
Figure 1: Field acting from one bunch to the next one OCR Output
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Each bunch induces electromagnetic fields in this cavity which oscillate and slowly decay
As an example we consider bunches in a storage ring going through a cavity; Fig. 1.

ejjfects since they are caused by a collective action of the many particles in the beam.
of the particle distribution, e.g. bunch lengthening. These phenomena are called collective
quency), to an increase of a small disturbance of the beam, i.e. an instability, or a change
the beam. This can lead to a frequency shift (change of the betatron or synchrotron fre
imposed by the beam surroundings (vacuum chambers, cavities, etc.) and act back on
magnetic fields called sehf fields. These fields are modified by the boundary conditions
intensity beam represent a sizeable charge and current which act as a source of electro
conditions, and by the synchrotron radiation. The many particles contained in a high
fields created by the dipole and quadrupole magnets and the RF system, by the initial

The motion of a single particle in a storage ring is determined by the external guide

1 INTRODUCTION

higher modes of longitudinal oscillations.
complicated impedance, for the case of many bunches and also for
rate of the Robinson instability. This can be generalized for a more
impedances at the upper and lower side bands gives the growth
lines can act back on the beam. A simple expression involving the
frequency. The voltage induced in an impedance by these spectral
revolution frequency with side bands spaced by the synchrotron
a synchrotron oscillation has spectral lines and harmonics of the
a shift of the incoherent synchrotron frequency. A bunch executing
circulating bunch with an impedance leads to an energy loss and to
and properties of the impedance. The interaction of a stationary
or Green function while a harmonic excitation reveals the concept
of such a resonator to pulse excitation gives the wake potential
approximating a cavity resonance by a RLC circuit. The response
bunch modes. We first introduce the concept of the impedance by
Robinson instability which can be generalized to cover all coupled
Collective effects are introduced in the example of the longitudinal
Abstract

CERN, Geneva, Switzerland
A. Hofmann,

BEAM IN STABILITIES

307



which can be measured directly: The resonance frequency w,, the quality factor Q and the OCR Output
ters cannot easily be separated. For this reason we use some other related parameters
impedance RS, an inductance Land a capacity C. ln a real cavity these three parame
circuit as shown in Fig. 2, and can be treated as such. The RCL circuit has a shunt
interval between bunch passages. Such a cavity can be of a form which resembles an HCL
the induced fields oscillate for a relatively long time and provide a memory over the time

Cavities are the most likely objects to cause coupled—bunch mode instabilities since
resonance.

We recapitulate here some of their essential properties on the simple case of a cavity
Impedances and wake potentials have been treated extensively in the literature.

2.1 Cavity resonance

2 IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR

instability in some detail.
Here, we will concentrate on longitudinal collective effects and derive the Robinson

the horizontal or vertical betatron oscillations.
grows or its frequency changes. The transverse impedance has a corresponding effect on
a longitudinal impedance influences the synchrotron oscillation such that its amplitude

Finally, we distinguish between longitudinal and transverse effects. In the first case
can be provided by cavity-like objects with a relatively large quality factor
that one bunch can influence the next one or itself after one revolution. Such a memory
bunch lengthening. For multi-traversal effects the impedance has to have a memory such
the passage of adjacent bunches is assumed. An example of a single-traversal effect is
kind no memory of the induced field over one revolution or over the time interval between

We distinguish between single and multi-traversal collective effects. For the first
only in exceptional cases of importance for beam instabilities.
can usually not “resolve” the local transverse particle distribution. The latter is therefore
of an impedance is obtained. The beam position monitors and the transverse impedance
the case of bunch lengthening where the longitudinal particle distribution in the presence
found in this case and this can be a rather difficult task. It is usually only attempted for
oscillation such that they are no longer independent. A self-consistent solution has to be

Strong self-fields, however, modify the particle distribution and also the modes of
such that the stability of each mode can be treated independently.
distribution we consider some modes of oscillation which are orthogonal to each other
ation) and is usually Gaussian in electron machines. As disturbances of the stationary
is given by external conditions (machine parameter, initial condition, synchrotron radi

For the case of small self-fields considered here the particle distribution in the bunch
or, if the frequency of the mode of oscillation is changed, we have a frequency shift.
of the disturbance is increased we have an instability, if it is decreased we have damping,

c) The effect of these fields on the initial disturbance is investigated. lf the amplitude

count.
taking the boundary condition imposed by the beam surroundings (impedance) into ac
tatron or synchrotron oscillation). The fields due to such a disturbance are determined

b) A small disturbance of the bunch from its stationary motion is considered (be

calculated.
a) First, the motion in the guide field and the stationary particle distribution are

and their effects can be treated as a perturbation. This is done in three steps:
In most cases the fields created by the beam are small compared to the guide fields

. the oscillation is amplified resulting in an exponentially growing instability.
la smallinitial synchrotron oscillation amplitude of the bunch is increased. In each turn
.and willbe influenced by it. The phase of the field seen in the next turn can be such that
away. The next bunch, or the same bunch on the next turn, might find some field left
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V(t) = e“°‘t Acosw,,/1- ——¥—t+ Bsinw,,/1((]) (. 4622 4Q OCR Output
or

