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ABSTRACT

The massive soliton theories describe integrable perturbations of WZW cosets

as generalized multi-component sine-Gordon models. We study their coupling

to 2-dim gravity in the conformal gauge and show that the resulting models

can be interpreted as conformal non-Abelian Toda theories when a certain

algebraic condition is satisfied. These models, however, do not provide quan-

tum mechanically consistent string backgrounds in the case the underlying

WZW constraints are first solved classically.
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It is well known that any Lagrangian can be made scale invariant by appropriate coupling

to a bosonic field φ that transforms non-linearly φ(x) → φ(eαx) + α/γ, where γ is a

constant and α is the scale parameter. Let L = Ls − V be the decomposition of the

original Lagrangian into a scale invariant part Ls and a scale breaking potential V .

Then,

L′ = Ls − e
2γφV +

1

2γ2
∂µe

γφ∂µeγφ (1)

is manifestly scale invariant and also conformal. This prescription was used in the past

to write down 4-dim phenomenological Lagrangians for which mesons and nucleons have

non-zero mass in lowest order perturbation theory and only φ is massless serving in

this case as the Goldstone boson of scale invariance (see for instance [1] and references

therein).

The above procedure has a natural interpretation in two dimensions by providing the

coupling of a relativistic theory to gravity in the conformal gauge. For instance, we may

think of L as an integrable perturbation of a conformal field theory, typically given by a

gauged WZW Lagrangian Ls plus a potential term V that breaks conformal invariance

while preserving integrability à la Zamolodchikov [2]. The coupling to 2-dim gravity

amounts to choosing a metric g = e2γφĝ with the corresponding action becoming

S ′ = Ss −
∫
d2z

√
ĝ e2γφV + SL , (2)

where the contribution of the Liouville field φ is

SL =
1

π

∫
d2z

√
ĝ
(

1

2
ĝab∂aφ∂bφ+QφR(ĝ) + µe2γφ

)
. (3)

The contribution of the dilaton term vanishes by specializing to flat ĝab, while the con-

formal factor transforms as usual under z → f(z),

φ(z)→ φ(f(z)) +
1

2γ
log | ∂f |2 , (4)

in terms of light-cone variables. The cosmological term µ arises due to the freedom to

shift V by a constant that changes the zero point energy without affecting the classical

equations of motion of the system before coupling it to gravity. This is the general

framework of the gravitational dressing; see the original papers [3] for further details.

There are already some results in the literature on the gravitational sine-Gordon

model, which arises by perturbing the free field action by a cosine potential and then

coupling it to the Liouville theory as above [4, 5]. Here we consider the more general

situation of a 2-dim relativistic system described by a conformal coset model G/H, plus

an integrable perturbation, and determine the circumstances under which the coupling

to gravity preserves the integrability at least classically. The most typical example in our

scheme, besides the simplest sine-Gordon model, is the so called complex sine-Gordon

(here we actually consider its analytic continuation with hyperbolic elements) with La-

grangian

L = ∂r∂̄r − tanh2r∂θ∂̄θ + λ cosh 2r (5)
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with coupling constant λ. This model was recently interpreted as an integrable per-

turbation of the WZW coset SL(2)/U(1) by the first thermal (parafermionic) operator

ε1 that turns on the potential term cosh 2r [6, 7]; similar results hold for the compact

coset SU(2)/U(1). Upon gravitational dressing, according to the general framework, the

resulting conformal theory for appropriately chosen constants γ and λ assumes the form

L′ = ∂r∂̄r − tanh2r∂θ∂̄θ + ∂φ∂̄φ+ e2φ cosh 2r , (6)

which is easily recognized as the non-Abelian B2 Toda model [8, 9]. Non-Abelian Toda

theories will be the center theme of our study later. They were also investigated before

as exactly solvable conformal systems of the matter field φ in the presence of black-

hole backgrounds (the simplest example being the semi-classical geometry of the coset

SL(2)/U(1)) [9], but their interpretation in terms of the gravitational dressing of inte-

grable perturbations of coset models appears to be new in the present context.

