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Phases of elements of the Cabibbo-Kobayashi-Maskawa~CKM! matrix can be obtained using decays ofB
mesons top1p2, p6K7, andp1K0 or p2K̄0. ForB0 or B̄0→p1p2, one identifies the flavor of the neutralB
meson at time of production and studies the time dependence of the decay rate. The other process
self-tagging and only their rates need to be measured. By assuming flavor SU~3! symmetry and first-order
SU~3! breaking, one can separately determine the phasesg[Arg Vub* anda5p2b2g, whereb[Arg Vtd* .
Special cases include the vanishing of strong interaction phase differences between amplitudes, the pos
of recovering partial information whenp1p2 andp6K7 decays cannot be distinguished from one another, an
the use of a correlation betweeng anda in the region of allowed parameters.@S0556-2821~96!01617-7#

PACS number~s!: 12.15.Hh, 11.30.Er, 13.25.Hw, 14.40.Nd
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I. INTRODUCTION

The decays ofB mesons@1# offer the prospect of confirm-
ing or refuting the current explanation ofCP violation in the
neutral kaon system@2#, based on phases in the Cabibbo
Kobayashi-Maskawa~CKM! matrix @3#. For example, un-
equal time-integrated rates for thep1p2 decays of states
which are initiallyB0 and andB̄0 would signifyCP viola-
tion, providing approximate information on the anglea of
the triangle describing the unitarity of the CKM matrix.

The presence of gluonic@4# and electroweak@5# penguin
contributions in additional to the dominant~‘‘tree’’ ! pro-
cesses requires that one separate out several terms. An
pin analysis@6#, involving the study of the time dependenc
of thep1p2 mode and rates for thep6p0 andp0p0 modes
of B mesons, permits one to isolate the amplitudes contr
uting to final states with isospin 0 and 2 and thereby
determinea rather well@6,7#. However, for certain types of
detectors, the observation of neutral pions may pose a ch
lenge, and model calculations@8# predict a branching ratio
for B0→p0p0 of order 1026 or less.

A few alternative ways to sort out the effects of sever
amplitudes inB0→p1p2 were suggested recently. DeJong
and Sphicas@9# studied the dependence of the asymmetry
B0(t)→p1p2 on the magnitude and relative phase of th
contributing terms. Using flavor SU~3! symmetry, Silva and
Wolfenstein@10# estimated the penguin contribution by com
paring the tree-dominated decay rate ofB0→p1p2 with that
of B0→p2K1 which has a large penguin term. Buras an
Fleischer @11# proposed relating the penguin term in
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B0→p1p2 via SU~3! to the time-dependent asymmetry of
B0(t)→K0K̄0, where the penguin amplitude dominates
Kramer, Palmer, and Wu@12# note that the ratio of penguin
to tree matrix elements is less model dependent than eith
quantity alone, and thereby obtain a relation fora. Aleksan
et al. @13# use model-dependent assumptions to learn th
magnitude of the penguin effect on the measurement ofa by
relating the threeDS50 decay modespp, pr, andrr to the
correspondingDS51 modespK, pK* , rK, andrK* .

In this paper we examine in more detail a method pro
posed in@14# to determine phases of CKM matrix elements
by detecting only kaons and charged pions inB meson de-
cays. In the decaysB0→p1p2 andB̄0 to p1p2, one identi-
fies the flavor of the neutralB meson at time of production
and studies the time dependence of the decay rate. One
tains the necessary information on additional amplitude
from the rates G(B0→p2K1), G(B̄0→p1K2), and
G(B1→p1K0) or G(B2→p1K̄0) using flavor SU~3! sym-
metry @10,15–18# and first-order SU~3! breaking@19#. In the
most general case we obtain information not only ona, but
also ong5Arg(Vub* ) and on strong phase-shift differences
Other ways to measureg, based on chargedB decays, were
proposed in@20#.

In Sec. II we describe the processes to be measured a
the amplitudes on which they depend. We then study th
precision to which various quantities can be determined. It
possible that the strong-interaction phase-shift differenced
between amplitudes is below detectable levels, in which ca
simplified analyses become necessary. Several of these ca
are discussed in Sec. III. The most general error analysis~for
dÞ0! is performed in Sec. IV, while Sec. V concludes. The
Appendix is devoted to an aspect of Monte Carlo program
3309 © 1996 The American Physical Society
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II. PROCESSES AND AMPLITUDES

A. Expressions for amplitudes
and quantities quadratic in them

We review the method proposed in@14#, which may be
consulted for details. Our method employs flavor SU~3! sym-
metry @15–17#, and neglects ‘‘annihilation’’ amplitudes in
which the spectator quark~the light quark accompanying the
b in the initial meson! enters into the decay Hamiltonian
@18#. These amplitudes inB decays are expected to be sup
pressed byf B/mB , where f B.180 MeV. We include first-
order SU~3!-breaking terms@19#, expected to be at most tens
of percent, but neglect corrections expected to arise at a le
of a few percent.