Z -0zt 1 _ ____ V(t) Ve cos w,,/ Z —l- <1 (4Qb)
The solution of the homogeneous equation is a damped oscillation

V+ %V+wZV = ;_—I.'I" · TRS ' (i

Using L = Rs/(wTQ) and C = Q/(MRS) gives the differential equation

[2],3-{-IC-’r[L: f—l—CV+

Differentiating with respect to t gives

VR=Vb=VL=V, [R+[C—l-[L:].

and have the relations to the currents

d
VR=IRR$, VC: -[(ydf,VL=Ll E1/ dl f

If this circuit is driven by a current I the voltages across each element are

rLL
i 7..'Z—*—··’ ZRS .Z——ZRSCT’ 1 W Q weC Rs LLw,

damping rate cx:

Figure 2: RLC circuit equivalent to a cavity resonance

Rs < lc $2 L

bunch

c l/R¤
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V(t) = e`°‘t A cos w1 ——t+ BsinwT1((w/%) (\/4Q 4Q OCR Output
We take the solution of the homogeneous differential equation and its derivative

V(O*) = Zkpmq and V(O+) : ji-/qi-—q.2 rk 771 )

The voltage in this resonance circuit has now the initial conditions

C C C RS Q
· ` I 1 V 0+ ERS 2wTk m {/(0+):._2:_£:_.!:_%q:..%.

discharge first through the resistor RS and then also through the inductance L
which is the energy loss normalized for the charge. The charged capacitor C will now

q 2Q

U w,R$
loss factor of a point charge
must be equal to the energy lost by the charge. Here we introduced the parasitic mode

* i * Y **** I k Tn! 7 C 2Q q 2 (I p q
(I2 “rRS 2 l/(0+) 2

The energy stored in the capacitor

_ C Q q
{ R V 0+ Z i Z L ( )

The charge q induces a voltage in the capacity

I(t) = q6

function pulse (very short bunch), Fig. 3,
We now calculate the response of the RCL circuit (representing a cavity) to a delta

2.2 Wake potential

Figure 3: RLC circuit driven by a pulse

i(i>=q 6(O

c Z2 L
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V + QV + w3V = sin(wt). OCR Output

This is described by the differential equation
We use now a harmonic excitation of the circuit with a current I = Icos(wt), Fig. 4.

2.3 Impedance

G(t) $:1 2kpme`°‘t cos (ant).

which for a large quality factor Q > 1 simplifies to

(yi ) 4Q 2Q, /1 - $1 sin wr,/1 - ¥ t G(t) = 2kpme`°‘t cos wr/1- 25—

(cavity resonance) we have
the wake potential of a point charge or also the Green function Gft). For our resonator
energy U = q’V(t). This energy gain/ loss per unit source and unit probe charge is called
A second point charge q' going through the cavity at a later time t will gain or loose the

This voltage is induced by a charge q going through the cavity at the time t = 0.

1 sin wm/1 ——L t V(t) = 2qkpme`°" cos w/I — t—((mi ) 462 2Q, /1 - @4
q6t
We obtain the voltage in a resonator circuit excited at the time t : 0 by a 6—pulse ](t)

/1:2/c mq and —Aor+BwT 1—— :——"—LV 4622 Q
l 2w k pm

and satisfy the above initial conditions by

·, ——— 1 to, ——— Boz + Aa 1 s`n 1 t 2 ?1 1 4Q4Q

V(t) = e`°'t —-Acr+Bw, Mcos on 1-t ? ?L L4Q4Q

Figure 4: RLC circuit driven by a harmonic excitation

I(t)=I c0s(wt)

W/W (I
c 4 Q L
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i__ °

4 T ` ` · T s i (fuer + i%—in€M + wiper = fi%—1¢r*OCR Output
RA

form V(t) = l/},exp(jwt), where V}, is in general complex and get
of the resonator voltage with the excitation I (t) : I exp(jwt) and seek a solution of the

T ·‘7`RS

convenient. We take the differential equation
involving positive and negative frequencies leads to more compact expressions and is often

I(t) = Iejwt with — oo $:.4: f oo

using positive frequencies only. A complex notation

with 0§w§o<>,I(t)=Icos(wt)=I
Aegwt —jwt +6

We have used a harmonic excitation of the form

2.4 Complex notation

I(t) = Isin(wt) —> V(t) = I (Z,(w) sin(wt) — Zi(w) cos(wt)).

