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A systematic program to explore stability of orbits in hadron storage rings is based on the
following steps: (a) beginning with a symplectic tracking code, construct the mixed-variable
generator of the full-turn map in a Fourier-spline basis; (b) use the resulting fast mapping to
follow long orbits and estimate the long-term dynamic aperture; (c) construct quasi-invariants
and examine their variation in time to set long-term bounds on the motion for any initial condition
in a specified region. First results from an application of the program to the Large Hadron Collider
(LHC) are reported. Maps can be constructed in a few hours and evaluated at a speed 60 times
greater than that of one-turn tracking, on a workstation computer. Orbits of 107 turns take 3.6
hours. The value of a "stroboscopic" view of the synchro-betatron motion is emphasized. On a
Poincare section at multiples of the synchrotron period, one can study resonances and invariant
surfaces in two dimensions, thereby taking advantage of techniques that have proved effective
in treating pure betatron motion.
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1 THE FULL-TURN MAP AS DYNAMICAL MODEL

The most reliable simulation of single-particle motion in accelerators is
obtained from element-by-element symplectic tracking, using a realistic
lattice. In the case of large hadron storage rings this direct approach is limited
by computation cost, since one cannot afford to follow many orbits over
the desired storage time of the beam. Effectively, tracking does not provide
a dynamical model for large times. Three remedies have been suggested:
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(i) replace the realistic lattice by a much simpler one l allowing faster tracking;
(ii) avoid a real definition. of long-tenn dynamics, trying instead to derive
some signal of long-tenn behavior from behavior over shorter times (for
instance, by looking at deviation of two initially close orbits,2 or examining
pseudo-tunes obtained from windowed time series3) ; (iii) construct a full-tum
map that approximates the dynamics ofa realistic tracking code, while giving
a much faster calculation of tum-by-tum evolution. Although methods (i)
and (ii) might find a useful role, they are subject to irreducible uncertainties.
In our opinion, the mapping method (iii) can be nearly as reliable as direct
tracking, provided that an appropriate technique is applied.

The usual habit in the field of nonlinear mechanics is to favor techniques
that derive from classical analytical methods such as power series and
perturbation theory, even when the calculation is being done numerically.
The spirit of modem numerical analysis, with its emphasis on local

approximation and interpolation with controlled error, is rarely noticed. We
argue that methods suggested by numerical analysis are appropriate both
for representation of maps and for computation of invariants and canonical
transformations.

Maps based on Taylor series have not been entirely successful for the study
of long-term evolution. (Their use in producing normalizing transformations
is a different matter). They typically do not satisfy the symplectic condition
with adequate accuracy at large amplitudes. Also, the construction time for
Taylor series of suitably high order is uncomfortably large in the case of
big machines. The matter of symplecticity can be handled by deriving a
mixed-variable generating function from the Taylor series. Yan et al.4 derived
the generator by formal power expansions, and applied it successfully to
mapping of orbits in the sse. Another approach that is being tried is to
represent the map as a composition of a relatively small number of nonlinear
"kicks" and linear symplectic transformations.5 This form is symplectic, but
it may be difficult to understand its convergence properties.

The Taylor development about ,the origin has doubtful efficiency as a
representation of either the map or its generating function at points far from
the origin, in particular for interesting orbits close to the dynamic aperture.
To get an efficient local approximation for large amplitudes, one should use
polar coordinates, since the radial (action) variable typically has relatively
small variation along an orbit. The action-dependence of the map can be
represented locally in terms of a few simple basis functions. A bonus is
that the angle dependence proves to be fairly simple as well, in the sense



FAST SYMPLECTIC MAPPING ... LONG-TERM STABILITY 215

that relatively few Fourier modes are appreciable. A disadvantage of polar
coordinates is that they lead to singularities in generating functions at zero
action; we must stay away from the origin in every phase plane, or else use
a mixed Cartesian-polar system if one phase-plane point is near the origin.

2 CONSTRUCTION OF THE MAP FROM A TRACKING CODE

To enforce the symplectic condition, the full-tum map is defined implicitly
by a mixed variable generator G(I, <1>'), where the components of vectors
I and <1>' are action and angle variables, respectively, of the underlying
(normalized) linear system. For each iteration of the map, the explicit map
T : (I, <1» ~ (I', <1>') is obtained from G by Newton's method. The
construction of G (from single-tum tracking data for many initial conditions)
is described in detail in Ref. 6. Although G is a nonlinear function of the
tracking data, the problem of constructing G can be solved through Fourier
analysis and a nonlinear change of variable.

