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1. Introduction

One of the most important aspects in the recent developments in string dualities

has been the fact that string compactifications which classically look singular have often a

reinterpretation in terms of light solitonic states. These light solitonic states can in general

have p-spatial coordinates whose ‘tension’ Tp goes to zero. In general if there are many

such objects the most relevant light states correspond to the one for which the relevant

mass parameter T
1

p+1

p is the smallest [1][2]. Typically in string theory when there are

multitude of light states all Tp ∝ ǫ as ǫ → 0, and thus the lightest states correspond to

the solitons with the smallest value of p. For example for type IIA and type IIB strings

the relevant light states typically correspond to D-branes wrapped around vanishing cycles

whose volume is proportional to ǫ. Given the fact that the type IIA (type IIB) has even

(odd) D-branes [3] we see that the most relevant lightest states are either massless particles

(p = 0) or tensionless strings (p = 1).

The case of massless solitonic particles is easier to understand from the viewpoint of

quantum field theories. Examples of this class include type IIA compactifications near an

ADE singularity of K3 where the resulting solitons are responsible for the enhanced ADE

gauge symmetry [4] or type IIB near a conifold singularity of a Calabi-Yau threefold which

leads to a massless hypermultiplet [5]. Another example of this is when SO(32) instantons

shrink to zero size which leads to enhanced gauge symmetry with some matter multiplets

[6]. This is not to say that all the cases with massless solitonic particles are easy to

understand in terms of local Lagrangians, as for example one can encounter simultaneous

massless electric and magnetic particles [7].

The case with p = 1 is more unfamiliar, and probably physically more interesting,

as it may signal the appearance of new critical quantum field theories based on strings

rather than particles, even if one ignores gravitational effects. An example of this includes

type IIB near an ADE singularity of K3 [1][8]. Given our relative lack of familiarity with

quantum field theories based on loops it is natural to try to get a first order understanding

of these theories by relating them to the cases where the relevant light degrees of freedom

are again particles. An attempt in this direction is to further compactify on a circle. In

the resulting theory the most relevant lightest states are now again particles corresponding

to the tensionless string wrapped around the circle. In this way for example the physics of

type IIB near an ADE singularity times a circle becomes understandable as an ordinary

Higgs mechanism in the resulting five dimensional theory.

From this analysis one may get the wrong impression that by a further compacti-

fication on a circle we will always obtain a situation with ‘simple physics’ in one lower
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dimension. This turns out not to be the case. Roughly speaking what happens sometimes

is that in the one lower dimensional theory there are infinitely many massless particles

interacting with a tensionless string. At first sight this may appear puzzling as a string

wrapped around a circle does not seem to have infinitely many light degrees of freedom

in store. Moreover it appears to be more relevant than the unwrapped string. Technically

the way this comes about is that due to a quantum effect the wrapped string has a smaller

tension than the unwrapped string and thus as the wrapped string becomes tensionless, the

unwrapped string still has a positive tension. However one can pass through this transition

point beyond which the wrapped string formally acquires a negative tension. As we hit

the second, and more interesting, transition point the unwrapped string becomes tension-

less. Also at this point infinitely many of the BPS states of the wrapped string become

massless. Moreover the tensionless string is as relevant as these massless particles. Thus

the situation appears roughly as a tensionless string interacting with infinitely many light

particles resulting from wrapped states of the same string which due to quantum effects

has a negative tension. From the fact that after the first transition and before the second

transition the wrapped string acquires a negative tension, one see that one needs a better

“dual picture” and this turns out to be provided by the geometry of special singularities of

Calabi–Yau manifolds in the context of M-theory. A study of an example of this situation

is one of the main aims of the present paper.

The class of theories we study correspond to N = 1 theories in d = 6, as is the case for

instance for E8 × E8 heterotic strings compactified on K3. It is natural to wonder what

happens when an E8 instanton shrinks to zero size. In this case one can use M-theory

description of E8 ×E8 heterotic string [9] to gain insight into the nature of the singularity

[10]: As an E8 instanton shrinks it can be locally represented as a 5-brane residing on

the 9-brane boundary corresponding to the E8 whose instanton is shrinking in size. If

we deform this situation by moving the 5-brane off the 9-brane one can see there is a

tensionless string: Since the membrane of M-theory can end on both the 9-brane [9] and

the 5-brane [11][12], in the limit the 5-brane and 9-brane touch we get a tensionless string

corresponding to the boundary of the membrane in the common 6-dimensional space-time.

On the other hand heterotic strings on K3 are dual to F-theory compactifications

on Calabi-Yau threefolds [13][14], and it is possible to isolate what corresponds to an E8

instanton of zero size [15][14]. We will use this duality to study the spectrum of BPS

states for heterotic strings on K3 × S1 when an E8 instanton shrinks to zero size and

compare it with the predictions of tensionless strings. To do this study we need to count

the number of solitonic membranes of M-theory wrapped holomorphically around cycles
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of the Calabi-Yau manifold. We use mirror symmetry to accomplish this. We find perfect

agreement with predictions based on tensionless strings, subject to some very important

subtleties. In particular the Calabi-Yau geometry refines the description of the tensionless

string suggesting certain quantum corrections to the classical picture. We will also study

the conjectured duals for Ed instantons of zero size [14] and find that they are naturally

understandable as the E8 non-critical string propagating in the presence of Wilson lines

breaking E8 to Ed (up to U(1) factors).

The organization of this paper is as follows: In section 2 we set up the predictions of

BPS states based on tensionless strings. In section 3 we set up the question of the BPS

spectrum on the type II side (in the context of F-theory and M-theory ) in the context of

counting curves in del Pezzo surfaces sitting in the Calabi-Yau. In section 4 we compare

the predictions and find agreement with expectations based on the tensionless strings. We

also discuss some aspects of the BPS spectrum on the type II side which points towards

new physics. In an appendix we discuss some technical aspects of the relevant singularity

of the Calabi-Yau threefolds.

As we were completing this work an interesting paper appeared [16] which has some

overlap with the present work.

2. BPS states from non-critical E8 string

As mentioned in the last section in the context of M-theory when a 5-brane meets

the 9-brane we have a situation dual to a small E8 instanton of heterotic string. Actually,

this is in the phase where the instanton has shrunk to zero size and we have ‘nucleated’

a 5-brane which has departed from the 9-brane world volume of the E8. A membrane

stretched between the 5-brane and 9-brane lives as a string on the common 6-dimensional

space-time. The tension for the string is proportional to the distance between the 5-brane

and the 9-brane.

To better understand the properties of this non-critical string let us recall that if

we have two parallel 9-branes the resulting string will be the heterotic string, where on

each 9-brane lives an E8 gauge symmetry, each inducing a (say) left-moving E8 current

algebra on the string. Recall also that if we have two parallel 5-branes we get a string

in 6-dimension, which couples to an N = 2 tensor multiplet. The degrees of freedom on

this string is best described by Green-Schwarz strings in 6 dimensions [17][18]. The light

cone degrees of freedom are described by 4 left-moving fields and 4 right-moving fields each

transforming in the spinor representation of the light cone group O(4).
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In the case at hand we have a non-critical string which has half the supersymmetry

of the above six dimensional string resulting from stretched membrane between the two

5-branes, as well as having half the E8 current algebra of the string resulting from a

membrane stretched between two 9-branes. In fact we have one left-moving E8 current

algebra at level one and one right-moving spinor of O(4) in the light cone gauge. In

addition we have, in the light cone gauge the usual 4 transverse bosonic oscillators.

