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ABSTRACT

Phases of elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix can

be obtained using decays of B mesons to π+π−, π±K∓, and π+K0 or π−K
0
.

For B0 or B
0 → π+π−, one identifies the flavor of the neutral B meson

at time of production and studies the time-dependence of the decay rate.
The other processes are self-tagging and only their rates need be measured.
By assuming flavor SU(3) symmetry and first-order SU(3) breaking, one
can separately determine the phases γ ≡ Arg V ∗

ub and α = π − β − γ,
where β ≡ Arg V ∗

td. Special cases include the vanishing of strong interaction
phase differences between amplitudes, the possibility of recovering partial
information when π+π− and π±K∓ decays cannot be distinguished from one
another, and the use of a correlation between γ and α in the region of allowed
parameters.
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I. INTRODUCTION

The decays of B mesons [1] offer the prospect of confirming or refuting the current
explanation of CP violation in the neutral kaon system [2], based on phases in the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [3]. For example, unequal time-integrated

rates for the π+π− decays of states which are initially B0 and and B
0

would signify CP
violation, providing approximate information on the angle α of the triangle describing
the unitarity of the CKM matrix.

The presence of gluonic [4] and electroweak [5] penguin contributions in additional
to the dominant (“tree”) processes requires that one separate out several terms. An
isospin analysis [6], involving the study of the time dependence of the π+π− mode and
rates for the π±π0 and π0π0 modes of B mesons, permits one to isolate the amplitudes
contributing to final states with isospin 0 and 2 and thereby to determine α rather well
[6, 7]. However, for certain types of detectors, the observation of neutral pions may pose
a challenge, and model calculations [8] predict a branching ratio for B0 → π0π0 of order
10−6 or less.

A few alternative ways to sort out the effects of several amplitudes in B0 → π+π−

were suggested recently. DeJongh and Sphicas [9] studied the dependence of the asym-
metry in B0(t) → π+π− on the magnitude and relative phase of the contributing terms.
Using flavor SU(3) symmetry, Silva and Wolfenstein [10] estimated the penguin con-
tribution by comparing the tree-dominated decay rate of B0 → π+π− with that of
B0 → π−K+ which has a large penguin term. Buras and Fleischer [11] proposed re-
lating the penguin term in B0 → π+π− via SU(3) to the time-dependent asymmetry

of B0(t) → K0K
0
, where the penguin amplitude dominates. Kramer, Palmer, and Wu

[12] note that the ratio of penguin to tree matrix elements is less model-dependent than
either quantity alone, and thereby obtain a relation for α. Aleksan et al. [13] use model-
dependent assumptions to learn the magnitude of the penguin effect on the measurement
of α by relating the three ∆S = 0 decay modes ππ, πρ, and ρρ to the corresponding
∆S = 1 modes πK, πK∗ and ρK, and ρK∗.

In this paper we examine in more detail a method proposed in Ref. [14] to determine
phases of CKM matrix elements by detecting only kaons and charged pions in B meson

decays. In the decays B0 → π+π− and B
0

to π+π−, one identifies the flavor of the
neutral B meson at time of production and studies the time-dependence of the decay
rate. One obtains the necessary information on additional amplitudes from the rates

Γ(B0 → π−K+), Γ(B
0 → π+K−), and Γ(B+ → π+K0) or Γ(B− → π+K

0
) using flavor

SU(3) symmetry [10, 15, 16, 17, 18] and first-order SU(3) breaking [19]. In the most
general case we obtain information not only on α, but also on γ = Arg(V ∗

ub) and on
strong phase shift differences. Other ways to measure γ, based on charged B decays,
were proposed in Ref. [20].

In Section II we describe the processes to be measured and the amplitudes on which
they depend. We then study the precision to which various quantities can be determined.
It is possible that the strong-interaction phase shift difference δ between amplitudes is
below detectable levels, in which case simplified analyses become necessary. Several of
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these cases are discussed in Sec. III. The most general error analysis (for δ 6= 0) is
performed in Sec. IV, while Sec. V concludes. An Appendix is devoted to an aspect of
Monte Carlo programs.

II. PROCESSES AND AMPLITUDES

A. Expressions for amplitudes and quantities quadratic in them

We review the method proposed in Ref. [14], which may be consulted for details.
Our method employs flavor SU(3) symmetry [15, 16, 17], and neglects “annihilation”
amplitudes in which the spectator quark (the light quark accompanying the b in the
initial meson) enters into the decay Hamiltonian [18]. These amplitudes in B decays
are expected to be suppressed by fB/mB, where fB ≃ 180 MeV. We include first-order
SU(3) breaking terms [19], expected to be at most tens of percent, but neglect corrections
expected to arise at a level of a few percent.

