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Abstract

We discuss the computation of the grand canonical partition sum describing hot mat-
ter in systems with the Higgs mechanism in the presence of non-zero conserved global
charges. We formulate a set of simple rules for that computation in the high-temperature
approximation in the limit of small chemical potentials. As an illustration of the use of
these rules, we calculate the leading term in the free energy of the standard model as a
function of baryon number B. We show that this quantity depends continuously on the
Higgs expectation value φ, with a crossover at φ ∼ T where Debye screening overtakes
the Higgs mechanism—the Higgs vacuum “melts”. A number of confusions that exist in
the literature regarding the B dependence of the free energy is clarified.
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Screening of gauge fields by the Higgs mechanism is one of the central ideas both
in modern particle physics and in condensed matter physics. It is often referred to as
“spontaneous breaking” of a gauge symmetry, although, in the accurate sense of the
word, gauge symmetries cannot be broken in the same way as global ones can. One might
rather say that gauge charges are “hidden” by the Higgs mechanism. For example, in the
standard model at zero temperature, particles are characterized by values of the electric
charge, but not the isospin and the weak hypercharge separately.1

At high temperatures, another mechanism for screening becomes operative—the Debye
screening of charges in plasma. The Debye screening is not associated with “breaking”
or hiding of gauge charges; on the contrary, it is due to the motion of conserved charges.
Thus, in the standard model, while all elementary excitations (particles) at zero tem-
perature (T = 0) have only one conserved gauge charge with respect to electroweak
interactions, it could be different for excitations at T 6= 0.

In general, we can envisage a competition between the two screening mechanisms. The
mass of vector bosons generated by the Higgs mechanism is of order gφ, where g is the
gauge coupling and φ is the temperature dependent Higgs expectation value. The electric
mass due to the Debye screening is of order gT . So, when T � φ, we expect the vacuum
classification of particles to be more or less intact; when T � φ, the system forgets that
the gauge symmetry is “broken”.

At T ∼ φ a crossover occurs, which can be called a melting of the Higgs vacuum. This
regime may or may not be associated with a phase transition. A gauge theory may have
no gauge-invariant order parameter, and in that case a phase transition does not have to
occur [1, 2]. In fact, it was recently shown that the electroweak phase transition changes
into a smooth crossover when the mass of the Higgs boson becomes sufficiently large [3].
In this sense, the minimal standard model is similar to the liquid-gas system: there is no
true distinction between the phases, and the line of first-order phase transitions ends in
a critical point.

The melting of vacuum, associated with a crossover from one screening mechanism to
the other, admits a fully gauge-invariant characterization using the renormalized average
of ϕ†ϕ, where ϕ is the corresponding Higgs field. In the extreme high-temperature limit,
in a weakly coupled theory,

〈ϕ†ϕ〉R = ν
T 2

12
+ (corrections), (1)

where ν is the number of components of ϕ, and the corrections are due to interactions. As
the temperature lowers, the leading term starts to deviate from νT 2/12 (at zero temper-
ature it is v2/2). Temperatures at which the deviation becomes significant (of the order
of the leading term itself) mark the melting crossover.

The above considerations show that the couplings of elementary excitations to gauge
fields (the charges) at high temperature can be different from those at T = 0. This effect

1Although we will use the standard model as an illustration, our results are not restricted to that case
and can apply, for instance, to grand unified theories.
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can enter calculations of thermodynamic quantities in systems with the Higgs mecha-
nism, which contain, in addition, densities of some conserved global charges. Therefore,
a treatment of such systems requires some care. As we will see below, the use of kinetic
equilibrium requirements in terms of zero-temperature particle excitations, sometimes in-
voked [4, 5, 6] in these circumstances, may, and in fact does, lead to wrong results at
φ <∼ T .

Although the only application we discuss here will be for the electroweak sector, it is
of some interest to sketch a general formalism that would allow one to deal with any case
when both the Higgs and the Debye screening mechanisms are present.