2.1. Prediction for BPS States

Now we further compactify on a circle and ask what are the BPS states which carry

a winding charge of this non-critical string? This is a familiar situation encountered in

the study of critical strings [19]. In the case at hand we do not know enough about the

properties of the resulting non-critical string to rigorously derive the spectrum of BPS

states, but we will follow the same line of argument as in the critical string case and derive

what seems to be the reasonable BPS spectrum of states: Let (PL, PR) denote the left-

and right-moving momenta of the string on the resulting circle. We have

(PL, PR) =
1√
T

(
n

2R
− mRT,

n

2R
+ mRT )

where (n, m) denote the momentum and winding of the string around the circle and T

denotes its tension. The overall factor of 1√
T

in front is put to make (PL, PR) dimensionless.

Note that
1

2
(P 2

R − P 2
L) = n · m .

Let (L0, L0) denote the left- and right-moving Hamiltonians corresponding to oscillating

states of the strings. Since we are after BPS states we restrict to ground state oscillator

states for the right-movers but arbitrary states on the left-movers. We also need to impose

the equality of L0 = L0. Assuming free oscillating states we have

L0 =
1

2
P 2

L + LI
0 + N

L0 =
1

2
P 2

R + N

where LI
0 corresponds to the internal degrees of freedom of the E8 current algebra and

N denotes the contribution of oscillators from 4 transverse bosonic states. Similarly N

denotes the oscillators contribution from 4 bosonic and 4 fermionic right-moving oscillator

states. In principle there could have been a constant addition to L0 as is for instance for

bosonic strings. We will see that in the case at hand to agree with predictions based on
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the type II side we do not need any shifts. To have a BPS state we set N = 0 and we thus

see that

N + LI
0 =

1

2
(P 2

R − P 2
L) = n · m (2.1)

The mass of the corresponding BPS state is given by

M =
∣

∣

√
TPR

∣

∣ =
∣

∣

n

2R
+ mRT

∣

∣ (2.2)

With more than one unit of winding, since we do not know enough about the non-critical

string, it is difficult to decide whether we have stable new states at higher winding numbers,

as would be the case in critical string theories or that the multiply wound state decays

to singly wound states (we shall find in section 4, using the type II dual that they indeed

do not form such bound states). To avoid this complication we concentrate on the case

m = 1. Setting m = 1 in (2.2) we have

Mn =
∣

∣

√
TPR

∣

∣ =
∣

∣

n

2R
+ RT

∣

∣ (2.3)

We see from (2.1) that if d(n) denotes the degeneracy of BPS states with n-units of

momentum around the circle with winding number one we have

q−
1
2

∞
∑

n=0

d(n)qn =
χE8

(q)

η(q)
4 =

θE8
(q)

η(q)
12

where we have used the fact that the internal LI
0 corresponds to a level one E8 Kac-Moody

algebra and can be viewed in the bosonized form as corresponding to 8 bosons compactified

on the E8 root lattice. We thus have 12 oscillators 4 of which are space-time oscillators

and 8 are internal and are scalar. Note that we have thus learned that

d(0) = 1, d(1) = 252, d(2) = 5130, ...

with masses given by

M0 = RT, M1 = RT +
1

R
, M2 = RT +

2

R
, ...

What about their space-time quantum numbers? Again because of our ignorance about

non-critical strings it is difficult to judge a priori what the right-moving supersymmetric

ground state should be. Formally one would think that the right-moving oscillator zero

mode consists of a spinor of O(4) in the light cone and so the space-time quantum num-

bers of the right-moving ground state must be half a hypermultiplet which transforms as

2(0, 0) ⊕ (1/2, 0) of O(4). Together with the inversely wound states, this would form a
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full hypermultiplet as the ground state on the right-moving side. To get the full quantum

number of the above BPS states we have to tensor this with the left-moving quantum

numbers. There are two types of quantum numbers, corresponding to space-time as well

as E8 representations. The fact that they form E8 representations is natural when we

recall that locally when an E8 instanton shrinks we expect at least locally to restore the

E8 and so all the states should form E8 representations. The E8 content of the BPS states

can be easily deduced from the corresponding affine Kac-Moody degeneracies. As for the

space-time quantum numbers, we have four transverse bosonic oscillators which transform

as ( 1
2 , 1

2 ) of O(4). This thus allows us to find the quantum number of all BPS states. For

example the state with n = 0 is a hypermultiplet singlet of E8. The state with n = 1 is

given by

[

248; 4(0, 0)⊕ (
1

2
, 0) ⊕ (0,

1

2
)
]

+
[

1; 4(
1

2
,
1

2
) ⊕ (1,

1

2
) ⊕ (

1

2
, 1) ⊕ (0,

1

2
) ⊕ (

1

2
, 0)

]

(2.4)

where the first entry denotes the E8 content of the state. Note that the spin of these

states goes all the way up to spin 3/2 (in four dimensional terms). Similar decompositions

can be done for all higher values of n as well. Note that as we start decreasing the

tension towards zero the once wrapped state with no momentum, which is the lightest

state becomes a massless hypermultiplet. The rest of the BPS states, including the one

with n = 1 are still massive in this limit. So far we do not see any exotic physics and,

modulo the question of multiple windings, the tensionless string seems to have produced

only a massless hypermultiplet. As we will discuss in the next section there is an important

subtlety which is difficult to see in this setup. We will find that the interesting physics is

associated not with the point where the wrapped string becomes tensionless with T = 0

but actually when T of the wrapped string becomes negative. These are more clear from

the viewpoints of F-theory and M-theory to which we turn to in the next section.

It is natural to ask what happens when instantons for other gauge groups shrink, for

example that of other exceptional groups Ed. In the most standard form of the question this

issue does not naturally arise in the six dimensional theories1, because the only relevant

gauge groups are E8 × E8 or SO(32). But the issue can naturally arise if we go to 5

dimensions.

A simple way to see this is to suppose we start with the E8 × E8 heterotic strings in

10 dimensions and first go from 10 to 9 dimensions on a circle where we turn on a Wilson

1 Actually in cases where we choose the instantons in a sub-bundle of E8 the other cases may

also occur in some special cases.
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line which breaks one of the E8’s to a smaller group2 say Ed × U(1)8−d. The choices for

such Wilson lines are parametrized by 8− d real parameters Ai denoting the choice of the

Wilson line in each of the U(1)’s. Now if we further compactify the heterotic string on K3

all the instantons will now reside in Ed. In such a case the question of Ed small instantons

and their physical interpretation arises.

We can use the picture of non-critical tensionless E8 string to gain insight into this

situation as well. The idea is to consider the point at which the string is exactly tensionless

with T = 0. At this point the E8 gauge symmetry is locally restored as the E8 instantons

have zero size. Now it makes sense to turn on the Wilson lines and break E8 → Ed ×
U(1)8−d. This situation seems to be indistinguishable from having had started with Ed

instantons and making their size shrink. Even though this is not a proof it seems very

plausible that the two descriptions are identical. If so then we can learn about how the

small Ed instantons behave as far as the spectrum of BPS states are concerned. They are

simply the ones for E8 strings deformed by the Wilson lines on the circle.