Before proceeding further we note for completeness that apart from the ordinary sine-

Gordon model various aspects of some other gravitationally dressed relativistic integrable

systems have also been considered elsewhere: for the Gross-Neveu model coupling to

gravity in the chiral (Polyakov) gauge [10], and for the principal chiral model in the

conformal gauge [11]. The theories we consider below form a different class that is

rather wide. A primary aim is to accumulate further results in the developing area

of gravitationally dressed systems by encompassing integrable models like (5), (6), and

multi-component generalizations thereof, thus establishing new connections among them

in terms of 2-dim gravity.

The general framework of the present work is given by the class of massive integrable

soliton theories (MIST), as was formulated in [12], and their algebraic connection with

non-Abelian Toda theories. Recall first the essential technical ingredients that define the

relevant class of integrable models. We consider the sl(2) embedding of a finite algebra

g specified by the generators {J±, J0} with

[J0, J±] = ±J± , [J+, J−] = 2J0 , (7)

so that the Cartan element J0 induces a gradation of g as follows:

g = g−1 ⊕ g0 ⊕ g1 ; [J0, gk] = kgk , k = 0, ±1 . (8)

In this case we speak of an N = 1 grading of g and g0, which is the zero graded part

of g, forms a subalgebra. More general gradations correspond to the decomposition

g = ⊕k=N
k=−Ngk, but these will not enter at all into the present work. Let G0 denote the

Lie group associated with g0 and write down the action

S = SWZW (g, A, Ā) +
m2

2π

∫
Tr(g−1TgT̄ ) , (9)

where g is an element of G0 and T , T̄ are constant elements of the Lie algebra g (though

they remain arbitrary at the moment). The term SWZW is the usual gauged WZW
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action (1/4π)
∫

Tr(g−1∂gg−1∂̄g) + WZ−term + (A, Ā)−terms, where Tr(T aT b) = 2δab.

The gauge connections A, Ā take values in the subgroup H of G0 whose algebra is defined

by

h = {v ∈ g0; [v, T ] = 0 = [v, T̄ ]} . (10)

This on the other hand specifies the flat directions of the potential in (9), since the

potential term is invariant under the adjoint action of H associated with the Lie algebra

h.

For the WZW model G0/H, where H is assumed to be diagonal subgroup of G0, A

and Ā act as Lagrange multipliers resulting in the constraint equations

δAS =
1

2π

∫
Tr(−∂̄gg−1 + gĀg−1 − Ā)δA = 0, (11)

δĀS =
1

2π

∫
Tr(g−1∂g + g−1Ag −A)δĀ = 0 (12)

that remove the flat directions of the potential. The remaining equations of motion take

the form

[∂̄ + Ā, g−1Dg] = m2[T, g−1T̄ g] (13)

or in zero curvature form they become

[∂ + g−1Dg + lT, ∂̄ + Ā+
m2

l
g−1T̄ g] = 0 , (14)

where g−1Dg = g−1∂g + g−1Ag and l is a spectral parameter. Projecting (13) in h and

using the constraint equations it follows that the gauge field is flat, [∂ + A, ∂̄ + Ā] = 0,

which in turn allows for the particularly simple gauge fixing

A = 0 = Ā . (15)

We then arrive at the equations

∂̄(g−1∂g) = m2[T, g−1T̄ g] ; (g−1∂g)h = 0 = (∂̄gg−1)h (16)

taking into account the projection in h as it is explicitly indicated in (16).

Within the above general framework we may specialize the class of integrable field

theories (9) according to specific choices for T and T̄ . Here we will consider two cases:

(a) Massive models, choosing T = T̄ = J+ + J− for which the potential explicitly breaks

conformal invariance acting as a mass term. We obtain in this case soliton equations

that provide a non-Abelian extension of the sine-Gordon model to soliton theories with

internal degrees of freedom [12, 13]. The complete list of the massive integrable soliton

theories associated to N = 1 grading of all classical Lie algebras g (MIST) has been

obtained in [12]. These models are invariant under parity.