I(t) = Icoslwt) ——> V(t) = I (Z,(w)cos(wt) —|- Zi(w) sin(wt)),

in a voltage V(t)
The resonance excited by a current of the form I (t) = I cos(wt) or I (t) : I sin(wt) results

we (-%::2)1+Q2<—»ii:>
ZT(w) Z RS , Z2(w) : -]%...1; w2

az-J

has a resistive part Z,(c.a) and a reactive part Zi(w)
between the voltage and current is called impedance. lt is a function 0f frequency wand
the exciting current and does not absorb energy, it is called the reactive term. The ratio
energy and is called the resistive term. The sine term of the voltage is 0ut 0f phase with
This voltage has a cosine term which is in phase with the exciting current. lt can absorb

1 + Q(a)g' 2 2 2 e;V(t) = IRS
. cos w — = sin w < in aw·< i> w"

w

The voltage induced by the harmonic excitation of the resonator becomes

2 2 2 2 (wr -—w )A—l—7B=O and (wr —w )B— 7-A:
was wrw wTwRS ;

terms gives
Bsin(wt). lnserting this into the differential equation and separating cosine and sine
some time. We are left with the particular solution of the form V(t) = Acos(<.vt) +
The solution of the homogeneous equation is a damped oscillation which disappears after
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Zi(w). OCR Output
Caution; sometimes one uses I(t) = Ie‘f‘“” instead of [(25) = [ew", this reverses the sign

t < O ——> G(t) = O no fields before particle arrives.

Z(w) = G(t)e"°"tdt, Z(w) : Fourier transform of G(t),/
ZT(w) = ZT(-wl » ZM) = —Z¢(-wl

and some properties which apply to any impedance or wake potential

wl > wr —> Zi(w) < O (capacitive)

wl < w. —> Z.(w) > wT (inductive)
w = w. —> Z,.(w,.) has a maximum, Zl(wT) : 0

The resonator impedance has some specific properties:

1+ 4Q) <e>
Z<~»> ~ R.

1— *2 Ai ’ Q

only large for w z w, or lw — w,|/w? = |Aw|wT < land can be simplified to
and has a real and an imaginary part, Fig. 5. For a large quality factor the impedance is

I wz ~» . +=R$— =Z, Zi me 1+ Q2 l_..~¤—~zy W) +’ fw).U Z =—r=RS~=— l"’) —2
1 — JQ; ". J %

2 2 `“

The impedance, defined as the ratio V/ I , is given by

Figure 5: Green function and impedance of a resonance

Q=1s.¤q=s.¤

Zi(¤)Z¤(<·>)

1*, _f¤/~R 1l,··" ‘`'“` "`6/~¤

1 AZ¤(¤)

zw)/R. impedanceZM/R. impedance llI 1 |Z¤(¤)

ll/2\/3\/4\u¤t/2vrol/1\/2 s 4vRt/21r

Gu)/Zk Green functionGm/zkm Green function
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T ··:. OCR Output(56 2 W
eV sin(<;5,) hw0eV cos cb, U I

assume T < Tg which allows us to develop the trigonometric function
from it as illustrated in Fig. 6. We introduce the synchronous phase angle qi, = hwots and
with ts being the synchronous arrival time of the particle in the cavity and T the deviation

6 :. 6 ;
6E eV sinfhwofts + 7*)) U

or in relative energy 6E/E : 6e

6E : eV sin(hwO(tS + *r)) —· U

radiation or an impedance, a circulating particle has a gain or loss 6E in energy of
In the presence of an RF system and of an energy loss per turn U due to synchrotron
We will assume that the particles are ultra relativistic in which case Ap/p M AE/E = 6.

E < ET —> { > orc —> nc < 1 —> wg increases withAE.

E > ET —+ % < orc —+ nc > 1 —> wg decreases with AE

momentum (or energy) changes sign
ET : mOc27T with 7T : 1/cmg for which the dependence of the revolution frequency on
with orc being the momentum compaction and nc : ac -1/·y2. There is a transition energy

1 Ap Ap F‘;QC—7——i:—T;— CyC_7 —-———;-77C P ¤~0 0 '7 P PAL Ap Awo AT 0

length L, the revolution time T 0 and the revolution frequency wg are changed
radially displaced by Ax = D,Ap/ p with DI being the dispersion. As a result the orbit

A particle with a momentum deviation Ap has a different closed orbit which is
2.5 Review of the longitudinal dynamics

Figure 6: Longitudinal beam dynamics impedance

bunch’_l_` \ t

vu)
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k:-oo OCR Output

Ik(t) : Z I(t — kT0).

current is of the form
given location. For a stationary bunch having no synchrotron oscillations the observed

Next we investigate the case of a circulating bunch having repetitive passages at a

O} Z *-*2

bunch and its spectrum are at and 0,, which are related by
Where q = Nbeis the total charge of the Nb particles in a bunch. The rms width of the

\/Eat
3 ( )[ t = L g I Ld = ( ) s ( ) Q6_? Ti?

domain are illustrated in Fig. T and given by the expressions
be removed. The currents of a bunch with Gaussian distribution in time and frequency
to a good approximation symmetric, this represents a minor restriction which could easily
carried along in some calculation. Since, in most practical applications, the bunches are
This assumption is used for convenience to reduce the number of terms which have to be

i(-ti) Z ici).

which leads to a Fourier transform having only a real part and being symmetric in w

[(-0 = JU)

We assume the form of the bunch to be symmetric

X/5 _OO
2 ( )1 I :—/ Ji ·¢%z¢. (M) ( le

Fourier transform is
We consider now a bunch which represents in a single traversal the current I Its

3.1 Spectrum of a stationary bunch

3 A STATIONARY BUNCH INTERACTING WITH AN IMPEDANCE

beam.
In other Words the energy loss U has to increase for a positive energy deviation of the