Let us denote the relevant Wilson lines as a vectors Wα, α = 1 . . .8 − d in the E8

Cartan Lie algebra. As noted above the BPS states form representations of E8. Let Λ

denote a weight of a state of one of the BPS states. Suppose it originally had mass M .

After turning the Wilson line the mass shifts in the usual way by

M → M +
∑

α

Λ · Wα (2.5)

This now splits the BPS states into states which form representations of Ed × U(1)8−d.

3. F-theory and M-theory Descriptions

We now analyze the same situation from a dual viewpoint using the duality between

heterotic string on K3 and F-theory on elliptically fibered Calabi-Yau threefolds [13][14].

The transition from a 5-brane approaching a 9-brane to having an instanton of finite size

is locally the same transition in the Calabi-Yau language as going from an elliptically

fibered Calabi–Yau with base making a blow down from F1 → P2 [6][14], where F1 is

the Hirzebruch surface of degree 1. This turns out to be the same transition which occurs

for strong coupling for heterotic strings with instanton numbers (11,13) (which is dual to

2 The following discussion is unaltered even if we have other unbroken groups. We use this

choice for later comparison with the F-theory conjecture for such cases [14].
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F-theory on Calabi–Yau over F1) giving us another realization of the transition we are

considering. At the transition point an “exceptional divisor” D which is a two sphere with

self-intersection -1 shrinks to zero size [13]. The tensionless string in six dimensions is to

be identified with the three brane of type IIB wrapped around D [8].

There are two relevant Kähler classes for this transition of the Calabi-Yau: the Kähler

class of D which we denote by kD and the Kähler class of the elliptic curve kE . Clearly

the tension of the string in six dimensions T ∝ kD. In the F-theory limit the Kähler class

of the elliptic curve is not dynamical and can be thought of as formally being put to zero.

More precisely [20] if we compactify further on a circle of radius R down to five dimensions

we have an equivalence with M-theory on the same elliptic Calabi-Yau with kE ∝ 1/R. In

the limit as R → ∞ we obtain the F-theory compactification in six dimensions.

As it turns out the nature of the above transition is different between 6 and 5 dimen-

sions (suggesting that there is a quantum correction in the 5-dimensional theory) as has

been elaborated in [14] which we will now review. In the six dimensional case there is only

one class kD, as kE = 0 and the transition takes place when kD = 0. In the five dimensional

theory there are actually two transition points: Let us fix the radius (or equivalently fix

kE) and start decreasing kD to approach the transition point (see Fig. 1). When kD = 0,

D has shrunk to zero size and we have the tensionless string in 6 dimensions. But the

interesting transition occurs further down when we take kD < 0. What this means is that

we have done a ‘flop’ on D. The actual transition point is when we reach kD = −kE . At

this point an entire 4-cycle which is the E8 del Pezzo surface (P2 blown up at 8 points)

which we denote by B8 has shrunk to zero size. In terms of the wrapped string this means

formally setting the tension to a negative value. We identify

kE =
1

2R
, kD = RT (3.1)

Note that there really are two physical transitions. At the first transition point where

kD = 0 we have a 2-sphere shrunk to zero size. In M-theory the membrane can wrap

around this two sphere and give rise to a massless particle. In fact this situation has

already been analyzed [15] with the result that at this point one has a single massless

hypermultiplet. In fact this is what was expected based on the tensionless string description

discussed in the previous section where one obtains a massless hypermultiplet. However as

we have already emphasized the interesting transition is associated with a different point

at which at least formally this string acquires a negative tension. This is also the point

where the unwrapped string becomes tensionless. If we analytically continue the formula

obtained from the viewpoint of our original string we see that among the BPS states we
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considered the string which wraps around the circle and carries one unit of momentum

about the circle now becomes massless, i.e. one would expect that at this transition point

there are 252 massless states. Using the BPS counting of states also for the type II side

we will verify below that this is indeed a correct supposition. At this second transition

point we can wrap membranes about any 2-cycle on B8 and get a massless particle; the

252 states just discussed should be among them. At this point the unwrapped tensionless

string is associated with the 5-brane of M-theory wrapped around B8. If we denote the

volume of B8 by ǫ2, then the tension of the resulting string goes as T ∼ ǫ2. As far as

dimensional argument the resulting mass scale T 1/2 = ǫ is the same as the mass scale for

the membranes wrapped around the 2-cycles of B8 and so are equally relevant [15]. If

we compactify further to 4 dimensions where we get equivalence with type IIA theory on

the same Calabi-Yau, we can have three different light states: a 5-brane wrapped around

vanishing 4-cycle, a Dirichlet 4-brane wrapped around the vanishing 4-cycle and finally a

Dirichlet 2-brane wrapped around any vanishing 2-cycle in B8. It turns out that the simple

dimensional analysis now suggests that the relevant light states are the 4-brane wrapped

around vanishing 4-cycle which lead to massless particles; thus there may well be a local

Lagrangian formulation of this theory in the four dimensional case. This should be very

interesting to identify.

k

D

k

E

k

D

> 0k

D

< 0

V

4�cycle

= 0


opped phase K3 phase

non � geom: phase

0

Fig.1: Phases of the Kähler moduli space. In 5d (kE 6= 0) there is a new phase where

the string tension of the wrapped string ∼ kD becomes formally negative. Decreasing

the tension of the wrapped string following the dashed line it becomes zero at the

first transition point (white circle) where one gets only a massless hypermultiplet

from winding the string around the circle. Continuing further to negative values one

hits the second transition point (black circle) where the unwrapped string becomes

tensionless. In addition there are infinitely many massless point like objects arising

from wrapped states of the negative tension string interacting with the magnetically

charged tensionless string.
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Similarly it has been conjectured [14] that the small Ed instantons which one en-

counters in heterotic string compactifications below 6 dimensions are dual to Calabi-Yau

threefolds where a del Pezzo surface of type Bd (to be reviewed in the next subsection)

shrink to zero size. In fact it should be possible to derive this conjecture directly from the

case of small E8 instantons following the physical idea of turning on Wilson lines discussed

at the end of the next section and following the parallel geometric description of this op-

eration (as has been done in similar contexts in [21].). At any rate we will find evidence

for the above conjecture when we compare the predictions based on the tensionless strings

and the geometry of the del Pezzo Bd.

3.1. Geometry of the del Pezzo Surfaces

In the following we describe some aspects of the geometry involving the vanishing 2-

and 4-cycles associated to a del Pezzo Surface sitting in the Calabi-Yau threefold. Although

the properties of the tensionless strings associated to them are governed by the local

geometry, the choice of an appropriate global embedding will be important in order to be

able to extract important physical quantities such as the number of BPS states. In order

to do that we have to identify the homology of the vanishing 4-cycle within that of a given

Calabi–Yau threefold.