In the SU~3! limit and neglecting annihilation terms, allB
decay amplitudes intopp, pK, andKK̄ states can be decom-
posed in terms of three independent amplitudes@7,18#: a
‘‘tree’’ term t(t8), a ‘‘color-suppressed’’ termc(c8), and a
‘‘penguin’’ term p(p8). These amplitudes contain both th
leading-order and electroweak penguin@5# contributions:

t[T1~cu2cd!PEW
C ,

c[C1~cu2cd!PEW, ~1!

p[P1cdPEW
C .

Here the capital letters denote the leading-order contributio
defined in @18#, and PEW and PEW

C are color-favored and
color-suppressed electroweak penguin amplitudes defined
@7#. The valuescu52/3 andcd521/3 are those which would
follow if the electroweak penguin coupled to quarks in
manner proportional to their charges.~Small corrections,
which we shall ignore and which do not affect our analysi
arise from axial-vectorZ couplings and fromWW box dia-
grams.! The DS50 amplitudes are denoted by unprime
quantities and theDS51 processes by primed quantities.

The amplitudes of the two processesB0→p1p2 and
B0→p2K1 are expressed as

App[A~B0→p1p2!52t2p52T2P2
2

3
PEW
C ,

ApK[A~B0→p2K1!52t82p852T82P82
2

3
PEW8

C ,

~2!

while that forB1→p1K0 will be approximated by

A1[A~B1→p1K0!5p85P82
1

3
PEW8

C'P81
2

3
PEW8

C ,

~3!

neglecting a color-suppressed electroweak penguin effec
order uPEW8

C /P8u5O„(1/5)2… @7#. With this approximation,
A1 contains the same combination of electroweak and g
onic penguins as in the expression forApK .

The terms on the right-hand sides of Eqs.~2! and~3! carry
well-defined weak phases. The weak phase ofT is
Arg(VudVub* )5g, and that ofP1(2/3)PEW

C is approximately
Arg(VtdVtb* )52b, where we neglect corrections due t
quarks other than the top quark. The effects of theu andc
-
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quarks become appreciable@21# when Vtd obtains its cur-
rently allowed smallest values. This corresponds to a sm
deviation of theCP asymmetry inB0(t)→p1p2 from
sin~2a!sin(Dmt) ~whereDm is the neutralB mass differ-
ence!. For large values ofVtd , where the deviation due to the
penguin amplitude becomes significant@22#, theu andc con-
tributions become very small.T8 also carries the phaseg,
while the weak phase ofP81(2/3)PEW8

C is (VtsVtb* )5p.
In what follows we shall denoteT[uTu, P[uP

1(2/3)PEW
C u, T 8[uT8u, P8[uP81(2/3)PEW8

C u. The ratio of
DS51 to DS50 tree and penguin amplitudes are given b
the corresponding ratios of CKM factors
T 8/T5uVus/Vudu[r u50.23, P8/P5uVts/Vtdu[r t . To intro-
duce first-order SU~3!-breaking corrections, we note that i
the uT8u amplitude theW turns into ans̄ quark instead of ad̄
in T. Assuming factorization forT, which is supported by
experiments@23,24# and justified forB→pp andpK by the
high momentum with which the two color-singlet meson
separate from one another, SU~3! breaking is given by the
K/p ratio of decay constants

T 8

T 5
uVusu
uVudu

f K
f p

[ r̃ u . ~4!

Apart from small electroweak penguin terms, all amp
tudes we consider are free of color-suppressed contributio
for which factorization might be more questionable. Th
situation would be very different were we to consider th
amplitude forB0→p0p0, where the color-suppressed contr
bution could be dominant.

In the penguin amplitudes~including electroweak pen-
guin! of bothB0→p2K1 andB1→p1K0 the b̄ quark turns
into an s̄ quark instead of ad̄ in B0→p1p2. Here we will
denote the magnitude of theDS51 penguin amplitude by
r tP̃, to allow for SU~3! breaking. Since factorization is ques
tionable for penguin amplitudes, one generally expe
P̃Þ( f K/ f p)P. We will assume that the phasedP is unaf-
fected by SU~3! breaking. Since this phase is likely to b
small @25#, this assumption is not expected to introduce
significant uncertaintly in the determination of the wea
phases.