In the SU(3) limit and neglecting annihilation terms, all B decay amplitudes into
ππ , πK and KK states can be decomposed in terms of three independent amplitudes
[7, 18]: a “tree” term t(t′), a “color-suppressed” term c(c′) and a “penguin” term p(p′).
These amplitudes contain both the leading-order and electroweak penguin [5] contribu-
tions:

t ≡ T + (cu − cd)P
C
EW , c ≡ C + (cu − cd)PEW , p ≡ P + cdP

C
EW . (1)

Here the capital letters denote the leading-order contributions defined in Ref. [18], and
PEW and P C

EW are color-favored and color-suppressed electroweak penguin amplitudes
defined in Ref. [7]. The values cu = 2/3 and cd = −1/3 are those which would follow
if the electroweak penguin coupled to quarks in a manner proportional to their charges.
(Small corrections, which we shall ignore and which do not affect our analysis, arise from
axial-vector Z couplings and from WW box diagrams.) The ∆S = 0 amplitudes are
denoted by unprimed quantities and the ∆S = 1 processes by primed quantities.

The amplitudes of the two processes B0 → π+π− and B0 → π−K+ are expressed as

Aππ ≡ A(B0 → π+π−) = −t − p = −T − P − 2

3
P C

EW ,

AπK ≡ A(B0 → π−K+) = −t′ − p′ = −T ′ − P ′ − 2

3
P ′C

EW , (2)

while that for B+ → π+K0 will be approximated by

A+ ≡ A(B+ → π+K0) = p′ = P ′ − 1

3
P ′C

EW ≈ P ′ +
2

3
P ′C

EW , (3)

neglecting a color-suppressed electroweak penguin effect of order |P ′C
EW/P ′| = O((1/5)2)

[7]. With this approximation, A+ contains the same combination of electroweak and
gluonic penguins as in the expression for AπK .

The terms on the right-hand-sides of (2) and (3) carry well-defined weak phases.
The weak phase of T is Arg(VudV

∗
ub) = γ, and that of P + 2

3
P C

EW is approximately
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Arg(VtdV
∗
tb) = −β, where we neglect corrections due to quarks other than the top quark.

The effects of the u and c quarks become appreciable [21] when Vtd obtains its currently
allowed smallest values. This corresponds to a small deviation of the CP asymmetry in
B0(t) → π+π− from sin(2α) sin(∆mt) (where ∆m is the neutral B mass-difference). For
large values of Vtd, where the deviation due to the penguin amplitude becomes significant
[22], the u and c contributions become very small. T ′ also carries the phase γ, while the
weak phase of P ′ + 2

3
P ′C

EW is Arg(VtsV
∗
tb) = π.

In what follows we shall denote T ≡ |T |, P ≡ |P + 2

3
P C

EW |, T ′ ≡ |T ′|, P ′ ≡ |P ′ +
2

3
P ′C

EW |. The ratio of ∆S = 1 to ∆S = 0 tree and penguin amplitudes are given by
the corresponding ratios of CKM factors, T ′/T = |Vus/Vud| ≡ ru = 0.23, P ′/P =
|Vts/Vtd| ≡ rt. To introduce first-order SU(3) breaking corrections, we note that in the
|T ′| amplitude the W turns into an s quark instead of a d in T . Assuming factorization
for T , which is supported by experiments [23, 24] and justified for B → ππ and πK by
the high momentum with which the two color-singlet mesons separate from one another,
SU(3) breaking is given by the K/π ratio of decay constants

T ′

T =
|Vus|
|Vud|

fK

fπ

≡ r̃u . (4)

Apart from small electroweak penguin terms, all amplitudes we consider are free
of color-suppressed contributions, for which factorization might be more questionable.
The situation would be very different were we to consider the amplitude for B0 → π0π0,
where the color-suppressed contribution could be dominant.

In the penguin amplitudes (including electroweak penguin) of both B0 → π−K+

and B+ → π+K0 the b quark turns into an s quark instead of a d in B0 → π+π−.
Here we will denote the magnitude of the ∆S = 1 penguin amplitude by rtP̃, to allow
for SU(3) breaking. Since factorization is questionable for penguin amplitudes, one
generally expects P̃ 6= (fK/fπ)P. We will assume that the phase δP is unaffected by
SU(3) breaking. Since this phase is likely to be small [25], this assumption is not expected
to introduce a significant uncertaintly in the determination of the weak phases.

Assigning SU(3)-symmetric strong phases δT , δP to terms with specific weak phases,
and taking account of SU(3) breaking, Eqs. (2) and (3) may be transcribed as

Aππ = T eiδT eiγ + PeiδP e−iβ ,

AπK = r̃uT eiδT eiγ − rtP̃eiδP ,

A+ = rtP̃eiδP . (5)

It will be shown that the numerous a priori unknown parameters in (5), including the
two weak phases α ≡ π − β − γ and γ, can be determined from the rate measurements
of the above three processes and their charge-conjugates.