The relevant del Pezzo surfaces3 Bk can be constructed by blowing up k generic points

Pi on P2 as i runs from 1 to k where 1 ≤ k ≤ 8. The divisor classes of Bk are thus the

class of lines l in P2 and the k exceptional divisors Di lying above the points Pi, whose

class we denote by ei. The number of nontrivial homology elements is h0,0 = h2,2 = 1 and

h1,1 = 1 + k, which gives k + 3 as the the Euler number. The non zero intersections in the

(l, e1, . . . , ek) basis of H1,1(Bk) are l2 = 1 and e2
i = −1; moreover the anti-canonical class

K̄k is K̄k = c1(Bk) = 3l −
∑k

i=1 ei.

A curve C in the homology class al −
∑k

i=1 biei intersects the line l a times and

moreover passes bi times through the points Pi. Its degree is

dC = K̄k · C = 3a −
n

∑

i=1

bi (3.2)

and its arithmetic genus can be obtained from the Plücker formula [24] as

gC =
(a − 1)(a − 2)

2
− δ = 1 +

1

2
(C · C − K̄k · C), (3.3)

3 See [22] and [23], Chap. V, Sect. 4 for a thorough exposition of this construction.
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where δ is the number of nodes (ordinary double points). At each point Pi one has

bi(bi − 1)/2 nodes and we assume the curves to be otherwise smooth. If there are δ′ (κ)

additional nodes (cusps) outside the Pi (3.3) is reduced by δ′ (κ), hence (3.3) is merely an

upper bound on the genus, known as arithmetic genus.

To count the number of irreducible curves of genus 0 note that for such curves bi ≤ a

as an irreducible curve of degree a in P2 cannot pass more then a times through any given

point. To obtain the number of lines one enumerates therefore solutions of (3.2),(3.3) with

dC = 1, gC = 0 and bi ≤ a. E.g. for B8 one finds seven classes (a; b1, . . . , b8) = (0;−1, 07),

(1; 12, 06), (2; 15, 03), (3; 2, 16, 0), (4; 23, 15), (5; 26, 12) and (6; 3, 27). Counted with the

obvious multiplicities due to the permutation of the points Pi these are 240 = 8 + 28 +

56 + 56 + 56 + 28 + 8 lines. By the same method the number of lines on the other Bk

i = 7, . . . , 1 turns out to be 56, 27, 16, 10, 6, 3, 1. A thorough counting of rational curves on

B6 has been performed in ref. [25] under the requirement that the curves pass through a

sufficient number of points to avoid the problem of continuous moduli.

The fact that the lines are in representations of the Weyl groups of Ek for k ≥ 3 [22]

can be recognized by looking at the classes E ∈ H1,1(Bk) fulfilling K̄k · E = 0. These can

be generated by E1 = l− e1 − e2 − e3 and Ei = ei − ei+1, which span the root lattice of Ek.

Therefore one has an action of the Weyl group on H1,1(Bk) and curves C of given degree

dC must be organized representations of the Weyl group.

The del Pezzo surface B9 can be understood as the blow up of P2 at the nine inter-

section points of two cubic curves; this defines an elliptic fibration over P1 which can be

described generically by the equation

y2 = x3 + xf4(z
′) + g6(z

′) (3.4)

where z′ is the coordinate on the base P1 and y, x the coordinates on the fibre. There are

12 singular fibres above the discriminant locus ∆ = 4f3
4 + 27g2

6 = 0; therefore the Euler

characteristic χ is 12. Roughly speaking this is the structure of half a K3; in that case

f4, g6 are replaced by polynomials of the double degree f8, g12 leading to 24 singular fibres

and two copies of E8 in the intersection matrix.

There are k + 1 real parameters associated to the volumes of the independent holo-

morphic two cycles of Bk. However not all of them will descend to Kähler moduli

of the Calabi–Yau threefold X , the actual number depends on the rank r of the map

H1,1(Bk) → H1,1(X). To contract Bk one has to shrink all the volumes of its holomorphic

2-cycles to zero; in particular this means that one has to restrict a codimension r locus

in the Kähler moduli space of X . Moreover, if the class which measures the size of the
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elliptic fibre of the del Pezzo is the same as that of the generic fibre of the elliptically

fibred three-fold, the contraction necessarily collapses X to its base B. Whereas this is

the usual limit one has to take in the F-theory compactification, this situation is clearly

inappropriate in the context of M-theory compactifications to 5 dimensions.

In order to obtain contractions at codimension 1 in the moduli space which do not

change the dimension of X as discussed before one has to perform flops on 2-cycles in

the del Pezzo which support Kähler classes of X . This operation effectively contracts the

exceptional divisors; in particular a flop of an exceptional divisor Di results in a transition

from Bk to Bk−1. On the other hand if the elliptic fibre of Bk coincides with that of the

elliptic fibration X , as in the cases considered below, one has always to flop the base P1

because of the variation of the fibre type above the base.

An important aspect of the global embedding of the vanishing cycle in the Calabi–

Yau context is the fact that we can measure their volume, and therefore the mass of the

associated BPS state. Let K =
∑

Jiki denote the volume form of the Calabi–Yau threefold

X , where Ji are the Kähler classes and ki special coordinates on the Kähler moduli space

and let Ĉi denote the dual homology classes fulfilling JiĈj = δij . Classically the area of a

cycle in the class
∑

i ciĈi is then given by
∑

i ciki. In compactifications to four dimensions

instanton corrections may shift the position of the singularity associated to a vanishing

cycle away from the locus
∑

i ciki = 0; as a consequence multiples nĈ0 of the class Ĉ0

of a vanishing cycle will have non-zero volume if this happens. In particular, in order

that the volumes of 2-cycles in a vanishing 4-cycles indeed all vanish, it will be important

that there is no such shift due to instanton corrections. The absence of a shift in the

five-dimensional case can be inferred from the independence of the vector moduli space

on the overall volume modulus of the Calabi–Yau manifold, which sits in a hypermultiplet

and scales the action of the worldsheet instantons [26]. In the four–dimensional type IIA

compactification one has to establish the coincidence of the classical volume with the exact

vanishing period to exclude a quantum split of the areas associated to multiples of a given

class.

In order to be a valid F-theory compactification we will choose our Calabi–Yau three-

fold X to be elliptically fibred; to make contact with the heterotic picture we will further

require it to be a K3 fibration. As discussed previously these restrictions are not necessary

conditions for the existence of the type of tensionless string transition we consider, which

requires only the local geometry being that of a vanishing 4-cycle of the appropriate type

and neither a global elliptic or K3 fibred structure. Rather these restrictions provide the

appropriate global embedding for the local geometry which is convenient for the counting

12



of the BPS spectrum and the physical interpretation. In particular we take the elliptic

fibre of the del Pezzo representing the vanishing 4-cycle to be that of the elliptic fibred

Calabi–Yau. This is only possible if the base of the elliptic fibred Calabi–Yau is the Hirze-

bruch surface F1 [14]. The Weierstrass model for the elliptic fibred three-fold with base

Fn is defined by the equation

E8 : y2 = x3 + x

k=4
∑

k=−4

z4−kf8−nk(z′) +

k=6
∑

k=−6

z6−kf12−nk(z′) (3.5)

where n = 1 for F1, y, x are the coordinates on the elliptic fibre E, z is the coordinate on

the fibre F of F1 and z′ the coordinate on its base B. Note that F is the base of a elliptic

fibred K3, fibred itself over the base B and that the elliptic fibre is described by the simple

elliptic singularity P1,2,3[6] of E8 type.