2 2W dE
, Z ———- U. °‘>

I wg

For stability in the presence of an energy loss U we need in addition

E>E;rr;c<0 —>cos¢$<O, E<ETr;c>0 —>c0sgb$>0.

ln order to get a stable oscillation we need wig > 0 which leads to the conditions

$0 o 27rE
CU Z * w
2 2 hr;ceV cos ¢S

OCR Outputwith

c(t) = €cos(wSOt -l

In the absence of any energy loss U we have

316



the current component at pwg is 2Ip. OCR Output
value adapted to positive and negative frequencies. lf only positive frequencies are used

It should be noted that for the frequency component Ip of the current We use a
circulating bunch is shown in Fig. 8.
At low frequencies we have Ip w IO. The current in time and frequency domain of such a

Ip ; F-,..8 20w
i(I f

For a Gaussian bunch Eq. (3) we get

Ip =
wo ~

find the relation
Comparing the Fourier transform Eq. (2) with the terms of the Fourier series Eq. (5) we

(5)Ip = I(t)cos(pw0t)dt and Ig : (I) : 1(t)dt =
l "‘I "“

with

(4)Ik(t) : Ig + 2 Z Ip cos(pwOt)

natural to express it in a Fourier series
This is not a very useful expression for applications. Since the current is periodic it is

Figure 7: Single passage of a bunch in time and frequency domain

I (cu)

frequency domain

Ki)

time domain
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(V) — _ I (t)V(t)dt k k l/IgT() —T0/2
1 To/2

We calculate the average induced voltage (V) seen by the particle in the bunch

p:1

(6) OCR OutputVk(t) = 2 Z Ip (ZT(pw0) cos(pw0t) — Zi(pw0) sin(pw0t)).

expression

ditions Z,(—w) = Z,(w) , Zi(—w) : —Zi(w) and the fact that Z(0) = Owe get a real
By combining positive and negative frequencies and observing the symmetry con

ir
t ’“’°. . I pw Z(p<.u )e"’°’°t = I Z(pw )e”( 0) O P 0

WO · N

Mgt) Z i(w)6(u - pa0)z(u)€j~*aa%p;m A;

and in time domain

p=···OO

WM) = Yk(w)Z(w) = wo Z I(w)6(w — pw¤)Z(w)

stationary bunch induces a voltage which is in frequency domain
In the presence of a cavity resonance or any general impedance Z (w) the circulating

3.2 Voltage induced by the stationary bunch

Figure 8: Multiple passage of a bunch in time and frequency domain

Ip(w)

frequency domain

I(t—T0)I(t)I(t+T0)
Ik(t)

time domain
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M OCR Output
kpm z EL|I(w)l2Z.(w)dw.

1 Os ~

than the revolution frequency, the above sum can be approximated by an integral
If the impedance is broad band and does not contain resonances of bandwidth smaller

bunch length.
higher frequencies. The parameter kpm is therefore expected to increase with decreasing
This parameter depends on the bunch length. For a short bunch the spectrum extends to

QQeq qgk,,L:—:-:— 122, It 122. . p 2 jgl pl (P200) 2 gl pl (PLUG)
2TOWg, U 2 °°

factor or a bunch
and the same charge suffering an energy loss) to get the so-called parasitic mode loss
We can normalize the loss Wb by the square of charge (the charge inducing the voltage

b 1b 0, 0:——:» 122. Z- 122, . NIgl pl (wo) N; I pl (wo)
2TOl/Vb 26

in the bunch is
where q = eNb is the total charge of the bunch. The average energy loss U of a particle

z>=1
Wp = <1<Vl = if Z |!pl2Zp(1>w¤)

the impedance Z (w) can be obtained from the average voltage Eq. (7)
The energy Wg, lost by the whole circulating stationary bunch in one turn due to

3.3 Energy loss per turn of a stationary circulating bunch

O 2>=1O p=—infty
(gl = —j2 Z 1>lIpI2Zp(1>~¤¤) = -j-£E1>l!pl2Zp(1>w¤)

2w °°dV w

With the same method we used for the average voltage we obtain

pzp._) Z ../ 1,.(p)dt IOTO -T0/2 dtdV 1 T /2 dV ° Nl

We will also need the average voltage slope

0 p:10 p=—00
(7)(V} = Z |Tp|2Zp(1¤w¤)= }Zl1pl2Zp<p~»p>

second integral always vanishes. This leads to
The first integral vanishes except for p' = p in which case it has the value T0 / 2, and the

Zp(pwOcos(p’w0t)cos(pw0t)dt — Z,(pw0cos(p’wOt) sin(pw0t)dt/ —T0/2
To/2To/2 v/ —Tg/2

O O p=1 1)/:1
<Vl = yy Z Z [Llp

4 OO OO

With the expressions Eq. (4) for the current and Eq. (6) for the voltage we get
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tk = kT0 + 7'k1 OCR Output
turns kas illustrated in Fig. 9
ws = woQ$. This results in a modulation of its passage time tk at a cavity in successive