For application to accelerators we let G represent the map M for all of the
ring except the r.f. cavity. The fixed point of this map depends on the total
momentum deviation 8 = -(p - po) / Po, and therefore G is represented in
terms of transverse coordinates (II, 12, <P~, <P~) referred to an origin at the
8-dependent fixed point. The total map is composed of a simple explicit map
for the cavity, a linear transformation to center the coordinates at the fixed
point, and M. For details see Ref. 6.

The generator is represented as a Fourier series in <1>', with coefficients
given as B-spline functions of I and 8. The B-spline basis promotes fast
evaluation of the map, since only a few of the basis functions are non-zero at
any point. Further gains in speed are achieved by dropping negligible Fourier
modes and by starting the Newton iteration at a point obtained from a crude
explicit map.

3 A STROBOSCOPIC VIEW OF SYNCHRO-BETATRON MOTION

For a first exploration we take advantage of the fact that the betatron motion
does not have a strong effect on the synchrotron motion. We represent the
latter by a sinusoidal modulation of8, and ignore the coordinate conjugate to 8
(time of flight). If we approximate the synchrotron tune by a rational number,
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the Hamiltonian is then periodic in s with period equal to some multiple of
the ring circumference C. We study the LHC in injection mode, for which
the synchrotron tune is Vs = 1/129.97. Approximating by Vs = 1/130, we
have a periodicity of 130 turns, and a four-dimensional Poincare section at
s = 0 (mod 130C).

If we view an orbit only as it intersects this four-dimensional surface, once
per synchrotron period, then we have a fruitful way of analyzing the motion.7

One can study resonances and two-dimensional invariant tori of the 130-turn
map, and set long-term bounds by looking at two-dimensional quasi-invariant
actions. To evaluate the 130-turn map we merely iterate the single-tum map
130 times. To save time in iteration, we store coefficients of the generator for
all 130 values of o.

4 VALIDATION OF THE MAP AND RESULTS ON SPEED OF
MAPPING

Our approximation of the map has good convergence characteristics, so that
one can achieve high accuracy by increasing the number of Fourier modes
and spline interpolation points. For high speed of map iteration it is more
interesting, however, to see what can be accomplished with a map of modest
accuracy. Our map will always represent a Hamiltonian system (modulo
round-off error), since symplecticity is not compromised. This system may
closely resemble the Hamiltonian system of the tracking code, even if orbits
of the two systems starting at the same point do not agree closely at large
time. If the "skeleton of phase space", defined by the geometric structures
of resonances and invariant tori, is the same down to some fine scale, it is
reasonable to assume that the map provides a good model of tracking.

Here and in Ref. 9, we give some results on maps which include Fourier
modes up to m = 8, and 10 action interpolation points for cubic splines, in
either degree of freedom; there are 6 interpolation points in o. The maps are
defined in rectangles in action space. Maps for a sequence of overlapping
rectangles cover a strip in action space running parallel to the short-term
(2000 tum) dynamic aperture, at about 60% of that aperture. They agree with
tracking to about one part in 104 at one tum, and can be iterated for 107 turns
in 3.6 hours on an IBM RS6000-590 workstation.

One can construct an invariant surface (in the Poincare section at the
synchrotron period) in about twenty minutes on average. We find that a
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surface constructed from the map, invariant to one part in 105 under the map,
is invariant to one part in 104 under tracking. Although phase error may build
up in the comparison of mapping and tracking orbits, the orbits nevertheless
adhere closely to the same torus. Similarly, resonances ofmapping show close
similarity to those of tracking. Resonances are easily identified by plotting
one angle variable against the other, (mod 2n). Such a <PI - <P2 plot would
show straight lines for resonances of an integrable system. In our case the
lines become wavy, and may thicken to narrow bands if the resonance is
broad. The number of intersections of lines (bands) with the axes determine
the mode numbers of the resonance (modulo a relative sign). Finding a low
order resonance in tracking by this method, we find the same pattern in the
angle plots from mapping. High-order resonances provide a more demanding
test. A 59-th order resonance found in tracking did not appear in mapping
initially, but after a slight adjustment of initial condition it was found. At high
amplitudes where motion is chaotic it is not possible to validate the map by
such tests, but one can still look for resonances imbedded in chaos (not an
infrequent phenomenon) or try to compare borders of chaotic regions.