To extend the global description to the del Pezzo surfaces Bd, d = 6, 7, consider the

local form of the singularity of the vanishing 4-cycle in C4 [27]:

E8 : y2 = x3 + x2f2 + xf4 + f6

E7 : y2 = x4 + x3f1 + x2f2 + xf3 + f4

E6 :
∑

ykxlf3−k−l = 0 ,

(3.6)

where fn are homogeneous polynomials of degree n in two variables z′ and z′′. The elliptic

fibre defined by setting z′ and z′′ constant is no longer of the generic type for d < 8 but

corresponds to a symmetric torus. In other words, if we insist to keep the elliptic fibre

of the del Pezzo to be identical to that of the Calabi–Yau fibration we have to consider

elliptic fibred threefolds with the corresponding fibres of E7 and E6 type, P1,1,2[4] and

P1,1,1[3], respectively4.

After choosing a section and restricting to a patch, the defining equation of the elliptic

fibred threefold with base Fn replacing (3.5) becomes:

E7 : y2 = x4 + x2
∑

k

f4−nkz2−kw2+k

+ x
∑

k

f6−nkz3−kw3+k +
∑

k

f8−nkz4−kw4+k

E6 : y3 + x3 = y
∑

k,l

xlw2−l+kz2−l−kf4−2l−nk

+ x
∑

w2+kz2−kf4−nk +
∑

w3+kz3−kf6−nk

(3.7)

4 Calabi–Yau threefolds of this type have been discussed recently also in [28].
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where fn are homogeneous polynomials of the base variables z′, z′′. The terms which

appear in (3.7) are restricted to respect the C⋆ symmetries

E8 :(6 − 3n, 4 − 2n, 1, 1,−n, 0), (6, 3, 0, 0, 1, 1)

E7 :(4 − 2n, 2 − n, 1, 1,−n, 0), (4, 2, 0, 0, 1, 1)

E6 :(2 − n, 2 − n, 1, 1,−n, 0), (2, 2, 0, 0, 1, 1)

acting on (y, x, z′, w′, z, w), where y, x are the coordinates of the elliptic fibre, z′, w′ those

of the base of Fn and z, w those of the fibre of Fn. In this way one obtains series of

Calabi–Yau threefolds with the corresponding elliptic fibres and base Fn. Most of them

have a simple representation in terms of hypersurfaces in weighted projective spaces

E8 :P1,1,n,4+2n,6+3n[12 + 6n]

E7 :P1,1,n,2+n,4+2n[8 + 4n]

E6 :P1,1,n,2+n,2+n[6 + 3n]

respectively; in general the appropriate description is in terms of toric varieties as described

in the appendix. For F1 one recognizes the singularities (3.6) as the local equations in the

neighborhood of z′ = z′′ = 0. The elliptic fibred Calabi–Yau threefolds obtained in this

way have hodge numbers (h1,1, h2,1) = (4, 148) and (5, 101), respectively. As described in

[14][15] these fibrations based on F1 have Higgs branches which describe F-theory on an

elliptically fibred threefold with base P2 and hodge numbers related to the one with base

F1 by [14]

h1,1 = h1,1 − k, h2,1 = h2,1 + cd − k

In the present case we have k = 1 and therefore the spectrum on P2 is expected to be

(3, 165) and (4, 112), respectively; it is straightforward to check that the transition leads

to corresponding elliptic fibred threefolds are described by hypersurfaces in P1,1,1,3,6 and

P1,1,1,3,3.

In fact one can show using methods similar to [29] that the three Calabi–Yau manifolds

X
(3)
(3,243), X

(4)
(4,148) and X

(5)
(5,101) are connected by extremal transitions where precisely the

right number of rational curves are blown down to provide the new hypermultiplets on the

side with the larger number of complex structure moduli. From the viewpoint of F-theory,

in the six dimensional limit, where the size of the elliptic fiber goes to zero, the (4, 148)

model and (5, 101) model can be viewed as a subset of the (3, 243) model where we have

tuned the complex structure on the threefold in a particular way. To make a transition we

have to give the elliptic fiber a finite size which is only allowed if we further compactify on

a circle to 5 dimensions. This is the geometrical realization of turning on the Wilson lines

on the circle. A more detailed description of these manifolds for the E7 and E6 cases as

toric varieties is given in the appendix.
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4. Counting holomorphic curves with mirror symmetry

We are interested in BPS states, which arise from wrapping membranes around su-

persymmetric two cycles. They correspond to the holomorphic curves in the Calabi-Yau

manifold X [30]. One can naturally ask whether the BPS states are represented by higher

genus curves? This for instance is naturally the case for holomorphic 2-cycles in K3 which

are represented by higher genus curves [31]. However even in that case it has been shown

in [32] that if one allows genus 0 curves with nodal singularities, it will in effect have the

full informations about the higher genus cases as well. The results we shall find below by

studying the genus 0 curves in the case of del Pezzo also seem to take account of such

singular maps automatically and thus in effect contain the information about the higher

genus curves as well.

There is also the question of whether the holomorphic maps come in isolated sets or are

part of a continuous moduli space. In the latter case mirror map computes the Euler class

of an appropriate bundle (of ‘anti-ghost zero modes’) on the moduli space of holomorphic

cycles. If the bundle coincides with the tangent bundle of moduli space, this would simply

give the Euler class of moduli space, which can be interpreted as the ‘net number’ of BPS

states ( the notion of ‘net number’ can be defined taking into account that some can pair

up to become non-BPS representations). We have not proven that when we have a family

of holomorphic curves, mirror map computes the relevant topological number for the net

number of BPS states, but in some cases that we could check this, it turned out to be so,

which leads us to speculate about the general validity of such a statement.

First consider the Calabi-Yau X(3) with hodge numbers (h1,1 = 3, h2,1 = 243), which

is an elliptic fibration with a single section over the Hirzebruch surface F1. This Calabi-

Yau has two geometrical phases, which we have discussed in the previous sections and will

also be described explicitly in terms of toric geometry in the appendix .

In the first phase the manifold is a K3 fibration and the Kähler cone is spanned by

three classes: i) CF the fibre P1 of the F1, ii) CD the exceptional section P1 of the F1 and

iii) CE , a curve in the elliptic fibre. The Gromov-Witten invariants of rational curves, i.e.

the number of holomorphic spheres with degree dF , dD, dE w.r.t. these classes, ndF ,dD ,dE
,

can be counted (modulo the subtleties noted above) using mirror symmetry. As discussed

before the relevant classes for the counting of states of the tensionless string are CD and CE

and we will sometimes denote the relevant n0,dD,dE
by ndD,dE

. Here we have the following

invariants.

15



dE 0 1 2 3 4 5 6

dD

0 480 480 480 480 480 480

1 1 252 5130 54760 419895 2587788 13630694

2 −9252 −673760 −20534040 −389320128 −5398936120

3 848628 115243155 6499779552 219488049810

4 −114265008 −23064530112 −1972983690880

Table 1: Invariants of X(3) for rational curves with degree dF = 0.