We consider now a bunch which executes a synchrotron oscillation with frequency
4.1 Spectrum of an oscillating bunch

4 INTERACTION OF AN OSCILLATING BUNCH WITH A CAVITY

wig Ighv cos Q5,
10 ( )122, . gp P (IMO)

Aw ~ l °°“
be expressed as
There is a shift of the incoherent synchrotron frequency. For a small effect this shift can

7?-wsuo ,,:1 ihV cos ¢,Io ,,:1wi = WED (1+ iP|Ip|2Z¢(P<~¤) Z M50 1 + P\Ip|2Z¢(P~¤¤) QEl

which can be Written as

WO2 Z 2 O C [ 2 _ ws MSO + QEIgpl pl Zz(z>~¤¤)
2w2n e °°

The solution is an undamped oscillation with the frequency given by

6+ __ 6`O‘
w¤ih’i¤€COS QZ UC woV Q ( 27rE +1J2116ld¢>

or, combined into a second—order equation,

T Z UCC 7

.. 6 ` "’__; i m ° 2111; T+ 2oEl dt >6
heV cos gb woe dV 2

With the condition eV sin qis : e(V) we iind

21rE i 2rr E 2vrE dt+ 2arE <> T6
eV sin ¢Swo w§heV cos os _ wo e(V) woe dV

of the synchrotron motion
both being independent of the energy. We have to include these voltages in the equation

(9)(—) = ·i ZPlIp|2Z¢(p<¤¤),
dV 2w

and an averaged voltage slope in the reactive part

O P:1
(8)(V) = f E|1`p!2Z1(2>w¤)

part of the impedance
Z,(w) + jZ1(w). As we saw before, the bunch induces an average voltage in the resistive

We take now the case of a stationary bunch in the presence of an impedance Z (w)
3.4 Incoherent synchrotron frequency shift
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k=—oo 2 k=—oo OCR Output

i

: Z €—jwkTg _ i: (€—jk(wT0—21rQ5) _I_ €—jk(wT0+21rQ5)
k:—o<>

(kT°)ik(w) : Z e`j“(1 — jwi c0s(27rQ$k))

in the bunch spectrum I (w) and approximate
We assume now that the oscillation is small wr < lfor all frequencies w contained

k=—oo

LIM) Z HW) Z €—Jw<kT0+rk)_

symmetry condition Ht) : [(-4)
To get the Fourier transform of this current we use again the shift theorem and the

[ICU) = Z [U — kT0 —— Tk).

represented by this oscillating bunch is given in time domain by
Where kis the revolution number and fthe amplitude of the modulation. The current

rk = % cos(27rQSk),
with

Figure 9: Oscillating bunch in time and frequency domain

frequency domain

BTU t2TO

I(t—T0) I I /I\I(t—TO—·rI) I /·l\I(t—2TO——Tz) /+\l.I(t—3TO—T3)
Ik(t)

TO I
time domain
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pand using the fact that for a symmetric bunch we have Mw) = [(—w) we can express OCR Output
~

By combining terms with positive and negative values of thesumming parameter

T

· M · - L. » ... Z Z IP EJPU-*0t __ QS)€](P Qs) of __I_ QS)€.7(P+Q ) Ot)°° IEz>=—<><>
series

form of I (pwo), and represent the current of an oscillating bunch as a standard Fourier
We use now the current component 1,, at the frequency pwo instead of the Fourier trans

I(Pw¤) M I((P + Q$)w¤) ~ !((P · QSM) = Ejgfp
V 27r

of the revolution frequency and its side band
therefore neglect the very small difference in the bunch spectrum between the harmonics
As a consequence its spectrum is much larger than the revolution frequency wu. We can
tions. The bunch length is usually much shorter than the circumference of the machine.
however, of some use for certain calculations. We can simplify it with some approxima
This is a relatively complicated way to express the current of an oscillating bunch but is,

y/ 27r 2
~ . _ W ~ » S 0, (P - Q$)I((P - Q$)<¤¤)<>’(" Q’) °’ + (P + Q$)!((P + Q$)w¤)€’l"+Q ) °’

ru an T O 0

I t = j jpwof k<> l (PPPwo H

to the above expression, so obtaining

Ik(t) = ]k(w)€]wtdwEiw
1 ss ~

inverse Fourier transform
will be discussed below. We prefer to get this current in time domain and apply the
given above. However there is a subtlety concerning the size of the spectral lines which
directly using the theory of phase modulation without the relatively lengthy derivation
the revolution harmonics. One would think that the above spectrum could be obtained
time with the synchrotron frequency is expected to lead to side bands spaced by ws from
to a simple line spectrum shown in an earlier section. The modulation of the passage
oscillation. This is not astonishing since the stationary motion is periodic which leads
frequency pwo due to the stationary bunch motion and side bands caused by the bunch
lt is represented by a line spectrum having spectral lines at harmonics of the revolution
. . . . . This is the Four1er—transformed current of a bunch executing a synchrotron oscillation.