In general, a system will have a number of conserved global charges, which we denote
by Ni. These are gauge-invariant quantities that allow for the introduction of chemical
potentials, µi, in the usual way. We thus can define a gauge-invariant grand partition
sum as a Euclidean functional integral:

exp(−Ω/T ) =
∫
DΦ exp

[
−
∫
dτd3x(LE −

∑
µiNi)

]
, (2)

where Φ denotes generically all of the fields of our system; the integral over τ is restricted
to the finite interval from 0 to β = 1/T , with the usual periodic (antiperiodic) conditions
for bosons (fermions). The Lagrangian LE includes gauge-fixing terms and ghosts. The
thermodynamic potential Ω is a gauge-invariant function of µi and T .

Special attention should be paid to integrals over the Euclidean temporal components
of the gauge fields. The integration over their zero-momentum modes, the set of which
will be denoted by A4, enforces the conditions of neutrality of our system with respect
to all gauge charges. These conditions are simply a consequence of the Gauss constraint,
integrated over the whole three-dimensional (3d) space.2

It is convenient to imagine that the functional integration in (2) is performed in two
steps. In the first step, we integrate out all modes except for A4 and the Higgs fields ϕ.
Those are integrated out at the second step. The reason for this two-step procedure is
that A4 and ϕ can develop expectation values, which we have to take into account. Notice
that this general method of calculation of Ω̃ makes no use of the notion of a particle or
an elementary excitation in plasma.

The result of the first step is an effective Euclidean action Ω̃

exp(−Ω̃/T ) =
∫ ′
DΦ exp

[
−
∫
dτd3x(LE −

∑
µiNi)

]
, (3)

where the prime on the integral shows that the A4 and ϕ integrations are omitted. Ω̃ is a
function of µi, T , A4 and ϕ. One may notice that iA4 play the role of chemical potentials
for the corresponding gauge charges. In general, Ω̃ is a gauge non-invariant quantity; the
integration over A4 and ϕ will convert it into the gauge-invariant potential Ω.

Let us now restrict ourselves to weakly-interacting cases when we can compute Ω̃ by
the loop expansion. We will also assume that the expectations values of A4 and ϕ can be

2For definiteness we consider the 3d space as a compact manifold with large volume which we eventually
send to infinity.
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Figure 1: Tadpole diagram producing terms linear in chemical potential.

chosen x- and τ - independent. The calculation can be done in any desired order; here we
will need only tree and one-loop terms. At the tree level, the effective action is the sum
of the covariant derivative term for ϕ and its tree potential,

Ω̃0/V = |D4ϕ|
2 + V0(ϕ), (4)

where in the covariant derivative we set ∂4ϕ = 0; V is the total 3d volume. One-loop
terms can be classified according to powers of A4. Terms independent of A4 add to V0

to produce the usual temperature-dependent potential for the scalar field. Then, there
are linear terms (tadpoles, see Fig. 1), quadratic terms (Debye masses) as well as higher
powers. We will assume that the chemical potentials for the global charges are small,
µi/T � 1. In that case, the expectation values of A4 are proportional to µi, and the
terms beyond the quadratic ones are suppressed. In addition, the tadpoles and the Debye
masses can be expanded in µi/T . For the tadpoles, the expansion starts with terms linear
in µi, and for the Debye masses we can, in the leading order, neglect µi altogether.

A particularly simple set of rules arises in the important case when, in addition to the
above limits, the masses of all particles are much smaller than T . Here the results can
be simply formulated using the spectrum of the high-temperature, “unbroken” phase. In
that case, the one-loop effective action is obtained as follows. To each particle species of
the high-temperature limit we associate a chemical potential

µI =
∑
i

µin
I
i + i

∑
j

gIjA
j
4, (5)

where nIi are the global charges of that species and gj its gauge charges; I labels the
species. Note that only A4, corresponding to the mutually commuting generators of
the gauge group, should be taken into account. These generators can be simultaneously
diagonalized, and their eigenvalues define what we mean by the charges gIj in eq. (5).3

3For the hypercharge, our convention is gIY = yI/2.
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The leading terms in the one-loop effective action are

Ω̃1/V = [VT (ϕ)− V0(ϕ)]− T 2
∑
I

ηIµ
2
I (6)

where ηI = 1/6 (ηI = 1/12) per single helicity bosonic (fermionic) particle-antiparticle
pair. The complete effective action needed for our purposes is the sum of the tree action
(4) and the one-loop action (6).