Note that in terms of the tensionless string description dD and dE denote the winding

number and the momentum quantum of the nearly tensionless string wrapped around the

circle. The first line of this table is special in that dD = 0 corresponds to no winding of

tensionless strings. So this part is just the Kaluza-Klein momentum excitations on circle of

the corresponding massless states in the 6-dimensional theory. Given the fact that the net

number of hypermultiplets minus the vector multiplets (in 4-dimensional terms) is −χ/2

and that for the manifold with (h11, h21) = (3, 243) we have −χ = 480 we get a perfect

match with the corresponding computation from the mirror map5. This is a case where

in fact one can show that the moduli space of holomorphic curves is not isolated and is in

fact a copy of the Calabi-Yau itself making us gain faith in the meaning of the numbers

computed by the mirror map. Note that (because of the appearance of the Euler number)

this first row of the table is not universal and depends on which Calabi–Yau we used to

realize this transition. This is not the case with the other rows in the table, corresponding

to non-vanishing winding states of the tensionless strings which turn out to be universal.

In fact we have checked that in the class of elliptic fibred threefolds whose elliptic fibre is

at the same time the fibre of the del Pezzo (as is necessary for the above interpretation

of the BPS states), independently of how the corresponding transition is embedded in the

Calabi-Yau, these are unaffected 6.

Now we come to the more interesting numbers in the above table. First of all note that

for the singly wound state dD = 1 with no momentum dE = 0 we have one BPS state but

for all dD > 1 with dE = 0 there are none. This implies that the multiply wound tensionless

5 Note that the factor of 2 is there to make a full hypermultiplet on the supersymmetry side

(which for dD 6= 0 is effected by the negative reflection of dD).
6 The universal invariants of the local geometry of the vanishing 4-cycles without the above

mentioned restriction are discussed in the appendix.
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string with no momentum does not form a bound state. For the winding number one and

momentum quantum k we can read off the spectrum of BPS states from the second line

of the above table and is precisely given by

Λ̂E8
=

1

2

∑

α=even

θ8
α(τ)

q−
1
2 η(τ)12

= 1 + 252q + 5130q2 + 54760q3 + 419895q4 + 2587788q5 + . . .

(4.1)

Here θα are the Jacobi Theta functions and the η is the Dedekind eta-function

1

2

∑

α=even

θ8
α(τ) = 1 + 240q + 2160q2 + 6270q2 + 17520q4 + 30240q5 + . . .

q
1
2 η(τ)−12 = 1 + 12q + 90q2 + 520q3 + 2535q4 + 10908q5 + . . .

We have checked the agreement of these functions and the coefficients of the instanton

expansions up to 12th order in q. This result is in perfect accord with expectations based

on tensionless strings discussed in section 2.

Note that we actually have more information here for multiple winding states. Con-

sider for example the third row in the above table which corresponds to the BPS states with

double winding numbers of the tensionless string. First of all, the fact that the numbers

are negative implies that we are dealing with moduli space of holomorphic maps rather

than isolated numbers. We should thus interpret these number, as in the first row, as the

net number of BPS states. The net number of double wound states exhibit the following

quadratic relation in terms of the single wound states

8 n2,k = −(k − 1)
k

∑

i=0

n1,k−i n1,i − δ(k mod 2),0 n1, k
2
.

The interpretation of this sum rule is a very interesting one for which we do not know the

answer (though we present some speculations in the next section). For example the first

non-vanishing number −9252 in the third row can be viewed as

8(9252) = (252 · 252) + 2(1 · 5130) + 252

We also expect, though have not checked, that the higher winding number BPS states

can also be factorized in terms of other BPS degeneracies with total winding number

adding up to the winding number of BPS state in question.
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4.1. New Physics at the Second Transition

As discussed in section 3 the interesting transition, corresponds to the second point

where the class kD + kE = 0. In particular at this point the 252 states corresponding to

dD = dE = 1 become massless. As discussed in section 2 the quantum number of these

states include fields with spin up to spin 3/2. We are thus seeing a massless gravitino

at this point, therefore suggesting enhanced local supersymmetry at this transition point!

This is novel in that this is happening at a finite distance in moduli space (see also [33]).

This is quite remarkable. One may wonder whether we can prove that the corresponding

BPS state is stable. Before we approach the first transition point any BPS state with a

fixed (dD, dE) has the same mass as the sum of masses of BPS states whose (di
D, di

E) add

up to it. So in principle there is a channel were they could have decayed. We do not

believe this is the case and believe that they form bound states at threshold; for example

the fact that the mirror map does not predict any BPS state for dD > 1, dE = 0 already

suggests that mirror map, which counts only primitive instantons (since we have subtracted

multi-cover contributions) only counts states which are stable. At any rate we can actually

make this rigorous at least for the 252 states in the second transition. In principle the 252

states can decay to the combination of dD = 1, dE = 0 states and dD = 0, dE = 1 states.

However after the first transition point where the sign of kD flips the situation changes.

In particular the BPS state corresponding to dD = 1, dE = 0 at this second transition

has negative mass but positive (mass)2 and so it is an ordinary massive BPS state [15].

Thus energetics forbid the decay of the 252 states. We are thus rigorously predicting the

existence of a massless stable particle with spin 3/2 at the second transition point. This is

however not the end of the story. In fact all the states with (dD, dE) = (n, n) are massless

at the second transition point. Even though now we cannot prove they are stable (as

they can in principle decay to n copies of (dD, dE) = (1, 1) states) based on what we said

above we believe they represent BPS states which are bound states at threshold. Thus the

massless 252 states are just the tip of the iceberg and we seem to see an infinite tower of

massless states, with net BPS degeneracies 252,−9252, 848628, ..., as had been anticipated

in [14][15]. As mentioned before we also have a tensionless magnetic string at this point

interacting with all these massless states. This suggests that the totality of BPS state

252,−9252, ... form some kind of “representation” for this new string. The analogy we

have in mind is that if we have a gauge particle for some group G it can interact with

massless particles which form non-trivial representations of G. Here we believe we have a

non-critical string version of this situation at hand where a non-critical tensionless E8 string

interacts with the correspondingly infinite tower of BPS states which can themselves be
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viewed as negative tension E8 strings wrapped around the circle n times with momentum

n around the circle. This also suggests that a quantum correction is responsible for shifting

the tension of the wrapped string from that of the unwrapped one. Clearly there is a lot of

new physics hidden here remaining to be explored. We cannot hesitate to speculate about

the implications of a better understanding of this second transition point for the question

of supersymmetry breaking, given the fact that we seem to have found as a ‘minor’ part

of the infinitely many light BPS states, a nearly massless spin 3/2 state!

4.2. Other Ed

Next we consider the elliptically fibred Calabi–Yau X(4) with base F1 and generic fibre

of the type P 1,1,2[4] with hodge numbers (4, 148). The four Kähler classes are supported

by the following classes of curves: i) CF , the fibre P1 of F1, ii) CD, the exceptional section

of F1, iii) CE , a curve in the elliptic fibre and iv) a new class which will be denoted by

CW , which is introduced by the second section of the fibration. In fact this manifold is

connected to the Calabi–Yau threefold X(3) by a transition which contracts the P1 of the

new Kähler class, kW = 0. From n0,0,0,1 = 96, n0,0,0,k = 0 for k > 0 we see that there

are 96 2-cycles contracted by the transition, thus explaining the change of the number

of complex structure deformations 243 − 148 + 1 = 96. Moreover the Gromov–Witten

invariants sum up as n
(3)
i,j,k =

∑

l n
(4)
i,j,k,l for kW = 0.