Assigning SU~3!-symmetric strong phasesdT , dP to terms
with specific weak phases, and taking account of SU~3!
breaking, Eqs.~2! and ~3! may be transcribed as

App5TeidTeig1PeidPe2 ib,

ApK5 r̃ uTeidTeig2r tP̃eidP,

A15r tP̃eidP. ~5!

It will be shown that the numerousa priori unknown
parameters in Eq.~5!, including the two weak phasesa[p
2b2g andg, can be determined from the rate measureme
of the above three processes and their charge conjugate

The amplitudes for the corresponding charge-conjug
decay processes are simply obtained by changing the sign
the weak phasesg andb. We denote the charge-conjugat
amplitudes corresponding to Eq.~5! by Āpp , ĀpK , A2 , re-
spectively. A state initially tagged as aB0 or B̄0 will be
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called B0(t) or B̄0(t). The time-dependent decay rates o
these states top1p2 are given by

G„B0~ t !→p1p2
…5e2GtF uAppu2cos2S Dm

2
t D

1uĀppu2 sin2S Dm

2
t D

1Im~e2ibAppĀpp* !sin~Dmt!G ,
G„B̄0~ t !→p1p2

…5e2GtF uAppu2 sin2S Dm

2
t D

1uĀppu2 cos2S Dm

2
t D

2Im~e2ibAppĀpp* sin~Dmt!G . ~6!

Measurement of these quantities determinesuAppu2, uĀppu2,
and Im(e2ibAppĀpp* ). It is convenient to define sums and dif
ferences of the first two quantities, and we find

A[
1

2
~ uAppu21uĀppu2!5T 21P 222T_P cosdcosa,

B[
1

2
~ uAppu22uĀppu2!522T_P sindsina,

C[Im~e2ibAppĀpp* !52T 2 sin 2a12T_P cosd sina,
~7!

where we useb1g5p2a and where we defined[dT2dP .
The rates of the self-tagging modesp2K1, p1K2 and

p1K0 or p2K̄0 determineuApKu2, uĀpKu2 and uA1u2, respec-
tively. Again, we take sums and differences of the first tw
and find

D[
1

2
~ uApKu21uĀpKu2!5~ r̃ uT !21P̃82

22r̃ uT_P̃8 cosd cosg,

E[
1

2
~ uApKu22uĀpKu2!52r̃ uT_P̃8 sin d sin g,

F[uA1u25uA2u25P̃82. ~8!

The rates forB1→p1K0 andB2→p2K̄0 are expected to
be equal, since only penguin amplitudes are expected to c
tribute to these processes. Here we have definedP̃8[r tP̃.

Measurement of the six quantitiesA–F suffices to deter-
mine all six parametersa, g, T, P, P̃, d up to discrete ambi-
guities. The CKM parameterr t[uVts/Vtdu, which is still
largely unknown, is obtained from the unitarity triangle i
terms ofa andg:

r ur t5
sina

sing
. ~9!
f

-

o,

on-

n

We note that

uApKu22uĀpKu2

52S f Kf p
D S P̃PD ~ uAppu22uĀppu2!, ~10!

which determines the magnitude of SU~3! breaking in the
penguin amplitude,P̃/P. Relation~10! between the particle-
antiparticle rate differences inB→pK and inB→pp was
recently derived@26# in the SU~3! limit, f K/ f p→1, P̃/P→1.
The authors assumed for SU~3! breaking a valueP̃/P5f K/ f p
~based on factorization of penguin amplitudes! which in our
approach is a free parameter to be determined by experim
We expect it to differ from one by up to 30%.

Both sides of Eq.~10! are proportional to sind, and thus
would vanish in the absence of a strong phase difference
that case, one would have to assume a relation betweeP̃
andP or some other constraint in order to obtain a solutio
If, on the other hand,dÞ0, leading to a rate asymmetry be
tween the self-tagging decaysB0→p2K1 andB̄0→p1K2,
the present method permits one to interpret that rate as
metry in a manner independent ofd.

B. Likely ranges of observables

The amplitude forB0→p1p2 is expected to be domi-
nated by theT contribution, while those forB0→p2K1 and
B1→p1K0 are expected to be dominated byP̃8. We shall
choose units in which a branching ratio of 1025 corresponds
to a value of 1 for the ratesA, D, andF. The normalizations
of the other quantities are set accordingly. We shall a
define the quantity

S[A1D5
1

2
~ uAppu21uĀppu21uApKu21uĀpKu2!.