The amplitudes for the corresponding charge-conjugate decay processes are simply
obtained by changing the signs of the weak phases γ and β. We denote the charge-
conjugate amplitudes corresponding to (5) by Aππ, AπK , A−, respectively. A state
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initially tagged as a B0 or B
0

will be called B0(t) or B
0
(t). The time-dependent decay

rates of these states to π+π− are given by

Γ(B0(t) → π+π−) = e−Γt[|Aππ|2 cos2(
∆m

2
t) + |Aππ|2 sin2(

∆m

2
t)

+Im(e2iβAππA
∗

ππ) sin(∆mt)] ,

Γ(B
0
(t) → π+π−) = e−Γt[|Aππ|2 sin2(

∆m

2
t) + |Aππ|2 cos2(

∆m

2
t)

− Im(e2iβAππA
∗

ππ sin(∆mt)] . (6)

Measurement of these quantities determines |Aππ|2, |Aππ|2 and Im(e2iβAππA
∗

ππ). It is
convenient to define sums and differences of the first two quantities, and we find

A ≡ 1

2
(|Aππ|2 + |Aππ|2) = T 2 + P2 − 2T P cos δ cos α ,

B ≡ 1

2
(|Aππ|2 − |Aππ|2) = −2T P sin δ sin α ,

C ≡ Im (e2iβAππA
∗

ππ) = −T 2 sin 2α + 2T P cos δ sin α , (7)

where we use β + γ = π − α and where we define δ ≡ δT − δP .

The rates of the self-tagging modes π−K+, π+K− and π+K0 or π−K
0

determine
|AπK |2, |AπK |2 and |A+|2, respectively. Again, we take sums and differences of the first
two, and find

D ≡ 1

2
(|AπK |2 + |AπK |2) = (r̃uT )2 + P̃ ′

2 − 2r̃uT P̃ ′ cos δ cos γ ,

E ≡ 1

2
(|AπK |2 − |AπK |2) = 2r̃uT P̃ ′ sin δ sin γ ,

F ≡ |A+|2 = |A−|2 = P̃ ′
2

. (8)

The rates for B+ → π+K0 and B− → π−K
0

are expected to be equal, since only
penguin amplitudes are expected to contribute to these processes. Here we have defined
P̃ ′ ≡ rtP̃ .

Measurement of the six quantitities A − F suffices to determine all six parameters
α, γ, T , P, P̃, δ up to discrete ambiguities. The CKM parameter rt ≡ |Vts/Vtd|, which
is still largely unknown, is obtained from the unitarity triangle in terms of α and γ:

rurt =
sin α

sin γ
. (9)

We note that

|AπK |2 − |AπK |2 = −(
fK

fπ
)(
P̃
P )(|Aππ|2 − |Aππ|2) , (10)
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which determines the magnitude of SU(3) breaking in the penguin amplitude, P̃/P.
The relation (10) between the particle-antiparticle rate differences in B → πK and in
B → ππ was recently derived [26] in the SU(3) limit, fK/fπ → 1, P̃/P → 1. The
authors assumed for SU(3) breaking a value P̃/P = fK/fπ (based on factorization of
penguin amplitudes) which in our approach is a free parameter to be determined by
experiment. We expect it to differ from one by up to 30%.

Both sides of Eq. (10) are proportional to sin δ, and thus would vanish in the absence
of a strong phase difference. In that case, one would have to assume a relation between
P̃ and P or some other constraint in order to obtain a solution. If, on the other hand,
δ 6= 0, leading to a rate asymmetry between the self-tagging decays B0 → π−K+ and

B
0 → π+K−, the present method permits one to interpret that rate asymmetry in a

manner independent of δ.

B. Likely ranges of observables

The amplitude for B0 → π+π− is expected to be dominated by the T contribution,
while those for B0 → π−K+ and B+ → π+K0 are expected to be dominated by P̃ ′. We
shall choose units in which a branching ratio of 10−5 corresponds to a value of 1 for the
rates A, D, and F . The normalizations of the other quantities are set accordingly. We
shall also define the quantity

S ≡ A + D =
1

2
(|Aππ|2 + |Aππ|2 + |AπK |2 + |AπK |2) . (11)

A combined sample of the decays B0 → π+π− and B0 → π−K+ has been observed
with a joint branching ratio of (1.8+0.6+0.2

−0.5−0.3 ± 0.2) × 10−5 [27], so that S = 1.8 ± 0.65.
Equal mixtures of the two modes are most likely, corresponding to individual branching
ratios of about 10−5 for B0 → π+π− and B0 → π−K+. A similar branching ratio is
expected for B+ → π+K0 if the P̃ ′ amplitude dominates B → πK decays, as seems
likely. Thus, values of order 1 for A, D, and F are expected. We shall consider a range
of values for these quantities, subject only to constraints on the lower and upper limits
for S. As we shall see in Sec. III D, when δ can be neglected, this works out to a rule of

thumb that T 2 + P̃ ′
2 ≈ 2.

The detection of B+ → π+K0 or B− → π−K̄0 in practice will utilize the channels
B± → π±KS, KS → π+π−, with a corresponding loss in efficiency of a factor of 3. We
shall take this factor into account in estimating statistical errors on F .