The rational curves n
(3)
0,1,k generating the partition function (4.1) split according to

the U(1) charges in the decomposition E8 ⊂ U(1) × E7. The relevant Gromov–Witten

invariants n
(4)
nF ,nD,nE ,nW are shown in table 2.

dW 0 1 2 3 4 5 6 7 8 9
∑

dE

0 1 1

1 1 56 138 56 1 252

2 138 1248 2358 1248 138 5130

3 56 2358 13464 23004 13464 2358 56 54760

4 1 1248 23004 103136 165117 103136 419895

Table 2: Invariants of X(4) for rational curves with degree dF = 0, dD = 1.

Note that the splitting of the E8 states into E7 states is in perfect accord with the

idea explained in section 2 in the context of tensionless strings and turning on Wilson lines

of U(1) on the circle. Moreover we should identify the Wilson line of the U(1) with the
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Kähler class of W : kW = W . Also we have to identify kE + 2kW = 1
R ; this is consistent

with the fact that a curve of this type is also in the elliptic fibre.

The states of the X(3), which are multiply wound around the circle, have a completely

analogous group theoretical decomposition into the classes of states of X(4). For example

for the doubly wound states dD = 2 one finds

dW 2 3 4 5 6 7
∑

dE

2 −272 −2272 −4164 −2272 −272 −9252

3 −2272 −38088 −165600 −261840 −165600 −673760

4 −4164 −165600 −1484256 −4961952 −20534040

Table 3: Invariants of X(4) for rational curves of degree dF = 0, dD = 2.

Interestingly one can identify the following symmetries of the instanton numbers sug-

gesting a kind of T-duality of the tensionless string:

kE → kE + 4kW , kW → −kW :
1

R
→ 1

R
, W → −W

kE → −kE , kW → kW + kE , kD → kD + kE :
1

R
→ 1

R
, W → −W +

1

R
,

RT → RT +
1

R
− 2W

(4.2)

Whereas the first symmetry related to a Weyl symmetry of the underlying E8 is present

for all values of nF , the second, more remarkable one, holds only for nF = 0. It points to a

duality symmetry of the enlarged charge lattice Γ1,9 (note however that we have found no

indication of a R → 1/R symmetry as is expected from the zero tension limit). We expect

the symmetries of the instantons to correspond to monodromies of the periods around

singular loci in the moduli space.

The E6 case is realized in the Calabi–Yau threefold where the generic elliptic fibre over

the F1 base is of type P 1,1,1[3]; its Hodge numbers are (5, 101). The five Kähler classes

supported by the classes CF , CD, CE as well as two additional classes which we denote

by W1 and W2. With respect to these classes the invariant of the E8 case split according

to the decomposition E8 ⊂ E6 × U(1)1 × U(1)2 as shown in table 4.
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dW1
0 1 2 3 4 5 6

∑

dW2

0 1 1

1 1 27 27 1 56

2 27 84 27 138

3 1 27 27 1 56

4 1 1

Table 4: Invariants of X(5) for rational curves of degree dF = 0, dE = 1, dD = 1.

dW1
2 3 4 5 6 7 8

∑

dW2

2 27 84 27 138

3 84 540 540 84 1248

4 27 540 1224 540 27 2358

Table 5: Invariants of X(5) for rational curves of degree dF = 0, dE = 2, dD = 1.

The results are once again in perfect agreement with the splitting of states based on

Wilson lines the identifcation being kE + 2kW2
+ 3kW1

= 1
R , kW1

= W1, kW2
= W2 and

kD = RT . There are similar symmetries of the instanton numbers as in the E7 case,

moreover there is again an analogous decomposition of the multiple wound states dD > 1

of X(4) into those of X(5).
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Appendix A. Toric description of the threefolds X(i)

In this appendix we will give the data which specify the Calabi-Yau threefolds as

hypersurfaces in toric varieties. The toric varieties can be described by pairs of reflexive

polyhedra (∆, ∆∗) in a four-dimensional lattice. The canonical hypersurfaces (X, X∗) in

the projective toric varieties (P∆,P∆∗) give rise to mirror pairs of Calabi-Yau threefolds

[34]. The exact worldsheet instanton corrections on X can be expressed in terms of the

periods of the mirror manifold X∗. Explicit formulas for the periods at points of large

radii are given in terms the topological data and the Mori generators of X in7 [35]. The

7 We will adapt to the notation of [35].
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later data are most easily calculable from the dual polyhedron ∆∗, which we give in the

following.

For the X(3) case the the dual polyhedron is the convex hull of the following points

ν∗
0 = [ 0, 0, 0, 0], ν∗

1 = [ 1, 0, 0, 0], ν∗
2 = [−1,−1,−6,−9],

ν∗
3 = [ 0, 1, 0, 0], ν∗

4 = [ 0,−1,−4,−6], ν∗
5 = [ 0, 0, 1, 0],

ν∗
6 = [ 0, 0, 0, 1], ν∗

7 = [ 0, 0,−2,−3].

(A.1)

The hypersurface X in the P∆ can be represented in the Batyrev-Cox variables [36]

x0, . . . , x7 as vanishing of the polynomial

P = x0[x
3
5 + x2

6 + x6
7(x

12
4 (x18

1 + x18
2 ) + x12

3 (x6
1 + x6

2))]. (A.2)

The model exhibits two geometrical phases, which correspond to two regular triangu-

lations of ∆∗ involving all points, and one non-geometrical phase. The first geometrical

phase admits a K3-fibration as well as an elliptic fibration and the generators of the Mori

cone are:

l(F ) = [ 0; 0, 0, 1, 1, 0, 0,−2]

l(D) = [ 0, 1, 1, 0,−1, 0, 0,−1]

l(E) = [−6; 0, 0, 0, 0, 2, 3, 1],

where the indices refer to the classes of the curves, which bound the dual vector in the

Kähler cone (comp. sec. 4). The classical triple intersections and the integrals involving

the second Chern class are

R = 8 J3
E + 3 J2

EJF + JE J2
F + 2 J2

E JD + JD JE JF
∫

M

c2JE = 92,

∫

M

c2JF = 36,

∫

M

c2JD = 24

The differential equations for the periods in the complex structure variables of X∗ are

generalized hypergeometric systems8. In the case at hand we have the differential operators

(θ := z d
dz

):

L1 = θE(θE − 2 θF − θD) − 12(6 θE − 5) (6 θE − 1) zE

L2 = θF (θF − θD) − (2 θF + θD − θE − 2) (2 θF + θD − θE − 1) zF

L3 = θ2
D − (θD − 1 − θF ) (2 θF + θD − θE − 1) zD

8 Properties of these systems were studied intensively by Gel’fand-Kapranov-Zelevinskii [37].
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From the periods and the discriminant of X∗

∆1 =(1 − zE)3(1 − zE − zEzD) − z2
EzF (8(1 − zE)2 − 16z2

EzF + 36zEzD

− 36z2
EzD + 27z2

Ez2
D)

∆2 =(1 − 4zF )2 − zD + 36zF zD − 27zF z2
D.

one can calculate F g
top which enjoys an expansion in terms of the Gromov-Witten invari-

ants for elliptic and higher genus curves respectively [38]. The behavior of F 1
top near the

dicriminants is z
− 26

3

E , z−4
F , z−3

D , ∆
− 1

6

1 and ∆
− 1

6

2 . For the elliptic curves one obtains

dF = 0 dE 0 1 2 3 4 5 6

dD

0 4

1 −2 −510 −11780 −142330 −1212930 −8207984

2 762 205320 11361870 31746948 5863932540

3 −246788 −76854240 −6912918432 −32516238180

4 76413073 278663327760 348600115600

Table 6: Gromov-Witten invariants for the genus one curves.