~11!

A combined sample of the decaysB0→p1p2 and
B0→p2K1 has been observed with a joint branching rat
of ~1.820.520.3

10.610.260.2!31025 @27#, so thatS51.860.65. Equal
mixtures of the two modes are most likely, corresponding
individual branching ratios of about 1025 for B0→p1p2 and
B0→p2K1. A similar branching ratio is expected fo
B1→p1K0 if the P̃8 amplitude dominatesB→pK decays,
as seems likely. Thus, values of order 1 forA, D, andF are
expected. We shall consider a range of values for these qu
tities, subject only to constraints on the lower and upp
limits for S. As we shall see in Sec. III D, whend can be
neglected, this works out to a rule of thumb thatT 21P̃82'2.

The detection ofB1→p1K0 or B2→p2K̄0 in practice
will utilize the channelsB6→p6KS ,KS→p1p2, with a
corresponding loss in efficiency of a factor of 3. We sha
take this factor into account in estimating statistical errors
F.

The remaining quantitiesB, C, andE are harder to antici-
pate. The Schwarz inequality limits the value ofuCu to be
less than or equal toA. In practice we find values ofuCu
larger than 2 to be very unlikely. Thus, we shall consid
values subject to this restriction. BothB andE will vanish if
d50. While a recent calculation@28# based on perturbative
QCD @25# suggests thatdT'0, dP'9.5°, d'29.5°, the pos-
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sibility of nonperturbative effects~such as strong final-state
interactions differing in channels of different isospin! cannot
be excluded. Thus, we shall consider the representative
uesd50, 5.7°, 36.9°, 84.3°, 95.7°, 143.1°, 174.3°. We ta
only non-negative values since the error estimates are
affected by sign changes ind. The nonzero values will be
discussed in Sec. IV.

C. Constraints on the anglesa and g

Recent analyses of constraints on the CKM paramet
include those in@29,30#. We shall visualize the allowed
ranges ofa andg in order to choose illustrative sets of pa
rameters.

We begin with the Wolfenstein parametrization@31# of
CKM elements:

Vcb5Al2, Vub5Al3~r2 ih!, Vtd5Al3~12r2 ih!,
~12!

as well as others not quoted explicitly, wherel50.22. We
shall assume@30# Vcb50.03860.003. ~A slightly higher
value is quoted in @32#.! The measurement @30#
uVub/Vcbu50.0860.02 based on charmlessB decays implies
~r21h2!1/250.3660.09. The measurement ofB02B̄0 mixing
implies @32# uVtdu50.00960.003, which we shall interpret as
implying u12r2ih u51.060.3. The requirement that the
imaginary part of theK0-K̄0 mixing amplitude due to CKM
phases be responsible for the observedCP violation in the
kaon system implies a hyperbola@30# h~12r10.35!50.48
60.20, where the 12r term in parentheses refers to the co
tribution of the top quark loop, while 0.35 refers to th
charmed quark’s contribution.

The allowed region in~r, h! is shown in Fig. 1~a!; the
corresponding range of~a, g! is depicted in Fig. 1~b! by a
rather narrow band. The strong anticorrelation betweena
and g is a function of the limited range ofb5p2a2g,
which is restricted to 6.6°<b<27° for the present set of
parameters@30#. The band would not be quite so narro
using the parameters of one other analysis@29#.

Three representative points, noted on the figure, are
scribed in Table I. These correspond to extreme and cen
values ofa andg. A number of illustrative examples will be
presented for these points.

Also shown on Fig. 1~b! is a linear least-squares fit to th
pointsp1, p2, andp3: g5175°21.16a. Almost equally good
is the approximate relation

g5180°21.2a, ~13!

which we shall use in Sec. III A to simplify relations be
tweenpp andpK rates.

D. Limitation associated with size ofd

Relation~10! can be written as

E

B
52

f K
f p

P̃8

P8
. ~14!

We wish to evaluate the ratioP̃8/P8 to better than 30%
@the anticipated magnitude of SU~3! breaking#. In this sub-
section we estimate the number ofp1p2 events~and, corre-
val-
ke
not

ers

-

n-
e

w

de-
tral

e

-

spondingly, the size of the other data samples! needed in
order to measureB andE @see expressions~7! and~8!# to the
required accuracy.