(Ul
192-00

- .- Ik(w) : w0I(w) Z 6(zo — pwg) —- yy Z (6(w —— pwq — ws) + 6(eu — pwg + wg)
we <><>°° { p=—OC

and get

32:-00k:-00

Z e`jk°” = 27r Z 6(x — 27rp) and 6(ax) =

We use again the relations
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mw) Z i,C(w)z(w). OCR Output

Fourier transform of this voltage is given by
We calculate the voltage induced by the current I k(t) in an impedance Z The

4.2 Voltage induced by an oscillating bunch

+(p + QS)(sin(pw0t) cos(QSw0t) — cos(pw0t) sin(Q$w0t)))].

dg ((p — Q$)(sin(pw0t) cos(Q$wOt) + cos(pwOt) sin(Q$wOt))

z>=1

(14)Ik(t) = I0 + 2 E Ip [cos(pw0t)

We can split the trigonometric function in the expression Eq. (14) for the current
The line spectrum of the current represented by an oscillating bunch is shown in Fig. 9.

. . + ¥<(2>— QS) S1¤((z>— Q$)w¤¢) + (P + Q5) S1¤((p + Q$)<»¤¤t))
T

p=1

(13)Ik(t) = I0 + 2 E Ip [cos(pwOt)

the current of the oscillating bunch with real functions

Figure 10: Voltage induced by an oscillating bunch in a narrow band impedance

PQ0

VNU)

Pwo

V12(°J)

Pwo (p+i)<·>¤(p—i1)¤—>¤

Nw)

Zi(w2Zi(¤)

Pwo

z.<~>
M")
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+(p — QS) (sin(pw0t)r + cos(pwOt) (16) OCR Output£—))}.

+ (70 + QS) (sin(pwOt)7·—- cos(pwOt)L? ( £)

(15)Ik(t) : I0 + 2 Z Ip cos(pw0t)[r>=1
We can also express the current Eq. (14) of the oscillating bunch with *r and +

_ +(p —- Q$)Z,((p — Qs)w0) (s1n(pw0t)r + cos(pw0i) 7* —J))].
_ + - (z> + Q$)ZT((2¤ + Q$)¤»¤) (Sm<pw¤f)r - ¢¤S(1>w¤¢)wg E( 7' ;)

V},,(t) = 2Ip[Z,(pw0)cos(pw0t)

the resistive impedance
is a very good approximation. Using these expressions we get for the voltage induced in
Since the synchrotron phase advance 27rQS per turn is very small in all practical cases this

rk = 7°cos(27rQ$/c) ——> 7· = 7* cos(wSt) , 7* = ··L<Js7cSlI1(L¢}$i).

We approximate it now as a modulation in time
The synchrotron motion consists of a modulation of the arrival time each revolution k.

(p — QS)Z,((p -— QS)wO) (sin(pw0t) cos(w,t) —— cos(pw0i) sin(w5t))l.
+ wO·?1,,[(p + QS)Z,((p + QS)w0) (sin(pw0t) cos(w$t) + cos(pw0t) sin(w$t))

Vk,.(t) = 2I,,ZT(pw0)cos(pw0t)

We split the trigonometric functions into two parts

+(1¤— Q$)Zr((.¤— QSM) Si¤((z>— Q$)w¤¢))·
`l' LUOFIP (lp “l` Qslzrllp `l” Qs)‘·"0) Slnlip 'l` Qslwotl

Vk,(25) : 2I,,ZT(pw0) cos(pw0t)

We start with the resistive part Z, of the impedance and get for the voltage
in Fig. 10.
only one revolution harmonic p and its two side bands to the induced voltage asindicated
is induced in it by an oscillating bunch. Due to the small bandwidth we have to consider

Wie consider now a narrow—band impedance 6w < wg and calculate the voltage which

Ip ((2) + Qs)Z((p + Q$)wO)€j((p+Q$)wui) + (P __ QS)Z((p _ Q5)wO)€j((P··Qs)w0i)
WOT

Vk(t) : 2 Z ],,Z(pw0)e"“’°t+(p:1
which, with our approximation, can be written as

[k(w)Z(w)e’lQ(t) : A °"tElm
1 OO ~

apply the inverse Fourier transform Eq. (12)
To get the voltage in time domain we use the expression Eq. (11) for the current and
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Z; Z ZT(Pw0 +<»J$) , ZZQ = Z¢(Pwo — ws) s Z; : Z¢(P<·¤0) OCR Output

Z;} = ZT(pw0 + ws) , Z,} : Z,(pw0 — ws) , Z; = Z,(pw0)
introduce
per turn seen by the particles in the bunch. To make the expressions more compact we
the bunch excursion T itself. We can collect the two parts and get the average voltage
The second component, W, is induced in the reactive impedance and is proportional to
in the resistive impedance and is proportional to the derivative Tof the bunch excursion.
oscillation. We found that this voltage has two components. The first one, V}, is induced
average voltage seen by the particles in the bunch is of importance for the coherent dipole
Q, < l. We will find later when we treat the synchrotron oscillation that only the
We assumed that the oscillation frequency is small compared to the revolution frequency

We derived the voltage induced by an oscillating bunch in a narrow—band impedance.