(b) Conformal models, choosing T = J+ and T̄ = J−. In this case the potential term

possesses the right scaling properties for defining conformally invariant models known as

non-Abelian Toda theories [8, 9] generalizing the Liouville theory.
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In both cases above the non-Abelian nature of the models originates from the non-

Abelian algebra g0 in the N = 1 grading (8) of g. The affine (non-conformal) Toda

theories correspond to the choice T = J+ + Y+ and T̄ = J− + Y−, where Y± are elements

of the maximally graded parts g∓N for a general gradation. Hence, the models (a) are

specified by the choice Y± = J∓.

A crucial property inherited from this algebraic model building is the factorization

of G0 into a direct product of an abelian U(1) factor generated by J0 of sl(2) and the

remaining (non-abelian) group denoted by G′0. This decomposition is the starting point

for further refining the class of MIST under consideration. In fact we will consider

next those models for which the field χ associated with the abelian U(1) factor can

be decoupled consistently. We will derive the algebraic condition that is necessary for

reducing the MIST models by setting χ = 0 while maintaining consistency with the

classical equations of motion. The complex sine-Gordon model can be obtained precisely

in this fashion, but now within the present framework we have a whole class of possible

massive multi-component generalizations as well. Upon gravitational dressing, as we will

see later, this particular class of models admits a systematic description as conformal

models of type (b), i.e. non-Abelian Toda theories; the simplest example of such a

construction/correspondence is the transition from (5) to (6), which was considered before

as motivation. This also explains why we have presented here a unified description of the

models (a) and (b).

Let g = g′ exp(iχJ0) be the decomposition of a group element in G0 into G′0 and the

commuting U(1) factor generated by J0. Then, the equations of motion (16) of any MIST

with T = T̄ = J+ + J− decompose as follows:

∂̄(g−1∂g) = ∂̄(g′
−1
∂g′) + i∂̄∂χJ0 = m2[J+ + J−, g

−1(J+ + J−)g]

= m2eiχ[J+, g
′−1
J−g

′] +m2e−iχ[J−, g
′−1
J+g

′] , (17)

where we used the fact that g′ commutes with J0. Then, the U(1) part of this equation

yields

i∂̄∂χ =
m2

TrJ2
0

TrJ0(eiχ[J+, g
′−1
J−g

′] + e−iχ[J−, g
′−1
J+g

′])

=
m2

TrJ2
0

Tr(eiχJ+g
′−1
J−g

′ − e−iχJ−g
′−1
J+g

′) . (18)

Thus, the U(1) factor can be consistently decoupled by setting χ = 0 without contradict-

ing the classical equations of motion provided that the particular MIST model satisfies

the condition

Tr(J+g
′−1
J−g

′) = Tr(J−g
′−1
J+g

′) . (19)

The models that result in this fashion are integrable having as equations of motion

∂̄(g′
−1
∂g′) = m2([J+, g

′−1
J−g

′] + [J−, g
′−1
J+g

′]) . (20)
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Starting now from any consistently reduced MIST model with χ = 0, the coupling to

2-dim gravity in the conformal gauge gab = e2φδab amounts to the conformally invariant

theory

S ′ = SWZW (g′, A, Ā) +
2

π

∫
d2z∂φ∂̄φ+

m2

π

∫
d2ze2φTr(J+g

′−1
J−g

′) , (21)

where we used the special condition (19) for the original potential term to write down