Define the number of events averaged between part
and antiparticle decays:

N~B0→p1p2!1N~B̄0→p1p2!

2
[Npp ,

N~B0→p2K1!1N~B̄0→p1K2!

2
[NpK . ~15!

With equal branching ratios forp1p2 and p6K7, the
present data sample would consist of about 10 events e
for Npp andNpK @27#. The errors onA andB both scale as
Npp
1/2 , while those onD and E scale asN pK

1/2. Then in the
samples of events used to measureA, B, D, andE, we ex-
pect

FIG. 1. Allowed ranges of CKM parameters~bounded by solid
lines!. The pointsp1, p2, andp3 are described in Table I.~a! ~r,h!
plane;~b! as function of anglesa andg of the unitarity triangle. A
linear least-squares fit top1, p2, andp3 yieldsg5175°21.16a, as
shown by the dashed straight line in~b!; its map into the~r,h! plane
is the dashed curve in~a!.

TABLE I. Representative points in the~r,h! plane and corre-
sponding angles of the unitarity triangle.

Point r h
a

~deg!
b

~deg!
g

~deg! r t

p1 20.30 0.15 20.0 6.6 153.3 3.36
p2 0 0.35 70.7 19.3 90.0 4.16
p3 0.36 0.27 120.3 22.9 36.9 6.35
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dNA.dNB.Npp
1/2 , dND.dNE.NpK

1/2 . ~16!

We take as illustrative parametersT5P̃85P851, neglect-
ing SU~3! breaking in the ratioP̃8/P8. Recalling the expres-
sions forB andE, we expect the numbers of events in th
samples corresponding to these quantities to be

NB522Nppr u sind sin g, NE52NpKr̃ usind sin g,
~17!

where we have used Eq.~9!. Consequently, the fractiona
errors onNB andNE are

udNBu
uNBu

.
1

2Npp
1/2r uusind singu

, ~18!

udNEu
uNEu

.
1

2Npp
1/2 r̃ uusind singu

. ~19!

Thus the fractional error on the quotientNB/NE is the sum in
quadrature of these two errors:

ud~NB /NE!u
u~NB /NE!u

5
1

2Npp
1/2r uusind singu S 11

f p
2

f K
2 D 1/2. ~20!

Demanding that this error be less than 30% as noted ab
and substituting the values of the constants, we find

Npp>
91

sin2d sin2g
. ~21!

This gives an idea of the data samples required to impro
upon the assumption of no more than 30% SU~3! breaking in
penguin amplitudes. More detailed estimates are postpo
until Sec. IV. Meanwhile, we examine the special case
which the strong phase-shift differenced vanishes.

III. VANISHING STRONG PHASE-SHIFT DIFFERENCE

Both thepp parameterB and thepK rate asymmetry
parameterE vanish when the strong phase-shift differenced
is zero. In that case, however, one can no longer use rela
~10! to determine the ratioP̃/P. One has four observables~A,
C, D, andF! to determine five parameters~e.g.,T, P, a, P̃8,
andg!. One must make additional assumptions to obtain
lutions. In this section we explore several such possibiliti

A. Simplified observables withd50

Whend50, Eqs.~7! and ~8! for A, C, andD become

A5T 21P 222T_P cosa,

C52T 2 sin~2a!12T_P sina,

D5~ r̃ uT!21P̃8222r̃ uT_P̃8cosg. ~22!

A simple relation follows from eliminatingP between the
first two of these equations:

~C/A!254z~12z!,

where
e

l

ove

ve

ned
in

tion

so-
es.

z[T 2 sin2a/A. ~23!

The Schwarz inequality bounduC/Au<1 mentioned earlier is
manifest here.

B. Linear relation between g and a

A considerable simplification useful for anticipating the
precision in determininga andg is obtained by noting thata
andg are rather tightly correlated with one another@see Fig.
1~b!# as a result of the restricted range ofb. As mentioned,
the dependence can be approximated by a straight line. If
are concerned mainly with learning the sign ofr and are not
so concerned about the exact magnitude of~r21h2!1/2, we
can substitute forg in expression~22! for D, having already
substitutedF5P82, and thus each measurement ofD implies
a relation betweenT anda.

An even greater simplification can be obtained if we ne
glect the term quadratic inT in D, and eliminateT, P, and
P̃8 from the remaining equations involvingA, C, D, andF.
With the approximate formula~13! one has

cos~1.2a!

sina
52.6

D2F

AF
1

AA6AA22C2
. ~24!