As an illustration of the use of these rules, we present here a calculation of the leading
term in the free energy of the standard model (SM) as a function of the baryon number.
It generalizes a similar calculation done in ref. [9], where the only fermionic degrees of
freedom were the leptons of the first generation. The B-dependent part of free energy
plays an important role in the theory of anomalous electroweak B non-conservation. In
our previous calculation of this quantity [7], we pointed out that at sufficiently high
temperatures, one may have to use the spectrum of the “unbroken” phase even below
the phase transition. Here we extend our previous result and present the leading term
in F (B) for all temperatures T � mW (T ). In particular, we demonstrate a crossover in
F (B) at T ∼ φ.

As is well known, there are nf strictly conserved global charges in the SM with massless
neutrinos, namely

Ni =
1

nf
B − Li, (7)

where i = 1, ..., nf is the index of fermionic generation. In addition to them, there are
two gauge charges associated with the underlying SU(2)×U(1) symmetry, which commute
with the Hamiltonian, the global charges defined by eq. (7), and each other. These are
the hypercharge Y ,

Y = iϕ†
↔
D0 ϕ+

nf∑
i=1

[
1

3
Q̄iγ0Qi +

4

3
Ūiγ0Ui −

2

3
D̄iγ0Di − L̄iγ0Li − 2Ēiγ0Ei

]
(8)

and the third component of the weak isospin T3,

Ta = εabcA
b
iG

c
i0 +

1

2
iϕ†(τ aD0−

←
D0 τ

a)ϕ+
1

2

nf∑
i=1

[
Q̄iγ0τ

aQi + L̄iγ0τ
aLi

]
. (9)

Here Qi and Li are the left quark and lepton doublets, respectively; Ui, Di are the right
quark fields, and Ei are the right leptons.

According to our general rules, we have to introduce nf chemical potentials µi to con-
served numbers (7), and compute the effective action Ω̃(A3

4, B4, µi, φ), where ϕT = (0, φ√
2
).

To make the equations somewhat more transparent we assume here that the asymmetries
in charges Ni are degenerate in flavour. This assumption is harmless for the leading-order
calculation. It would be inadequate if we wanted to include corrections in leptonic masses,
which are important in some cosmological scenarios [7]. This assumption sets all µi equal
to each other and thus replaces them with a single chemical potential for B − L. For
future purposes, though, we will keep separate chemical potentials for B and L. The
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condition of equilibrium with respect to the anomalous B-non-conservation, µB +µL = 0,
can be imposed later.

The leading one-loop terms of the high-temperature expansion of the effective action,
for small chemical potentials, are4

Ω̃(A3
4, B4, µi, φ) =

1

2
m2(T )φ2 +

1

4
λφ4+

1

8
φ2(gA3

4 − g
′B4)2 +

1

2
m2
DA

3
4A

3
4 +

1

2
m′2DB4B4 (10)

−
1

4
nfµ

2
LT

2 −
1

9
nfµ

2
BT

2 + ig′B4nf (
1

3
µL −

1

9
µB)T 2,

where

m′2D =
(
ns

6
+

5nf
9

)
g′2T 2, (11)

m2
D =

(
2

3
+
ns

6
+
nf

3

)
g2T 2, (12)

m2(T ) = −
1

2
m2
H + T 2

(
1

2
λ +

3

16
g2 +

1

16
g′2 +

1

4
g2
t

)
. (13)

and gt is the Yukawa coupling of t-quark. Terms proportional to µ2
B, µ

2
L are the standard

contributions of the fermionic chemical potentials to Ω, while the terms linear in chemical
potential come from the tadpole diagrams of Fig. 1.

The equation (10) forms a basis for determining the equilibrium properties of the hot
and dense electroweak plasma at small chemical potentials. As a first example, let us find
the equilibrium value B0 of the baryonic number at fixed value of the strictly conserved
charge B − L ≡ X. That equilibrium value is obtained from the solution of the system
of equations:

∂Ω̃

∂A3
4

=
∂Ω̃

∂B4
= 0, (14)

(neutrality of the system with respect to gauge charges);

−
∂Ω̃

∂µB
= B, −

∂Ω̃

∂µL
= L (15)

(definitions of average baryonic and leptonic charges); the equilibrium condition

µB + µL = 0, (16)

and the normalization condition B − L = X. We get

B0 =
4(2nf + ns)m2

D + 8(2 + 2nf + ns)m2
W (φ)