(V?} = + l_2PZi(P(-O0) + (P + QS)-Z¢((P + Qslwol + (P — Qs)Z¢((P — Q$)<P¤)l·
[SWOT

For the average voltage per turn we get within linear approximation in T and T

+(P · Qs)ZT((_P — Q$)w0) (c0s(pwOt)T — sin(pw0t) £))],

_ + (p + Q$)Zr((P + Qs)w¤) (C0$(Pw0t)T + Sm(Pwo)
L<JgT T < ;)

l@,(t) : 2Ip|~—Z,(pwO)sin(pw0)

Splitting the trigonometric functions and using Tand Tleads to

+(P — Qs)-ZT((P — Q$)w¤) <¢<>S((P — Q$)w¤i))

+ —;,— ((P + QS)ZT((P + QS)w¤)¢<>S((P + Q$)w¤¢)
w()T

lGc,(t) = 2I,,|—Z,(pwO)sin(pw0)

For the voltage induced in the reactive (imaginary) part of the impedance we have

2w
(2Q$ZT(Pw0) + (P + Q$)ZT((P + Q$)w¤) - (P — QS)ZT((P — Qs)wo))

Tw O

(V?) = ZT(P<»—>¤)f[0
212

leads to
only linear terms in T and T. We also neglect the change of T and T within one turn. This
ln carrying out this integration we approximate for small oscillation amplitudes and take

ig : ( l t 1 YP ....._ I ._. / yrkrndr IOT0 O fkfilvkwdfIk(t)Vk(t)d

Next we calculate the average voltage seen by the particles in one revolution
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Ik(t) : Ig + 2 Z Ip [cos(pw0t)

this oscillating bunch is obtained from Eq. (16) in the approximation of QS < 1
produces sidebands to the revolution frequency harmonics of the bunch. The current of
executes a synchrotron oscillation which is approximately described as r = f cos(wSt) and

We consider a narrow-band cavity with a circulating bunch as before. The bunch
5.2 Quantitative treatment

criterion.
energy the dependence of the revolution frequency is reversed which changes the stability
lf w, > pwg this is reversed, Fig. ll right, and leads to an instability. Below transition
loses less energy when it has a lack of energy. This leads to a damping of the oscillation.
bunch sees a higher impedance and loses more energy when it has an energy excess and it
a resonant frequency slightly smaller than the RF frequency w, < pwg, Fig. 11 left, the
when the energy is high and wg, is large when the energy is small. lf the cavity is tuned to
revolution frequency is modulated. Above transition the revolution frequency wg is small
While the bunch is executing a coherent dipole mode oscillation e(t) = écos(wSt) its

Z ··7]C—;.— OI' COO 2 pu/*0 — UC L") . E
AE

The revolution frequency wg of the circulating bunch depends on its energy deviation

of which we consider only the resistive part ZT.
ring and exciting a cavity resonance with resonance frequency w, and impedance Z (w)
We start with a qualitative treatment by considering a single bunch circulating in a storage
detail since it can be generalized to describe all multi—turn instabilities in storage rings.
bunch and a cavity is the so—called Robinson instability [1] which is treated here in some

The most important effect of the interaction between a longitudinally—oscillating

5.1 Qualitative treatment

5 ROBINSON INSTABILITY

the expression
wO(p ;b QS). The total voltage is obtained by a sum over the parameter p. This leads to
of the bunch spectrum induce a voltage in the impedance at the corresponding frequencies
However, a generalization to a broadband impedance is straightforward: Many sidebands
in detail and we will use it also for the most simple case of a longitudinal instability.
pair of the bunch spectrum leads to an induced voltage. This case is easier to understand

We took here the case of a narrow-band impedance and in which only one sideband
synchrotron frequency as we will see later.
Its resistive part leads to an energy loss and the reactive part to a change of the incoherent
depend on ror rand is therefore present for a stationary bunch as we calculated before.

The part of the voltage shown in the first line of the above equation does not

_ pw _ (V) : i- Z+ (Z;§— ZW) + ——g_%-(—-ZZ; + Z; + Zp,)
Tpw *1* f[; i

212

Within the approximation Q, < lthis gives

_ - zz;. + Z}; + Za + Q$(Z,Z · Za)P¤J0'¤" / _

( 75 lz; (Z;} · ZW · Q$(2Z§. + ZJ} + ZW)2]puJ()7' V} I ·
,2

and get
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2I0hVcosq5S OCR Output
.. + - . 2 0 J, - +—T—- ZT-Z, + S 1-%-- -2Zi+Zi+Zi) ¢:0. T ( ’° ")T WO ( " " " )P-Igwso ( pif 2I0hVcosq5S

and the relation 7* : ncc we get the second—order equation

S0 ° 2WE
WI _w
2 2 hnceV cos os

Using the synchrotron frequency in the absence of an impedance

7rg ¢rw$ g ¢r
w§heV cos qzfrs -1; epwg 2+ _ Z_ , Qepwg _2ZO4 2+ Zn 2E + I2E( PT my + I2E( pl + pl + ml"

we get

eV sin os = -%-7;
212ZO

Using the equilibrium condition

j-— 2x1; + —————— V . 2wE T 21rE<>
w0eV sin gbs wgheV cos (bs woe

We include this induced voltage in the equation Eq. (1) for the energy gain and loss.