The sign ambiguity stems from the fact that the equation f
T sina has two solutions. We can anticipate that the solutio
with T 2'A is the most likely, as long asP is relatively small
compared toT, as generally anticipated. Since

~T sina!25
A6AA22C2

2
, ~25!

and sinceuCu tends to be small when sina is near 1~as for
the point p2!, we anticipate that in that case we shoul
choose the positive sign in the square root, and the argum
of the overall square root in the denominator of the last fra
tion in Eq. ~24! is about 2A. On the other hand, whenuCu is
fairly large ~e.g., for pointsp1 and p3!, the sign does not
matter much, and the argument of the overall square root
aboutA.

For 100p1p2 and 100p6K7 events, the errors inA and
D are about 10%. Assuming that theuP8u contribution is
dominant inD, the error onF will then be about 17%~be-
cause of the branching ratio of neutral kaons top1p2!. One
then finds an error of about 0.55 in the right-hand side of E
~24! whena is near the middle of its range, and about 0.7
whena is near its lower or upper bounds. In Fig. 2~a! we
plot the left-hand side of this equation, along with plotte
points for a520° ~p1!, 71° ~p2!, and 120°~p3!, with the
errors in cos~1.2a!/sina of 6~0.78, 0.55, 0.78!, respectively.
The allowed region in~a,g! is shown in Fig. 2~b! along with
the line corresponding tog5180°21.2a. The arrows desig-
nate values ofa corresponding top1, p2, andp3.

Whena is close to the center of its range, a sample ofB
decays corresponding to 100 events in each of thep1p2 and
p6K7 channels allows one to narrow the allowed region o
a by roughly a factor of 2. For the lowest or highest allowe
values ofa one does somewhat better. For more precis
estimates, one would retain theuTu2 term inD whena.90°,
and would be more precise about the error onC.
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Let us for the moment neglect the small correction term
expression~7! for C. Then since sin 2a can take on the same
value for two values ofa equally above and belowp/4, there
is a discrete ambiguity associated with negative values ofC
and values ofa,p/2. This ambiguity is likely to persist
when we include the correction term. However, the additio
of pK decay information appears capable of resolving th
ambiguity, since it provides additional information on th
angle g which is highly correlated witha. For values of
a.p/2 and positiveC only one solution~that for a,3p/4!
appears to be in the physical region, so we do not get
same sort of discrete ambiguity.

C. SU„3… assumption for penguin amplitudes

Whend50, as mentioned we are missing information o
P̃8/P8. In the previous subsection we supplied this inform
tion by assuming a functional relation betweena andg. In
the present subsection, we no longer assume such a rela
but simply assume this ratio to equal unity.~It was assumed
to equal f K/ f p'1.2 in @10,26#.! Under this assumption, we
may drop the tilde symbols onP̃8 in Eqs.~22!. We may then
plot contours of observables in the plane ofT[uTu vs
P8[uP8u for various regions in the allowed parameter spac

Contours of fixedA are mainly sensitive toT, while those
of fixedD depend mainly onP8. The slopes of the contours
reflect the presence of constructive or destructive interf
ence betweenT andP8, depending on the signs of cosa and

FIG. 2. ~a! The function cos~1.2a!/sina as a function ofa, and
errors on a expected for a sample corresponding to 100B0

or B̄0→p1p2 decays. The three points, from left to right, corre
spond top1, p2, andp3 of Table I, andd50 is assumed.~b! Cor-
responding regions in thea-g plane.
in
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cosg. Because of the strong anticorrelation betweena andg
shown in Fig. 1, the contours ofA andD are nearly perpen-
dicular to one another for each of the three illustrated case
This means that for each pair~a,g!, a measurement ofA and
D selects a point in the~T,P8! plane with comparable errors
on T andP8 if the values and errors ofA andD are compa-
rable to one another.

A measurement ofF5uP8u2 ~thep1K0 or p2K̄0 branching
ratio, in units of 1025! must be consistent with the determi-
nation just made. Thus, a one-dimensional allowed set
points ~a,g! is chosen by the combined measurements ofA,
D, andF. The degree to which this choice is unique depend
on being able to observe the effect ofT2P8 interference in
the measurement ofD, since in the absence of the contribu-
tion from T one would haveD5F. That is, the average
p6K7 andp1K0 ~or p2K̄0! rates would be the same in the
absence of theT contribution to thep6K7 mode.