(22nf + 13ns)m2
D + 2(26 + 24nf + 13ns)m2

W (φ)
(B − L) , (17)

4We omit φ3 term in the effective potential which is not essential for the present discussion.
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Figure 2: Dependence of the equilibrium value of the baryon number (in units of B − L)
on the expectation value of the Higgs field (in units of temperature) for nf = 3, ns = 1.

where mW (φ) = 1
2
gφ. Even if there is a phase transition between the symmetric and

Higgs phases, in the Higgs phase with φ � T (the Debye mass is much larger than the
Higgs-induced vector mass), we still get the same result as in the symmetric phase [7]

B0 =
4(2nf + ns)

22nf + 13ns
(B − L) . (18)

In the opposite limit φ� T we get

B0 =
4(2 + 2nf + ns)

26 + 24nf + 13ns
(B − L) , (19)

which coincides with the result of refs. [4, 5, 6, 8]. In the intermediate region, the value
of the baryon number interpolates between the two limiting cases, see Fig. 2.

For cosmological applications, the relation between B0 and X should be taken at the
moment of the freeze-out of the sphaleron processes. For a strongly first-order phase
transition, when after the transition φ/T >1.2–1.5, the freeze-out coincides with the
transition itself, and to a good accuracy one can use the result for the symmetric phase,
eq. (18). For a weakly first-order transition, a second-order transition, or a crossover, one
should use the full eq. (17) with φ/T ' 1.2–1.5. (That corresponds to m2

W (φ)/m2
D ' 0.2–

0.3.) Looking at Fig. 2, we see that for these values of φ/T , the equilibrium value of B
is approximately in the middle between its two limiting values.

Although the numerical difference between the limiting values is small, we believe
that this calculation is worth-while because it elucidates the physics responsible for the
crossover between the high- and low- temperature regimes. What matters here is the
relation between φ and T , and not T and Tc, as stated in refs. [4, 6], or T and mW (φ)
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Figure 3: Dependence of the coefficient κ on the expectation value of the Higgs field (in
units of temperature) for nf = 3, ns = 1.

as stated in ref. [7]. The error of the equilibrium reaction analysis of refs. [4, 5, 6] is in
the use of the zero-temperature spectrum at high temperatures, which led the authors of
these references to conclude that the chemical potential of the Higgs boson is equal to
zero. In our notation, that would correspond to g′B4 − gA3

4 = 0. As can be seen directly
from eq. (14) with the effective action (10), this condition indeed holds at T = 0, but not
at any T 6= 0.

Another quantity of interest is the free energy of the system at fixed baryonic number
B, not equal to B0, which is used in the computation of the baryon erasure rate due to
sphalerons [7]. It is defined as

F (B) = Ω + µBB + µLL, (20)

where baryonic and leptonic chemical potentials are to be found from eqs. (14,15) but
the equilibrium condition (16) is now not imposed. The result is

F (B) = κ(
φ

T
)
(B − B0)2

VT 2
+ const, (21)

where

κ(
φ

T
) =

3[(22nf + 13ns)m2
D + 2(26 + 24nf + 13ns)m2

W (φ)]

4nf [(5nf + 3ns)m2
D + (12 + 11nf + 6ns)m2

W(φ)]
(22)

For small φ/T we have

κ =
3(22nf + 13ns)

4nf (5nf + 3ns)
, (23)
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which for ns = 1 coincides with eq. (4.23) of [7]. For large φ/T :

κ =
3(26 + 24nf + 13ns)

2nf (12 + 11nf + 6ns)
(24)

The dependence of κ on φ/T is shown in Fig. 3.
In conclusion, we have presented a general way of dealing with conserved global quan-

tum numbers in finite-temperature gauge theories with the Higgs mechanism. We have
formulated a simple set of rules for computing the grand canonical partition sum in the
high-temperature limit. Using these techniques, we have computed the leading term of
the high-temperature expansion of the free energy of the standard model, as a function
of baryon number. We have shown that this quantity depends continuously on the Higgs
expectation value φ. The crossover in the free energy is associated with a “melting” of
the Higgs vacuum at φ ∼ T , when the Debye screening overtakes the Higgs mechanism.
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