U — V — 2° 2+ 2r 2ZO 2+ 2- —€<>_€7pr+( pr- 'pr)+—T(— pr+ pi+ pi)
p“°T2]; p°’°+ ; m

of the particle in the bunch
with its side bands and getforthe averaged induced voltage Eq. (17) or the energy loss U
Since we assumed a narrovv—band impedance We consider only one revolution harmonic p

-1- pug (sin(pw0t)7·— cos(pw0t)+ pc;0 sin(pwOt)*r + cos(pw0t)5)]§) <

Figure 11: Qualitative treatment of the Robinson instability

hwg cn,cu, hcoc cu

I I y 1

I 1

Z1z(°J) I \Zn(¤>)
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we calculated before Eq. (10)
a coherent motion and produces a change of the incoherent synchrotron frequency which
harmonic pwo and not on the one at the sidebands. lt is present also in the absence of
The second term in the parenthesis only depends on the impedance at the revolution

_ LOS — LAJSO
2 2 ( PIZZS2 PIEKZSE + -225)) 1. + * ‘— ***7*** . IOhV cos <;5S [0hV cos dns

There is also a frequency shift due to the reactive part of the impedance

2IOV cos 455
Q N S

wS0I0(ZQQ — Z1;)
have Ip = Ih x IO so that
instability. Since the bunch length is usually much shorter than the RF wavelength we

The RF cavity itself has a narrow-band impedance around hwg which can drive an
qualitative arguments.
energy we have cos <;5$ < Oand as > O, i.e. stability if Zz} > Z;} as we found already from
impedance at the upper and lower synchrotron sideband, Fig. 12. Above transition
The growth rate of the Robinson instability is given by the difference of the resistive

2IOhV cos (bs
CY _ 5

wS0pI3(Z;, — Zz;)

and the damping or growth rate

e : €e`°*t cos(wSt +

This is the oscillation equation with the solution

Figure 12: Quantitative treatment of the Robinson instability

wr hwo ca
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bunches oscillating with finite but more or less constant amplitudes, [5, 6]. OCR Output
amplitudes but becomes stable again at large amplitudes. In practice, such cases have
contribution. This can lead to a situation where the beam is unstable for small oscillation
the synchrotron frequency. They have to be included when summing over the impedance
modulation index of the phase oscillation will become large leading to sidebands at twice
the oscillation amplitude becomes large, some non-linear effects should be included. The
mally small oscillations and we have calculated their growth or damping time. If, however,

ln the above paragraph we have considered stability only for the case of infinitesi

can be derived, often called the second Robinson instability
synchrotron frequency and the growth rate for which a more general stability criterion
cavity. Taking all this into account one arrives at a 4th—order equation for the shifted
soon as the growth time of the oscillation becomes comparable to the filling time of the
we have to consider the cavity impedance for a growing oscillation which is different as
shifted synchrotron frequency ws. Furthermore, if we are interested in the growth rate
case we have to evaluate the impedance not at the unperturbed sideband mso but at the
shunt impedance, e.g. superconducting cavities, this might no longer be true. In this
compared to the synchrotron frequency itself. For very narrow—band cavities with high
changes of the synchrotron frequency and the growth rate of the instability are small

We have assumed that the effect of the impedance is relatively weak such that the

modes we have to sum over these sidebands.
bands at mw, from the revolution harmonics. Again, to calculate the stability of these
sextupole (m = 3), octupole (m = 4), etc. modes. Each mode has a spectrum with side
oscillation, called bunch-shape oscillations, which can be classified as quadrupole (m = 2),
lation around the nominal phase without changing the form. There are higher modes of

So far, we considered only dipole oscillations where the bunch makes a rigid oscil

sidebands.
ln calculating the stability of a certain coupled-bunch mode we have to sum over these
such coupled bunch mode has synchrotron sidebands at distinct revolution harmonics.
phase between the oscillations executed by adjacent bunches. The spectrum of each
bunches in the machine we have M different modes of oscillation each having a different

This can be extended to the case of many bunches [3, 4). With M equidistant
each lower synchrotron sideband contained in the spectrum of the oscillating bunch.
between the sums of the impedance times the spectral power taken at each upper and
the difference between the impedance at the upper and lower synchrotron sideband but
the bunch current has to be considered. The growth rate will no longer be given by
the voltage induced in the impedance by each such line contained in the spectrum of
the two synchrotron oscillation sidebands but many such frequency lines. In this case

A more general impedance will cover not just a single revolution harmonic with
can be extended to cover more general cases.
narrow band and relatively weak resonance. We will here discuss the way this instability

We have derived the Robinson instability for the case of a single bunch and a single,
5.3 Discussion and generalization of the Robinson instability

wsu 2I0hV cos q5,

Aw, N pI3(ZQj + ZZ;)
is given by
For a small effect, the shift of the coherent frequency with respect to the incoherent one

(; go) U I0hV cos gb,wg Z W_ PIEQZ + Zpdw

The coherent synchrotron motion produces a further shift compared to ws,
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