Tr((J+ + J−)g′−1(J+ + J−)g′) = 2Tr(J+g
′−1J−g

′). Notice that Tr(J+g
′−1J+g

′) = 0 using

(7) and the commutativity of J0 with g′; indeed Tr(J+g
′−1J+g

′) = Tr([J0, J+]g′−1J+g
′) =

Tr(J+g
′−1[J+, J0]g′) = −Tr(J+g

′−1J+g
′), and so this term vanishes. We may prove simi-

larly that Tr(J−g′
−1J−g

′) = 0. At this point we introduce group elements

g̃ = g′e2φJ0 (22)

and note that

e2φTr(J+g
′−1
J−g

′) = Tr(e2φJ0J+e
−2φJ0g′

−1
J−g

′) = Tr(J+g̃
−1J−g̃) . (23)

As a result the conformal theory (21) becomes

S ′ = SWZW (g̃, A, Ā) +
m2

π

∫
d2zTr(J+g̃

−1J−g̃) , (24)

which is immediately recognized as a non-Abelian Toda theory of type (b) with T = J+,

T̄ = J−. This result summarizes the effect of the gravitational dressing on the class

of integrable models satisfying the algebraic condition (19). Alternatively, it provides a

new geometrical interpretation to a wide class of conformal non-Abelian Toda models.

It is also interesting to recall that the massive soliton theories before dressing them with

gravity describe integrable perturbations of WZW models away from criticality. We will

present some examples later.

Note that despite of appearances the field χ (before decoupling it from a massive

integrable soliton theory) and the Liouville field φ (after dressing the resulting models

with 2-dim gravity) play a different role: we may effectively interpret χ as providing a

sine-Gordon type coupling, hence leading to the massive integrable soliton theories with

broken conformal invariance, as in (17), while φ is a Liouville coupling restoring the

conformal invariance classically. Apart from this, the field φ satisfies a field equation

following (21) that renders the choice φ = 0 inconsistent; a consistent choice is instead

φ→−∞. However, as far as the WZW part of the action (24) is concerned, it is obvious

that SWZW (g, A, Ā) is essentially the same as SWZW (g̃, A, Ā), modulo a formal analytic

continuation χ → −2iφ that changes the commuting U(1) factor of G0 into the non-

compact form R. The potential terms on the other hand are not equivalent; they agree

only when the group elements take values in G′0, i.e. Tr(J+g
′−1J−g

′). Of course, T and T̄

are identified differently in each case. This comparison is useful to understand intuitively

the essence of our results without willing to threaten them with trivialization.

The resulting non-Abelian Toda theories provide a class of curved backgrounds for

string propagation in the presence of a tachyon field, which is identified with the Toda
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potential. A drawback of these models, in their formulation obtained by solving classically

the WZW constraints, is that they are not conformal quantum mechanically and therefore

fail to be solutions of the corresponding β-function equations; we will elaborate more on

this issue towards the end of the paper. Thus, our interest in the classically reduced form

of the models is only from the point of view of integrable 2-dim field theories and not for

applications in string theory.

Next, we examine for which algebras g with N = 1 grading the decoupling condition

(19) is satisfied, and also present a few explicit examples illustrating the general situation.

(i) A-series: For the A-series the rank of the algebra g has to be odd, and so we

consider A2n−1 for which there is an N = 1 embedding of sl(2) specified in the defining

representation by

J0 =
1

2

 1n 0

0 −1n

 , J+ =

 0 1n

0 0

 , J− =

 0 0

1n 0

 . (25)

This results in the zero-graded part of the algebra g0 = su(n)⊕su(n)⊕u(1) and h = su(n)

commuting with T = T̄ = J+ + J−, which are represented respectively by a 0

0 b

 , a† = a, b† = b, Tr(a+ b) = 0 ;

 a 0

0 a

 , a† = a, Tra = 0 . (26)

So the corresponding MIST models are integrable perturbations of the WZW coset

SU(n)× SU(n)

SU(n)
× U(1) (27)

and the potential term is

Tr(g−1TgT̄) = Tr(g′1g
′
2
−1

+ g′2g
′
1
−1

) (28)

by restricting to group elements g′ = (g′1, g
′
2) in G′0 = SU(n) × SU(n) when χ = 0. To

proceed with the gravitational dressing of the resulting integrable models one has to check

the validity of the decoupling condition (19) in this case. It can be easily verified that

this condition is satisfied only for n = 1 and n = 2 since then Tr(g′1g
′
2
−1) = Tr(g′2g

′
1
−1) =

Tr(g′1g
′
2
−1)−1. We will examine each case separately.