The remaining quantities B, C, and E are harder to anticipate. The Schwarz in-
equality limits the value of |C| to be less than or equal to A. In practice we find values
of |C| larger than 2 to be very unlikely. Thus, we shall consider values subject to this
restriction. Both B and E will vanish if δ = 0. While a recent calculation [28] based
on perturbative QCD [25] suggests that δT ≈ 0, δP ≈ 9.5◦, δ ≈ −9.5◦, the possibility of
non-perturbative effects (such as strong final-state interactions differing in channels of
different isospin) cannot be excluded. Thus, we shall consider the representative values
δ = 0, 5.7◦, 36.9◦, 84.3◦, 95.7◦, 143.1◦, 174.3◦. We take only non-negative values since

6



the error estimates are not affected by sign changes in δ. The nonzero values will be
discussed in Sec. IV.

C. Constraints on the angles α and γ

Recent analyses of constraints on the CKM parameters include those in Refs. [29]
and [30]. We shall visualize the allowed ranges of α and γ in order to choose illustrative
sets of parameters.

We begin with the Wolfenstein parameterization [31] of CKM elements:

Vcb = Aλ2 , Vub = Aλ3(ρ − iη) , Vtd = Aλ3(1 − ρ − iη) , (12)

as well as others not quoted explicitly, where λ = 0.22. We shall assume [30] Vcb =
0.038 ± 0.003. (A slightly higher value is quoted in Ref. [32].) The measurement [30]
|Vub/Vcb| = 0.08 ± 0.02 based on charmless B decays implies (ρ2 + η2)1/2 = 0.36 ± 0.09.

The measurement of B0 − B
0

mixing implies [32] |Vtd| = 0.009 ± 0.003, which we shall
interpret as implying |1− ρ− iη| = 1.0± 0.3. The requirement that the imaginary part

of the K0 − K
0

mixing amplitude due to CKM phases be responsible for the observed
CP violation in the kaon system implies a hyperbola [30] η(1 − ρ + 0.35) = 0.48 ± 0.20,
where the 1 − ρ term in parentheses refers to the contribution of the top quark loop,
while 0.35 refers to the charmed quark’s contribution.

The allowed region in (ρ, η) is shown in Fig. 1(a); the corresponding range of (α, γ)
is depicted in Fig. 1(b) by a rather narrow band. The strong anticorrelation between
α and γ is a function of the limited range of β = π − α − γ, which is restricted to
6.6◦ ≤ β ≤ 27◦ for the present set of parameters [30]. The band would not be quite so
narrow using the parameters of one other analysis [29].

Three representative points, noted on the figure, are described in Table I. These
correspond to extreme and central values of α and γ. A number of illustrative examples
will be presented for these points.

Also shown on Fig. 1(b) is a linear least-squares fit to the points p1, p2, and p3:
γ = 175◦ − 1.16α. Almost equally good is the approximate relation

γ = 180◦ − 1.2α , (13)

which we shall use in Sec. III A to simplify relations between ππ and πK rates.

D. Limitation associated with size of δ

The relation (10) can be written as

E

B
= −fK

fπ

P̃ ′

P ′
. (14)

We wish to evaluate the ratio P̃ ′/P ′ to better than 30% (the anticipated magnitude
of SU(3) breaking). In this subsection we estimate the number of π+π− events (and,
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Table I: Representative points in the (ρ, η) plane and corresponding angles of the uni-
tarity triangle.

Point ρ η α β γ rt

(deg.) (deg.) (deg.)
p1 −0.30 0.15 20.0 6.6 153.3 3.36
p2 0 0.35 70.7 19.3 90.0 4.16
p3 0.36 0.27 120.3 22.9 36.9 6.35

correspondingly, the size of the other data samples) needed in order to measure B and
E [see the expressions (7) and (8)] to the required accuracy.

Define the number of events averaged between particle and antiparticle decays:

N(B0 → π+π−) + N(B
0 → π+π−)

2
≡ Nππ ,

N(B0 → π−K+) + N(B
0 → π+K−)

2
≡ NπK . (15)

With equal branching ratios for π+π− and π±K∓, the present data sample would consist
of about 10 events each for Nππ and NπK [27]. The errors on A and B both scale as

N1/2
ππ , while those on D and E scale as N

1/2

πK . Then in the samples of events used to
measure A, B, D, and E, we expect

δNA ≃ δNB ≃ N1/2

ππ , δND ≃ δNE ≃ N
1/2

πK . (16)

We take as illustrative parameters T = P̃ ′ = P ′ = 1, neglecting SU(3) breaking in
the ratio P̃ ′/P ′. Recalling the expressions for B and E, we expect the numbers of events
in the samples corresponding to these quantities to be

NB = −2Nππru sin δ sin γ , NE = 2NπK r̃u sin δ sin γ , (17)

where we have used (9). Consequently, the fractional errors on NB and NE are

|δNB|
|NB|

≃ 1

2N
1/2
ππ ru| sin δ sin γ|

, (18)

|δNE|
|NE|

≃ 1

2N
1/2
ππ r̃u| sin δ sin γ|

. (19)

Thus the fractional error on the quotient NB/NE is the sum in quadrature of these two
errors:

|δ(NB/NE)|
|(NB/NE)| =

1

2N
1/2
ππ ru| sin δ sin γ|

(

1 +
f 2

π

f 2
K

)1/2

. (20)
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Demanding that this error be less than 30% as noted above and substituting the values
of the constants, we find

Nππ ≥ 91

sin2 δ sin2 γ
. (21)

This gives an idea of the data samples required to improve upon the assumption of no
more than 30% SU(3) breaking in penguin amplitudes. More detailed estimates are
postponed until Sec. IV. Meanwhile, we examine the special case in which the strong
phase shift difference δ vanishes.

