[34]
}

−g
6
sNc

4
(t2 + u2)

[(

1 − 2

N2
c

)

1

tu
− 2

s2

]

{

2CF [12; 34]
}

+
g6

sNc

4
(t2 − u2)

[

1

tu
− 2

s2

]

{

2CF ([14] + [23] − [13] − [24])
}

(A7)

q(p1) + g(p2) → q(p3) + g(p4) + g(k)

∑

|M|2 =
g6

s

2
(s2 + u2)

[(

1 − 1

N2
c

)

1

−su +
2

t2

]

{

2CF [13] + 2Nc[24]
}

− g6
sN

2
c

4(N2
c − 1)

(s2 + u2)

[(

1 − 2

N2
c

)

1

−su +
2

t2

]

{

2CF [13; 24]
}

+
g6

sN
2
c

4(N2
c − 1)

(s2 − u2)
[

1

−su +
2

t2

]

{

2CF ([14] + [23] − [12] − [34])
}

(A8)

g(p1) + g(p2) → g(p3) + g(p4) + g(k)

∑

|M|2 =
4g6

sN
2
c

N2
c − 1

[

3 − ut

s2
− us

t2
− st

u2

]

{2

3
Nc([12] + [34] + [13] + [14] + [23] + [24])

}

+
2g6

sN
2
c

3(N2
c − 1)

[

3 +
st

u2
+
us

t2
− 2

ut

s2
− 3

s2

ut

]

{

Nc([12] + [34])
}

+
2g6

sN
2
c

3(N2
c − 1)

[

3 +
st

u2
+
ut

s2
− 2

us

t2
− 3

t2

us

]

{

Nc([13] + [24])
}

+
2g6

sN
2
c

3(N2
c − 1)

[

3 +
ut

s2
+
us

t2
− 2

st

u2
− 3

u2

st

]

{

Nc([14] + [23])
}

(A9)
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Several comments are in order concerning the colour-suppressed interference contribu-
tions which appear in the above results. We note first that they are not singular when
the soft gluon is collinear with either the initial- or final-state partons. Secondly, only two
of them are actually independent. To see this we introduce the following notation for the
“dipole” combinations:

Ia = [13] + [24] − [14] − [23] ,

Ib = [14] + [23] − [12] − [34] ,

Ic = [13] + [24] − [12] − [34] . (A10)

Then it follows that (see Ref. [8])

Ia + Ib = Ic ,

Ia + Ic = [13; 24] ,

Ib − Ia = [14; 23] ,

[13; 24] + [14; 23] = −[12; 34] . (A11)

Note that interchanging p3 ↔ p4 gives

Ia → −Ia ,
Ib → Ic ,

[12; 34] → [12; 34] ,

[13; 24] → [14; 23] . (A12)
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T. Sjöstrand, CERN preprint CERN-TH 6488/92 (1992).
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