Once one has selected values ofT and P8 for a one-
dimensional set of points in the~a,g! plane, the value ofC
can be used to distinguish among those points. Positive v
ues of C tend to be associated with negative values o
sin~2a! and hence with values ofa greater than 90°. Such
values correspond to~r,h! values lying inside a circle of
radius 1/2 with center atr51/2,h50. These parameters cor-
respond to roughly the right-hand one-third of the allowe
regions in Figs. 1~a! and 1~b!. The parameter spaces of Fig. 1
are much more sensitive to positive values ofC than to nega-
tive values. We shall see such behavior again when we com
to discuss a further simplification in the next subsection.

D. Information without p/K separation

The fact that the contours ofA andD are nearly perpen-
dicular to one another and have similar spacings inT andP8,
respectively, suggests that contours of

S5A1D5~11 r̃ u
2!T 21~11r t

22!P8222T_P8~r t
21cosa

1 r̃ ucosg! ~26!

may not depend very much on which set of allowed~a,g!
one chooses.

This expectation is borne out in Fig. 3. The observatio
thatS is roughly independent of~a,g! follows from the an-
ticorrelation of cosa and cosg. The sum of the averageB0

and B̄0 branching ratios top1p2 and p6K7 leads to an
approximate constraint onT 21P82 roughly independent of
CKM parameters within the allowed range. This is fortunate
since the CLEO Collaboration@27# measures precisely this
sum, with only weak distinction at present between pion
and kaons.~Improved particle identification at CLEO is fore-
seen in the future.! One may expect a similar measurement in
some hadron collider experiments, such as the Collider D
tector at Fermilab~CDF!, unless specific steps are taken fo
particle identification.

A combined measurement ofT 21P82 and F5P82 now
can be used to determine each parameter. The determinat
of a andg is now more simple-minded, albeit less precise
than in the previous section. Since our determination ofT
andP8 is now independent ofa and g, we can use these
parameters in Eq.~22! for C to plot contours of fixedC in
the ~a,g! plane.~The variation withg springs from the fact

-
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FIG. 3. Contours in the
uTu-uP8u plane of fixedS5A1D
~sum of averagep1p2 andp6K7

branching ratio in units of 1025!,
for d50. Dotted curves:S50.2.
Other curves, outward from ori-
gin: S51,2,3,4.
-

that r ur t5sina/sing, as mentioned previously.! An example
of such a contour is plotted in Fig. 4 for the representati
valuesT5P851.1. One sees a fair amount of uncertainty fo
values ofC near20.7, where the contour intersects the a
lowed ~a,g! region in a wide range of points. This behavio
is related to the discrete ambiguity noted at the end of S
III B. However, contours of positiveC cut the allowed re-
gion at a larger angle and lead to a more highly constrain
solution.

The measurement ofC in the absence of particle identifi-
cation is possible since one is following the time dependen
of a decay rate in which one compares the decays of sta
which were initially B0 and B̄0 to a combination of final

FIG. 4. Contours of fixedC for uTu5uP8u51.1 as functions ofa
andg, for d50. Only those branches intersecting the allowed regio
are shown. Dotted curve:C520.7; dashed hyperbola:C520.5;
solid curves, from left to right:C50, 1; dashed ellipse:C51.5.
ve
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states. The oscillations from whichC is to be extracted are
expected to stem only from thep1p2 final state.

The imposition of particle identification returns one to the
situation of the previous section. As mentioned, to make ef-
ficient use of the information thus provided, one must be able
to see the difference betweenD, where there is a smallT
contribution, andF, where there is none.

E. Results of a Monte Carlo simulation

We have explored numerically the case ofd50, P̃85P8
using a Monte Carlo program which generates events with a
statistical spread in the variablesA, C, D, andF appropriate
to data samples corresponding to a total ofM decays ofB0

or B̄0 to p1p2. Scaling other quantities to the expected
p1p2 rates, and recalling the discussion of Sec. II D, we
then assume

dA5dC5dD5dF/)51/AM . ~27!

ForM5100, 1000, 10 000 we then ask how wella andg can
be determined. Numerically this is accomplished by stepping
a and g through a range of values, accepting any solution
which is within 2s of the generated value for each parameter
A,C,D,F, and averaging all such solutions. To allow for the
possibility of multiple solutions, a cluster algorithm~de-
scribed in the Appendix! is applied. We also restrict
10°<a<130°, 20°<g<170°, and ug2~175°21.16a!u<30°
in accord with the allowed regions in Fig. 1. The results are
shown in Fig. 5.