The second phase is connected to the first phase by a flop of the class D, which is the

P1 in the del Pezzo, whose complexified size parameter in the K3 phase was the modulus

of the dilaton of the heterotic theory, i.e. l̃(1) = l(E) + l(D), l̃(2) = l(F ) + l(D), l̃(3) = −l(D)

The topological data in this phase are given by

R = 8J̃3
1 + 3J̃2J̃

2
1 + J̃2

2 J̃1 + 9J̃2
1 J̃3 + 3J̃2J̃3J̃1 + J̃2

2 J̃3 + 9J̃2
3 J̃1 + 3J̃2J̃

2
3 + 9J̃3

3
∫

M

c2J̃1 = 92,

∫

M

c2J̃2 = 36,

∫

M

c2J̃3 = 102

The transition shrinking the 4-cycle corresponds to the limit z̃1 = ∞, z̃3 = 0 where z̃1z̃3

held fixed. This can be seen from the relation of the l̃(i)

l̄(1) = l̃(1) + l̃(3) = (−6; 0, 0, 1, 0, 2, 3, 0), l̄(2) = l̃(2) = ( 0; 1, 1, 1, 0, 0, 0,−3)

to the Mori generators l̄(i) of X1,1,1,6,9[18] model, whose polyhedron ∆∗ is given by the

convex hull of the points in (A.1), with ν∗
4 omitted. The analytic continuation from the

point z̃i = 0 to the point ẑi = 0 in the new variables

ẑ1 =
1

z̃1
, ẑ2 = z̃2, ẑ3 = z̃1z̃3
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is simplified by the fact that the expansions for five of the of the eight periods around the

large complex structure limit converge also at the transition point. Furthermore the period

related to the Kähler class k̃1 and its dual are analytically continued into linear combina-

tions of the solutions ω1/6,0,0 ∝ ẑ
1
6

1 +. . . and ω5/6,0,0 ∝ ẑ
5
6

1 +. . ., which vanish at ẑi = 0; this

proofs that the volumes of the 2-cycle and 4-cycle vanish also after including the quantum

corrections in the four-dimensional theory obtained by a type IIA compactification.

The structure for the threefolds X(4) and X(5) is similar and we omit the details.

The polyhedra ∆∗ for X(4) and X(5) can be obtained by adding the point ν∗
8 = (0, 0, 1, 1)

and ν∗
9 = (0, 0, 1, 2) to the points in (A.1) respectively. For the X(4) we choose a phase

in which the Mori generators l′
(D)

, l′
(E)

, l′
(F )

and l′
(W )

are related to the Mori generators

of X(3) by l(E) = l′
(E)

+ 3l′
(W )

, l(D) = l′
(D)

and l(F ) = l′
(F )

. Likewise the X(5) model

exhibits a phase in which the transition to X(4) is apparent as the Mori generators l̂(D),

l̂(E), l̂(F ), l̂(W1) and l̂(W2) are related to the one of the X(4) model by l′
(E)

= l̂(E) + l̂(W1),

l′
(W )

= 2l̂(W2) + l̂(W1), l′
(D)

= l̂(D) and l′
(F )

= l̂(F ).

Appendix B. Universal structure of the 4-cycle singularity

In the following we describe the structure of the differential equations and their solu-

tions which govern the Gromov–Witten invariants of the local vanishing 4-cycle Bk inde-

pendently of the global embedding in the Calabi–Yau. Specifically we study the dependence

of the mirror maps on the Kähler modulus of the collapsing 4-cycle. The restricted one

modulus system extracts the universal piece of the invariants associated to the vanishing

2-cycle inside the 4-cycle.

The universal behavior of the singularity is completely governed by a Mori vector l

which we can associate to the local form (3.6). For Ek, k = 8, 7, 6, 5 one has

E8 : l = (−6| − 1, 3, 2, 1, 1, 0, . . .),

E7 : l = (−4| − 1, 2, 1, 1, 1, 0, . . .),

E6 : l = (−3| − 1, 1, 1, 1, 1, 0, . . .),

E5 : l = (−2,−2| − 1, 1, 1, 1, 1, 1, 0, . . .)

(B.1)

This can be understood as follows: the rational curve Ĉ dual to l is contained in the

divisor D1 : {x1 = 0}. The polynomial restricted to D1 has a C⋆ symmetry given by the

remaining entries of l which implies a form consistent with the local description of the

singularity (3.6).
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Let k denote the relevant Kähler modulus and z = z(k) the mirror map. From the

vectors l we obtain a differential operators L which govern the mirror map z in the limit

where all other volumes become large compared to it. The differential operator L turns

out to be closely related to the differential operator of the elliptic fibre Lell:

L = Lell θ

where θ = z d
dz

and Lell are the differential operators of the elliptic curves P 1,2,3[6],

P 1,1,2[4], P 1,1,1[3], P 1,1,1,1[2, 2], (see e.g [39]):

E8 : Lell = θ2 − 12z(6θ + 5)(6θ + 1)

E7 : Lell = θ2 − 4z(4θ + 3)(4θ + 1)

E6 : Lell = θ2 − 3z(3θ + 2)(3θ + 1)

E5 : Lell = θ2 − 4z(2θ + 1)2

Given a solution ω of L we have also a solution ωell = θ ω of Lell. On the other hand the

fundamental period of L [35]:

w0(z, ρ) =
∑

n

c(n + ρ)zn+ρ

is given by the constant solution, whereas the mirror map z is given by the single log-

arithmic solutions. The expression for the instanton corrected Yukawa couplings can be

expressed in terms of w0 as

K(k) = ∂k∂k

( 1

2w0
K0∂ρ∂ρw0|ρ=0

)

(k)

and subtracting multiple covers we obtain the following Gromov–Witten invariants:

d 1 2 3 4 5 6

k

8 252 −9252 848628 −114265008 18958064400 −3589587111852

7 56 −272 3240 −58432 1303840 −33255216

6 27 −54 243 −1728 15255 −153576

5 16 −20 48 −192 960 −5436

0 3 −6 27 −192 1695 −17064

Table 6: Invariants of the vanishing 4-cycles for k = 0, 5, 6, 7, 8.

As suggested previously, these would correspond to the net degeneracies of massless BPS

states at the point where a 4-cycle of type Ed shrinks to zero size. Amusingly the E6 series

turns out to be precisely 9 times the series one obtains for P2, shown in the last row, which

would arise for compactification of M-theory (or type IIA) on the Z-orbifold [14][15].
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