For A1 (n = 1) the massive integrable soliton theory with χ = 0 is precisely the

sine-Gordon model

∂̄∂θ = 2m2 sin 2θ , (29)

where g′1 = eiθ, g′2 = e−iθ is a good parametrization that solves the WZW constraints in

(16). If we dress it gravitationally using the parametrization

g̃ =

 eiθ 0

0 e−iθ

 e2φJ0 =

 eiθ+φ 0

0 e−iθ+φ

 , (30)
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the resulting conformal model is the complexified Liouville theory whose real and imag-

inary parts are respectively

∂̄∂φ = 2m2e2φ cos 2θ ; ∂̄∂θ = 2m2e2φ sin 2θ . (31)

For A3 (n = 2), setting χ = 0, we arrive at the so-called matrix sine-Gordon model

(see [13] for details) for which the appropriate parametrization of g′1 and g′2 in SU(2) can

be found by solving the corresponding WZW constraints

g′1
−1
∂g′1 + g′2

−1
∂g′2 = 0 , ∂̄g′1g

′
1
−1 + ∂̄g′2g

′
2
−1 = 0 . (32)

Then, its gravitational dressing proceeds as above to yield the coupled system of equations

∂̄(g′1
−1
∂g′1) = m2e2φ(g′1

−1
g′2 − g

′
2
−1
g′1), ∂̄∂φ = m2e2φTr(g′1

−1
g′2 + g′2

−1
g′1) . (33)

(ii) C-series: For Cn there is only one N = 1 embedding of sl(2) specified in the

defining representation by (25) as before. Then, the zero-graded subalgebra is g0 =

su(n)⊕ u(1) and h = so(n), which are represented respectively by a 0

0 −a?

 , a† = a ;

 a 0

0 a

 , a? = −a , at = −a . (34)

As a result, the corresponding MIST models are integrable perturbations of

SU(n)

SO(n)
× U(1) (35)

and the potential term takes the form

Tr(g−1TgT̄) = Tr(g′g′
t
+ g′

?
g′
−1

) , (36)

where the group elements are restricted to (g′, g′?) in the 2n-dim representation of

G′0 = SU(n) (with g′ ∈ SU(n)) by setting χ = 0. It is a matter of straightforward

calculation to verify that the special condition (19) is satisfied only for n = 1 and n = 2,

as in the A-series above, since only for them we have Tr(g′g′−1?) = Tr(g′?g′−1).

The case n = 1 is trivial reducing to the A1 sine-Gordon model as before, while

C2 provides the only model in this series that is eligible to yield a non-Abelian Toda

theory upon gravitational dressing. The resulting conformal theory coincides with the

gravitationally dressed complex sine-Gordon, which can also be considered, as we will see

next, as the non-Abelian Toda theory for B2. This is because the vector representation

of C2 with dimension 4 corresponds to the spinor representation of B2.

(iii) B and D-series: This is the series of orthogonal groups so(n), Br if n = 2r + 1

and Dr if n = 2r, for which there is an N = 1 embedding of sl(2) in the defining n-dim

representation given by

J0 =
i

2


0 1 · · ·

−1 0 · · ·
...

...
. . .

 , J+ + J− = i


0 0 0 · · ·

0 0 1 · · ·

0 −1 0 · · ·
...

...
...

. . .

 (37)
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that is purely imaginary and antisymmetric. As a consequence g0 = so(n − 2) ⊕ u(1)

and h = so(n− 3) commuting with J+ + J−, which are represented respectively by

i


0 a · · ·

−a 0 · · ·
...

... b

 , i


0 0 0 · · ·

0 0 0 · · ·

0 0 0 · · ·
...