III. VANISHING STRONG PHASE SHIFT DIFFERENCE

Both the ππ parameter B and the πK rate asymmetry parameter E vanish when
the strong phase shift difference δ is zero. In that case, however, one can no longer use
the relation (10) to determine the ratio P̃/P. One has 4 observables (A, C, D, and
F ) to determine 5 parameters (e.g., T , P, α, P̃ ′, and γ). One must make additional
assumptions to obtain solutions. In this section we explore several such possibilities.

A. Simplified observables with δ = 0.

When δ = 0, the equations in (7) and (8) for A, C, and D become

A = T 2 + P2 − 2T P cos α ,

C = −T 2 sin(2α) + 2T P sin α ,

D = (r̃uT )2 + P̃ ′
2 − 2r̃uT P̃ ′ cos γ . (22)

A simple relation follows from eliminating P between the first two of these equations:

(C/A)2 = 4z(1 − z) , where z ≡ T 2 sin2 α/A . (23)

The Schwarz inequality bound |C/A| ≤ 1 mentioned earlier is manifest here.

B. Linear relation between γ and α

A considerable simplification useful for anticipating the precision in determining α
and γ is obtained by noting that α and γ are rather tightly correlated with one another
[see Fig. 1(b)] as a result of the restricted range of β. As mentioned, the dependence
can be approximated by a straight line. If we are concerned mainly with learning the
sign of ρ and are not so concerned about the exact magnitude of (ρ2 + η2)1/2, we can
substitute for γ in the expression (22) for D, having already substituted F = P ′2, and
thus each measurement of D implies a relation between T and α.

An even greater simplification can be obtained if we neglect the term quadratic in T
in D, and eliminate T , P, and P̃ ′ from the remaining equations involving A, C, D, and
F . With the approximate formula (13) one has

cos(1.2α)

sin α
= 2.6

D − F√
F

1
√

A ±
√

A2 − C2

. (24)
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The sign ambiguity stems from the fact that the equation for T sin α has two solutions.
We can anticipate that the solution with T 2 ≈ A is the most likely, as long as P is
relatively small compared to T , as generally anticipated. Since

(T sin α)2 =
A ±

√
A2 − C2

2
, (25)

and since |C| tends to be small when sin α is near 1 (as for the point p2), we anticipate
that in that case we should choose the positive sign in the square root, and the argument
of the overall square root in the denominator of the last fraction in Eq. (24) is about
2A. On the other hand, when |C| is fairly large (e.g., for points p1 and p3), the sign does
not matter much, and the argument of the overall square root is about A.

For 100 π+π− and 100 π±K∓ events, the errors in A and D are about 10%. Assuming
that the |P ′| contribution is dominant in D, the error on F will then be about 17%
(because of the branching ratio of neutral kaons to π+π−). One then finds an error of
about 0.55 in the right-hand side of Eq. (24) when α is near the middle of its range,
and about 0.78 when α is near its lower or upper bounds. In Fig. 2(a) we plot the
left-hand side of this equation, along with plotted points for α = 20◦ (p1), 71◦ (p2),
and 120◦ (p3), with the errors in cos(1.2α)/ sinα of ±(0.78, 0.55, 0.78), respectively.
The allowed region in (α, γ) is shown in Fig. 2(b) along with the line corresponding to
γ = 180◦ − 1.2α. The arrows designate values of α corresponding to p1, p2, and p3.

When α is close to the center of its range, a sample of B decays corresponding to
100 events in each of the π+π− and π±K∓ channels allows one to narrow the allowed
region of α by roughly a factor of 2. For the lowest or highest allowed values of α one
does somewhat better. For more precise estimates, one would retain the |T |2 term in D
when α ≃ 90◦, and would be more precise about the error on C.

Let us for the moment neglect the small correction term in the expression (7) for
C. Then since sin 2α can take on the same value for two values of α equally above
and below π/4, there is a discrete ambiguity associated with negative values of C and
values of α < π/2. This ambiguity is likely to persist when we include the correction
term. However, the addition of πK decay information appears capable of resolving
this ambiguity, since it provides additional information on the angle γ which is highly
correlated with α. For values of α > π/2 and positive C only one solution (that for
α < 3π/4) appears to be in the physical region, so we do not get the same sort of
discrete ambiguity.