More tests should be carried out, but our work to date suggests that the
uncertainty in using these maps in place of tracking is very much less than
the primary uncertainty in the magnetic fields that define the Hamiltonian.

5 CONSTRUCTION OF QUASI-INVARIANTS FROM ORBIT DATA

Let Pn = {(I(i) , <I>(i)) , i = 1,2,··· ,n} be a sequence of points in the
Poincare section S at the synchrotron period, all points lying on a single
orbit. For a large set of initial conditions, the orbit at S will lie on an invariant
torus, which can be represented as a Fourier series for the action variable,

(1)

Different tori are labeled by the amplitude of the zero mode, J = (I),

otherwise known as the invariant action. The orbit is transitive on the torus,
which is to say that some <I> (i) comes close to any point <I> for sufficiently
large i. On a resonant orbit there are regions of <I>-space not approached by
any <I> (i) , and the relation (1) between I and <I> does not hold.
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When Equation (1) holds, it defines the generating function Yofa canonical

transformation (I, 4l) ~ (J, \11), where J is constant, and \11 advances
linearly with the time. Indeed,

I == J + Y4>(J, 4l) == J +L imgm (J)eim
.4> •

m

(2)

For an orbit on an invariant torus, the Fourier coefficients 1m (hence J and

gm) may be determined from the sequence Pn, with arbitrary accuracy for

large n. Since the 4ln are scattered unpredictably, the determination is not a

standard problem of numerical Fourier analysis, which requires uniformly
distributed data. A stable method for scattered data 8 is based on the idea of

using the values of I on a uniform mesh as the unknowns; those values are
related to the Fourier amplitudes by a discrete Fourier transform. We take n

sufficiently large so that there is at least one I(n in each cell of the mesh, then

throwaway all except one value per cell. The resulting large system of linear
equations for I on the mesh is soluble by iteration. If the orbit is resonant and
the mesh is fine, there will always be empty cells; as it should, the algorithm
then fails to produce a torus.

We' use this method to determine the gm (J) on a number of tori~ then
interpolate smoothly in J to define a canonical transformation globally. This
interpolation bridges over resonances. Correspondingly, interpolated values
ofJ are not always as constant in time as the J on the original tori. Tunes (of the
map for a synchrotron period) are obtained from the advance of \11 per period.
For the interpolated tori one has pseudo-tunes, interpolating the genuine tunes
of the original tori. The interpolated tune is normally an invertible function
of J, from which one can find resonance lines in the J plane. An example is
shown in Figure 1. This diagram of course depends somewhat on the chosen
interpolation; i.e., on the definition of J.

This method of finding invariants and canonical transformations is quite
robust and automatic. Since it succeeds at large amplitudes it is preferable to
perturbation theory in applications such as those of the following sections.
Perturbation theory can fail at amplitudes beyond the first island chain, even
if perfectly good tori exist in that region. Another advantage, important in the
present context, is that one can find invariant tori of a high power of the map
without having an explicit formula for that power. Our method deals with the
small divisor problem simply by filtering out resonant orbits. When a resonant
orbit is detected through persistently empty cells in 4l space, our program
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FIGURE 1 Resonance lines in J1 - J2 plane, units of 10-8 m. Points marked' with an asterisk
correspond to the original tori. One of the 9 points is outside the box, near the upper left corner.

automatically tries a new orbit. Since we typically use at least a 41 x 41 mesh
in the <I> I - <1>2 plane, to get 20 Fourier modes in each direction, resonances
of rather high order are filtered out. Even so, the number of rejected orbits
proves to be manageable.

6 LONG-TERM BOUNDS ON THE MOTION

Since J is much more constant in time than the original action coordinate I,
its residual variation provides a sensitive indicator of long-term drift of an
orbit. IO Suppose that oj is an upper bound for the change in IJI during M
synchrotron periods, for any initial condition in a region n of phase space.
If no is a subregion of n, and the minimum distance from the boundary of
no to the boundary of n is ~ J, then an orbit originating in no cannot leave
n in fewer than pM periods, where poJ = ~J. Thus, orbits starting in no
are stable, in the sense of being confined to n over N = M n s~ J /0 J turns,
where ns is the number of turns in a synchrotron period. We would like to
have an N comparable to the desired number of turns for beam storage, with
~ J representing an acceptable action excursion in operation of the machine.
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One difficulty in applying this argument is to get a reliable value for 81 with
suitably large M. One can get a plausible value from random sampling of
initial conditions in Q. IO A rigorous determination is possible in principle,
through interval arithmetic. I I