...
... c

 , (38)

where a is a real number, b is a real (n−2)-dim antisymmetric matrix and c is a real (n−3)-

dim antisymmetric matrix. The MIST in this case describe integrable perturbations of

the WZW coset
SO(n− 2)

SO(n− 3)
× U(1) (39)

and the decoupling condition (19) is always satisfied for any n. Hence, setting χ =

0, which in the notation above corresponds to a = 0, yields the WZW coset model

SO(n − 2)/SO(n − 3) plus an integrable perturbation that follows from the potential

term Tr(g−1(J+ + J−)g(J+ + J−)). Then, for all n, we obtain the associated so(n) non-

Abelian Toda theory by coupling to gravity according to the general framework.

The simplest non-trivial example is provided by B2 = so(5). After solving the WZW

constraints (16), one finds that the massive integrable soliton theory for χ = 0 (see [12]

for details) coincides with the complex sine-Gordon model for a complex field u satisfying

the equation of motion

∂̄∂u+
u?∂u∂̄u

1− uu?
= m2u(1− uu?) . (40)

This model has a residual U(1) symmetry generated by u→ eiθu and provides a charged

generalization of the ordinary sine-Gordon model. It has been identified with an inte-

grable perturbation of the SO(3)/SO(2) WZW model, where the potential term | u |2

represents the first thermal parafermion operator in a Lagrangian framework [6, 7]. Set-

ting u = sin r exp(iθ) we obtain a more standard description of the model in a curved

background geometry with diagonal metric (1, tan2r). Upon gravitational dressing the

resulting conformal theory is the B2 non-Abelian Toda model that was also considered by

Gervais and Saveliev in a different context [9]. We may introduce the non-compact version

based on the WZW coset SL(2)/U(1) by treating u and u? as the independent variables

u = sinh r exp(−θ), u? = − sinh r exp(θ). Then, the gravitationally dressed model takes

the form (6). It is clear now that for higher values of n we have multi-component gen-

eralizations associated to the perturbed WZW coset SO(n − 2)/SO(n − 3) with the

target space field u (and its conjugate u?) having n − 4 components. The non-Abelian

Toda theory that arises after gravitational dressing in this case is summarized by the

Lagrangian

L′ = −
1

1− uu?
(∂u∂̄u? + ∂̄u∂u?) + ∂φ∂̄φ+m2e2φ(1− 2uu?) (41)

as it appears in [9].
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Concluding this class of examples we mention that the D-series admits additional

N = 1 embedding when r is an even number 2p giving rise to MIST based on the WZW

coset U(2p)/Sp(p). This possibility, as well as the models based on exceptional algebras

will not be considered here any further.

It is intriguing, as side comment, that the coset space geometry of the WZW models

SO(n − 2)/SO(n − 3) describe the dynamics of the physical degrees of freedom of a

bosonic string propagating in (n−1)-dim flat Minkowski space after solving the classical

Virasoro constraints in the X0 = τ gauge [14]. In this context the potential term | u |2

originates from self-interactions of the string à la Kalb-Ramond, as was originally pointed

out in four dimensions by Lund and Regge [15]. The multi-component generalizations

of the sine-Gordon model based on the WZW coset SO(n − 2)/SO(n − 3) arise in yet

another context by performing a conformal reduction à la Pohlmeyer of the ordinary 2-

dim non-linear σ-models based on Sn−2 = SO(n−1)/SO(n−2) [16]; for n = 4 we obtain

the sine-Gordon, for n = 5 the complex sine-Gordon, and so on. It will be interesting to

investigate the relevance of the gravitationally dressed models (41) to either of these two

seemingly unrelated frameworks that also give rise to generalized sine-Gordon models.

One may inquire whether the classically conformal Toda theories, including their

non-Abelian generalizations that result by gravitational dressing, define quantum me-

chanically consistent string backgrounds. The Toda potential can be regarded as an

exactly marginal perturbation that has been added to the 2-dim σ-model, and as such it

plays the role of the tachyon. If we consider the corresponding β-functions to lowest order

in α′ we have to find a dilaton field Φ so that the conformal invariance is maintained.