C. SU(3) assumption for penguin amplitudes

When δ = 0, as mentioned, we are missing information on P̃ ′/P ′. In the previous
subsection we supplied this information by assuming a functional relation between α and
γ. In the present subsection, we no longer assume such a relation, but simply assume
this ratio to equal unity. (It was assumed to equal fK/fπ ≈ 1.2 in Ref. [10] and [26].)
Under this assumption, we may drop the tilde symbols on P̃ ′ in Eqs. (22). We may then
plot contours of observables in the plane of T ≡ |T | vs. P ′ ≡ |P ′| for various regions in
the allowed parameter space.
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Contours of fixed A are mainly sensitive to T , while those of fixed D depend mainly
on P ′. The slopes of the contours reflect the presence of constructive or destructive
interference between T and P ′, depending on the signs of cosα and cos γ. Because of
the strong anticorrelation between α and γ shown in Fig. 1, the contours of A and D are
nearly perpendicular to one another for each of the three illustrated cases. This means
that for each pair (α, γ), a measurement of A and D selects a point in the (T ,P ′) plane
with comparable errors on T and P ′ if the values and errors of A and D are comparable
to one another.

A measurement of F = |P ′|2 (the π+K0 or π−K
0

branching ratio, in units of 10−5)
must be consistent with the determination just made. Thus, a one-dimensional allowed
set of points (α, γ) is chosen by the combined measurements of A, D, and F . The
degree to which this choice is unique depends on being able to observe the effect of
T − P ′ interference in the measurement of D, since in the absence of the contribution

from T one would have D = F . That is, the average π±K∓ and π+K0 (or π−K
0
) rates

would be the same in the absence of the T contribution to the π±K∓ mode.
Once one has selected values of T and P ′ for a one-dimensional set of points in the

(α, γ) plane, the value of C can be used to distinguish among those points. Positive
values of C tend to be associated with negative values of sin(2α) and hence with values
of α greater than 90◦. Such values correspond to (ρ, η) values lying inside a circle of
radius 1/2 with center at ρ = 1/2, η = 0. These parameters correspond to roughly the
right-hand one-third of the allowed regions in Figs. 1(a) and 1(b). The parameter spaces
of Fig. 1 are much more sensitive to positive values of C than to negative values. We
shall see such behavior again when we come to discuss a further simplification in the
next subsection.

D. Information without π/K separation

The fact that the contours of A and D are nearly perpendicular to one another and
have similar spacings in T and P ′, respectively, suggests that contours of

S = A + D = (1 + r̃2
u)T 2 + (1 + r−2

t )P ′2 − 2T P ′(r−1
t cos α + r̃u cos γ) (26)

may not depend very much on which set of allowed (α, γ) one chooses.
This expectation is borne out in Fig. 3. The observation that S is roughly indepen-

dent of (α, γ) follows from the anticorrelation of cos α and cos γ. The sum of the average

B0 and B
0

branching ratios to π+π− and π±K∓ leads to an approximate constraint on
T 2 + P ′2 roughly independent of CKM parameters within the allowed range. This is
fortunate, since the CLEO Collaboration [27] measures precisely this sum, with only
weak distinction at present between pions and kaons. (Improved particle identification
at CLEO is foreseen in the future.) One may expect a similar measurement in some
hadron collider experiments, such as the CDF Detector at Fermilab, unless specific steps
are taken for particle identification.

A combined measurement of T 2 + P ′2 and F = P ′2 now can be used to determine
each parameter. The determination of α and γ is now more simple-minded, albeit less
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precise, than in the previous section. Since our determination of T and P ′ is now
independent of α and γ, we can use these parameters in the equation (22) for C to plot
contours of fixed C in the (α, γ) plane. (The variation with γ springs from the fact that
rurt = sin α/ sin γ, as mentioned previously.) An example of such a contour is plotted in
Fig. 4 for the representative values T = P ′ = 1.1. One sees a fair amount of uncertainty
for values of C near −0.7, where the contour intersects the allowed (α, γ) region in a
wide range of points. This behavior is related to the discrete ambiguity noted at the end
of Sec. III B. However, contours of positive C cut the allowed region at a larger angle
and lead to a more highly constrained solution.

The measurement of C in the absence of particle identification is possible since one
is following the time-dependence of a decay rate in which one compares the decays of

states which were initially B0 and B
0

to a combination of final states. The oscillations
from which C is to be extracted are expected to stem only from the π+π− final state.

The imposition of particle identification returns one to the situation of the previous
section. As mentioned, to make efficient use of the information thus provided, one must
be able to see the difference between D, where there is a small T contribution, and F ,
where there is none.