7 PENDULUM MOTION, QUASI-INVARIANTS, AND
LONG-TERM BOUNDS NEAR A STRONG RESONANCE

For applications in regions Q near the short-term dynamic aperture, one finds
that 8 may be too large to get a large enough value of N. (Here we must restrict
M for feasible computational expense; M = 500 to 10000 is typical). The
81 may be suitably small on the original tori determined from non-resonant
orbits, while being too large in interpolated regions. This may come about
because the interpolation bridges over a strong resonance. For instance, 81
near the (6,1) resonance of Figure 1 is about 100 times larger than 81 on the
original tori.

It is remarkable that the motion near a strong resonance closely resembles
pendulum motion when viewed in appropriate coordinates. If we plot m . J
versus m· 'It (mod 21f) on the section S we see the familiar libration curves
(angle restricted to a subinterval of [0, 2n]) and rotation curves (angle ranging
over [0, 21f]). This is shown in Figure 2 for the resonance with m = (6, 1)
that appeared in Figure 1. Correspondingly, m x J, the component of J
perpendicular to m, is nearly constant. In other words, the motion resembles
that of an isolated-resonance Hamiltonian, which has the form

H = L hn (.rl .J, m x J) exp(inm . '11) ·
nEZ

(3)

This simple behavior cannot be seen in the original variables (I, 4l), even
If we plot m . 1 against m . <1>. It is necessary to remove what might be
called the "principal smear" or "non-resonant background" by the canonical
transformation (I, 4» ~ (J, 'It).

A closer look naturally reveals that we do not have exact pendulum
motion. There is some scatter in the value of m x J, and a similar amount
of scatter in the points which seem at first to define rotation or libration
curves. Moreover, an orbit near the boundary of the rotational region may
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FIGURE 2 Pendulum motion in plot of ril.J vs. m·\I1 (mod 2n), units of 10-8 m.

first look like a separatrix and then look like libration near a separatrix. Thus,
we have a mechanism for fast transport; an orbit can cross an island if it is
sufficiently close to the island. One of the orbits in Figure 2 is of this sort (its
librational part is not plotted for the fulllibrational range;· the plot ends near
the turning point).

Although a relatively small set of orbits display fast transport, orbits well
inside or well outside the island appear to be stable over a long time. For a
"worst case" estimate, we can estimate stability time for orbits in the rotation
regions above and below the island, and merely assign zero time of transport
across the island for orbits near the island. Any orbit that drifted upward from
the upper pseudo-separatrix region or downward from the lower would fall
into a rotational motion with long survival time.

Among all the low-order resonances shown in Figure 1, only the (6,1) is
strong enough to be easily found in orbit data. Moreover, the (6,1) makes
itself felt over the entire region of the (11, 12) plane indicated in Figure 1, in
that a plot ofm· J versus m· 'It with m == (6, 1) shows a rotation or libration
curve for a large set of initial J chosen randomly in the region. Note that this
is quite a big region, in which the components of J vary by almost 40%.

For a formal argument on long-term bounds we take the quasi-invariants
near a strong resonance to be K 1 == mx J and K 2 == (m· J), where K 2 is the
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zero mode amplitude in a Fourier series fitted to m.J (on rotation curves only)
as a function of m . 'II. Here mis the unit vector in the direction of m. In the
region n = {J, 4>112.5 < Jl < 15.5, 10.5 < J2 < 13.5, <Pi E [0,2JT]},

with actions in units of 10-:'8 m, we estimate 8K 1 to be less than 4 . 10-11 m
for 500 synchrotron periods. We have estimated 8K2 less carefully, but it
appears to have a similar magnitude. These values would indicate that an
orbit starting near the middle of n would not leave n in fewer than 107

turns or so. Since the region in question is at about 60% of the short term
aperture, we conclude that useful long-term bounds on the motion are feasible
at fairly large amplitudes, even in the neighborhood of a strong resonance.
Better quasi-invariants (hence bounds for longer times) might be obtained
by allowing dependence on the angle m x \11, for instance by defining K2
as the zero mode in a two-dimensional Fourier series in the two angles.
We intend to report more careful and comprehensive calculations in a later
communication.
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