Since the presence of a tachyon potential V does not affect β(Gµν), β(Bµν) and β(Φ)

to this lowest order, we may momentarily neglect β(V ) and examine first whether the

non-Abelian Toda models have all other β functions zero. In their formulation as grav-

itationally dressed multi-component sine-Gordon models (c.f. (41)) one finds that there

is no consistent choice of dilaton that does the job (see for instance [17] and references

therein). This might seem surprising bearing their original formulation (24) in terms of

WZW models. The point is that there are two classically equivalent ways to formulate

these theories, before or after solving the corresponding WZW constraints. Choosing the

latter in order to connect directly with the generalized sine-Gordon models, like (40), it

unavoidably leads to non-vanishing β-functions. In the other formulation the β function

equations are satisfied with a linear dilaton Φ = Qφ, but then the tachyon β-function

equation β(V ) = 0 introduces a non-trivial algebraic relation between the numerical co-

efficient Q and γ that comes from the general conformal factor e2γφ; for example, this

condition for the B2 non-Abelian Toda theory reads [17]

4γ = Q±

√
Q2 −

4

α′
. (42)

Thus, the quantization of the models in the unreduced formulation (24) is more appro-

priate for string applications, although further work is required to resolve some technical

issues that are involved (analogous to Liouville theory for c > 1). For a recent systematic

exposition of Toda-like σ-model solutions of string theory see also [18].
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A final technical point concerns the type of extended conformal symmetries that

the models like (41) exhibit classically. Recall that the conformal coset with Lagrangian

(∂u∂̄u?+ ∂̄u∂u?)/(1−uu?) has a chiral W∞ symmetry generated by appropriate bilinear

combinations of the parafermion currents. Turning on the potential | u |2 changes these

local chiral conservation laws into non-chiral because the conformal invariance is broken

but the integrability is preserved (see [6] for details on these models). The gravitational

dressing restores classically the conformal invariance, but the curious thing is that the

local conservation laws are not generated by W∞ anymore, rather by its consistent trun-

cation restricted only to elements of even spin. For example, for the B2 model there are

three chiral currents of spin 2, one local that is provided by the stress-energy tensor and

a pair of non-local fields, which are essentially the gravitationally dressed parafermions

[9]. Hence, going a step further to construct all the local chiral conservation laws one has

to consider appropriate bilinears of these parafermions, which yield W -generators with

spin 2, 4, 6, · · · in this case. This can be verified directly, but we spare the details of

the computation. There might be a deeper relation of this result to the phase diagram

of the sine-Gordon model (and probably its multi-component generalizations), where it

was found that the overall velocity of the renormalization group flow is also cut in half

by gravity [4, 5].

Summarizing, we have found that certain multi-component generalizations of the

sine-Gordon model that arise as integrable perturbations of WZW cosets away from

criticality turn into conformal non-Abelian Toda theories by coupling to 2-dim gravity.

Although the backgrounds resulting by imposing classically the WZW constraints are not

conformal quantum mechanically, their integrability should be preserved in the quantum

theory. Our results offer another justification for focusing interest into the theory of

non-Abelian Toda systems in future investigations, because of their relevance to 2-dim

gravity; our viewpoint is different and perhaps complementary to other interpretations

that were proposed before for such non-Abelian models [9]. An interesting question that

arises in this context is the coupling of various multi-component sine-Gordon models to

2-dim gravity using Polyakov’s chiral gauge as an alternative to the conformal gauge.

Finally, it will be interesting to examine in detail the modifications introduced by 2-dim

gravity on the renormalization group flow of multi-component sine-Gordon models, such

as (40), and study possible gravitational phase transitions by exhibiting singularities

of the corresponding partition functions. This will provide a systematic extension of

previously known results on the gravitational sine-Gordon model [4, 5].
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