E. Results of a Monte Carlo simulation

We have explored numerically the case of δ = 0, P̃ ′ = P ′ using a Monte Carlo
program which generates events with a statistical spread in the variables A, C, D, and

F appropriate to data samples corresponding to a total of M decays of B0 or B
0

to
π+π−. Scaling other quantities to the expected π+π− rates, and recalling the discussion
of Sec. II D, we then assume

δA = δC = δD = δF/
√

3 = 1/
√

M . (27)

For M = 100, 1000, 10000 we then ask how well α and γ can be determined. Numerically
this is accomplished by stepping α and γ through a range of values, accepting any
solution which is within 2σ of the generated value for each parameter A, C, D, F , and
averaging all such solutions. To allow for the possibility of multiple solutions, a cluster
algorithm (described in the Appendix) is applied. We also restrict 10◦ ≤ α ≤ 130◦,
20◦ ≤ γ ≤ 170◦, and |γ − (175◦ − 1.16α)| ≤ 30◦ in accord with the allowed regions in
Fig. 1. The results are shown in Fig. 5.

One sees a noticeable improvement with increased statistics. A clear distinction
between the cases (p1 or p2) and p3 is already possible with M = 100. Satisfactory results
for all three points are obtained for M = 1000. The small ambiguity for p1 appears to
be related to the multiple intersections of the contours for negative C (Fig. 4) with the
allowed region of parameter space. Errors are reduced further when M is increased to
10000.
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IV. ERROR ANALYSIS FOR GENERAL FINAL-STATE PHASES

In Ref. [14] we estimated the statistical accuracy of determining the weak phases α
and γ using the present method to be at a level of ten percent, given around a hundred
events in each channel. The theoretical uncertainty of the method is at a similar level,
involving the following corrections all of which are of order a few percent: A correction
from an electroweak penguin amplitude in B+ → π+K0, corrections due to u and c
quarks in the B0 → π+π− penguin amplitude, second-order SU(3) breaking in the
magnitudes of weak amplitudes, first order SU(3) breaking in the (small) strong phase
of the penguin amplitude, and O(fB/mB) annihilation amplitudes. In this subsection
we analyze in more detail the precision on α and γ that can be attained with a given
sample of events as a function of the parameters. We use a Monte Carlo program similar
to that described in Sec. III E to generate events with a given Gaussian distribution in
the parameters A − F appropriate to a total sample corresponding to M π+π− decays.
We choose T = 1 and P̃ ′ = P ′ = 1 for the purpose of generating events. In addition to
the errors assumed in Eq. (27), we assume

δB = δE = 1/
√

M . (28)

The results are shown in Fig. 6.
The method clearly improves with increased statistics, in a manner roughly compat-

ible with our estimate (21). Despite the presence of a large spread in values of α and
γ, one can already distinguish the case p3 from the cases p1 and p2 for M = 100. The
distinction between p1 and p2 appears to emerge by the time one reaches M = 1000.
On the other hand, one sees the distinct appearance of clusters of points, corresponding
to the presence of discrete ambiguities. These ambiguities are to be distinguished from
the one mentioned at the end of Sec. III B, and appear to be related to uncertainties
in the value of the final-state phase. Their nature is best ascertained by referring to
the case M = 10000. One can detect up to three clusters of solutions. For example, in
the case of input parameters in the vicinity of p1, a final-state phase δ ≈ 90◦ turns out
to be ambiguous with two other cases, one with δ < 90◦ and the other with δ > 90◦,
as one sees by referring to the corresponding plots of α vs. δ shown in Fig. 7. For
input parameters near p2, the more serious ambiguities appear to occur for moderate
or small values of δ. For input parameters near p3, uncertainties present for M = 100
and M = 1000 appear to have largely disappeared by the time M reaches 10000. This
behavior may be related to the uniqueness of the solution provided by large positive C
for points near p3 in Fig. 4, but also points to the absence of ambiguities associated with
the value of δ.

The discrete ambiguities mentioned previously are quite noticeable in Fig. 7; in
addition, for δ near 180◦, even the largest value of M does not lead to solutions in which
that value is uniquely determined.
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V. CONCLUSIONS

To summarize, we have shown that measurements of the rates for B decays to modes
involving charged pions and kaons in the final states can determine the shape of the
unitarity triangle, even in the absence of theoretical or experimental information about
final-state phases. The full set of measurements involves the detection of the time-

dependent rates for B0 and B
0 → π+π−, and the rates for B0 → π−K+, B

0 → π+K−,

and B± → KSπ±. A rate asymmetry between B0 → π−K+ and B
0 → π+K− is

needed in order to perform a solution for all necessary parameters. In the absence
of this asymmetry, one can obtain partial information by noting the tight correlation
between the angles α and γ of the unitarity triangle, or by assuming an SU(3) relation
between strangeness-changing and strangeness-preserving penguin amplitudes. One can
even dispense with particle identification, summing π+π− and π±K∓ modes, if only
crude constraints on parameters are desired. As a result of the strong anticorrelation
between α and γ in the physically allowed region of parameter space, the πK modes are
particularly helpful in resolving a discrete ambiguity associated with the behavior of the
function sin 2α which would be present if one studied ππ modes alone.

In the simplest case examined, where the assumption of δ = 0 and the strong corre-
lation between α and γ in the allowed parameter space were utilized, we found that a
sample of events corresponding to 100 π+π− and 100 π±K∓ events, with a correspond-
ingly reduced number of detected B± → KSπ± decays, was sufficient to reduce the
allowed region in parameter space by roughly a factor of two, depending on the values
of the CKM angles.

In the more general case in which δ ≈ 0 but no relation between α and γ was
assumed, we found that by assuming SU(3) symmetry for penguin amplitudes we could
obtain unique solutions for α and γ, with some possibility of discrete ambiguity when
α is small and γ is large (corresponding to ρ < 0 in the language of the Wolfenstein
parametrization). Even when a distinction between charged pions and charged kaons is
not possible (Sec. III D), partial information on the parameters can be obtained, since
the time-dependent effects are expected to be confined to the π+π− channel and thus a
measurement of the parameter C (defined in Sec. II) is still possible.

In the most general case of nonzero final-state phase differences δ we find that the
program described here requires approximately 102/(sin2 δ sin2 γ) decays of neutral B’s
to charged pions (and a similar number of πK events) in order to free oneself from
assumptions of SU(3) breaking at the 30% level in penguin amplitudes. A Monte Carlo
program has shown that one begins to get useful information with 100 such decays (to
be compared with about 10 in the present data sample). The full power of the method
becomes apparent as the sample exceeds 1000 and approaches 10000. Even under such
circumstances, a discrete ambiguity remains associated with the size of final-state phases.
Arguments external to those presented here (such as the allowed regions in the (α, γ)
parameter space, the expected magnitude of SU(3) breaking, and the expected size of
final-state phases) may be necessary to resolve such ambiguities.
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APPENDIX: DETAILS OF CLUSTER ALGORITHM

Given a set of values for A, B, C, D, E and F , the values of α, γ and δ are not neces-
sarily determined uniquely. Apart from the ambiguities associated with the numerical
nature of the algorithm, there can also be discrete ambiguities. In that case the set
of triplets (α, γ, δ) consistent with all the observed quantities will form clusters in the
(α, γ, δ) space, for any given set of A, B, C, D, E, F . The number of clusters correspond
to the number of discrete solutions and the spread within a cluster corresponds to the
(numerical) error on that particular point. The average of all points in each cluster is
taken to be the central value for that cluster and is plotted in Figs. 5, 6 and 7 as a single
point. The number of points plotted for each data set is thus the number of discrete
solutions for that data set.

The ambiguities associated with the numerical nature are expected to be continuous;
i.e. for any point i to belong to a cluster, there should be at least one point j in the
cluster such that |αi − αj | ≤ ∆α, where ∆α is the least count in α in the numerical
algorithm. It is observed that this condition alone is sufficient to separate the clusters
and additional conditions on γi or δi are not needed. Two points i and j belonging
to different clusters will fail to satisfy this condition. Different clusters can thus be
separated from each other.
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FIGURE CAPTIONS

FIG. 1. Allowed ranges of CKM parameters (bounded by solid lines). The points p1, p2,
and p3 are described in Table I. (a) (ρ, η) plane; (b) as function of angles α and γ of the
unitarity triangle. A linear least-squares fit to p1, p2, and p3 yields γ = 175◦ − 1.16α,
as shown by the dashed straight line in (b); its map into the (ρ, η) plane is the dashed
curve in (a).

FIG. 2. (a) The function cos(1.2α)/ sinα as a function of α, and errors on α expected for

a sample corresponding to 100 B0 or B
0 → π+π− decays. The three points, from left to

right, correspond to p1, p2, and p3 of Table I, and δ = 0 is assumed. (b) Corresponding
regions in α − γ plane.

FIG. 3. Contours in the |T | − |P ′| plane of fixed S = A + D (sum of average π+π−

and π±K∓ branching ratio in units of 10−5), for δ = 0. Dotted curves: S = 0.2. Other
curves, outward from origin: S = 1, 2, 3, 4.

FIG. 4. Contours of fixed C for |T | = |P ′| = 1.1 as functions of α and γ, for δ = 0. Only
those branches intersecting the allowed region are shown. Dotted curve: C = −0.7;
dashed hyperbola: C = −0.5; solid curves, from left to right: C = 0, 1; dashed ellipse:
C = 1.5.

FIG. 5. Scatter plots in the α − γ plane of 100 events generated according to errors
appropriate to samples of M = 100, 1000, 10000 events for the points p1, p2, p3 of
Table I, for δ = 0. Here the α and γ axes are plotted in degrees.

FIG. 6. Scatter plots in the α − γ plane for nonzero input values of δ (labels above
columns) for the points p1, p2, p3 of Table I (labels to left of rows). Here 0◦ ≤ (α, γ) ≤
180◦. (a) M = 100; (b) M = 1000; (c) M = 10000.

FIG. 7. Scatter plots in the α − δ plane for nonzero input values of δ (labels above
columns) for the points p1, p2, p3 of Table I (labels to left of rows). Here 0◦ ≤ α ≤ 180◦;
−180◦ ≤ δ ≤ 180◦. (a) M = 100; (b) M = 1000; (c) M = 10000.
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