One sees a noticeable improvement with increased statis
tics. A clear distinction between the cases~p1 or p2! andp3
is already possible withM5100. Satisfactory results for all
three points are obtained forM51000. The small ambiguity
for p1 appears to be related to the multiple intersections of
the contours for negativeC ~Fig. 4! with the allowed region
of parameter space. Errors are reduced further whenM is
increased to 10 000.

n
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IV. ERROR ANALYSIS
FOR GENERAL FINAL-STATE PHASES

In @14# we estimated the statistical accuracy of determ
ing the weak phasesa andg using the present method to b
at a level of 10%, given around 100 events in each chan
The theoretical uncertainty of the method is at a simi
level, involving the following corrections all of which are o
order a few percent: A correction from an electroweak pe
guin amplitude inB1→p1K0, corrections due tou and c
quarks in theB0→p1p2 penguin amplitude, second-orde
SU~3! breaking in the magnitudes of weak amplitudes, fir
order SU~3! breaking in the~small! strong phase of the pen
guin amplitude, andO( f B/mB) annihilation amplitudes. In
this subsection we analyze in more detail the precision oa
andg that can be attained with a given sample of events a
function of the parameters. We use a Monte Carlo progr
similar to that described in Sec. III E to generate events w
a given Gaussian distribution in the parametersA–F appro-
priate to a total sample corresponding toM p1p2 decays.
We chooseT51 andP̃85P851 for the purpose of generat
ing events. In addition to the errors assumed in Eq.~27!, we
assume

dB5dE51/AM . ~28!

The results are shown in Fig. 6.
The method clearly improves with increased statistics,

a manner roughly compatible with our estimate~21!. Despite
the presence of a large spread in values ofa andg, one can
already distinguish the casep3 from the casesp1 andp2 for
M5100. The distinction betweenp1 and p2 appears to
emerge by the time one reachesM51000. On the other
hand, one sees the distinct appearance of clusters of po
corresponding to the presence of discrete ambiguities. Th
ambiguities are to be distinguished from the one mention
at the end of Sec. III B, and appear to be related to unc

FIG. 5. Scatter plots in thea-g plane of 100 events generate
according to errors appropriate to samples ofM5100, 1000, 10 000
events for the pointsp1, p2, p3 of Table I, ford50. Here thea and
g axes are plotted in degrees.
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tainties in the value of the final-state phase. Their nature
best ascertained by referring to the caseM510 000. One can
detect up to three clusters of solutions. For example, in th
case of input parameters in the vicinity ofp1, a final-state
phased'90° turns out to be ambiguous with two other cases
one withd ,90° and the other withd .90°, as one sees by
referring to the corresponding plots ofa vs d shown in Fig.
7. For input parameters nearp2, the more serious ambigu-
ities appear to occur for moderate or small values ofd. For
input parameters nearp3, uncertainties present forM5100
andM51000 appear to have largely disappeared by the tim
M reaches 10 000. This behavior may be related to th
uniqueness of the solution provided by large positiveC for
points nearp3 in Fig. 4, but also points to the absence o
ambiguities associated with the value ofd.

The discrete ambiguities mentioned previously are quit
noticeable in Fig. 7; in addition, ford near 180°, even the
largest value ofM does not lead to solutions in which that
value is uniquely determined.

Note added.Numerical exact solutions have recently been
generated for the cases considered here@33#. One chooses a
set of input values ofa, g, andd, along with a representative
set of amplitudesT, P, P̃8 as in the Monte Carlo estimates,
and calculates the quantitiesA–F. Using these, one then
solves back fora, g, andd. For some sets of the input values,
as many as eight solutions were found. However, most
these can be excluded because the values ofa andg lie well
outside of the region allowed in Fig. 1~b!. All the correct
solutions are obtained as expected, sometimes more th
once. The remaining spurious ones, which show up as clu
ters in Figs. 6~c! and 7~c!, are summarized in Table II. Many
of these solutions involve the interchangeg ↔d, which is a
symmetry of the quantitiesD andE. Of course,a changes
under this replacement.

V. CONCLUSIONS

To summarize, we have shown that measurements of t
rates forB decays to modes involving charged pions an
kaons in the final states can determine the shape of the u
tary triangle, even in the absence of theoretical or experime
tal information about final-state phases. The full set of mea
surements involves the detection of the time-dependent ra
for B0 and B̄0→p1p2, and the rates forB0→p2K1,
B̄0→p1K2, and B6→Ksp

6. A rate asymmetry between
B0→p2K1 andB̄0→p1K2 is needed in order to perform a
solution for all necessary parameters. In the absence of th
asymmetry, one can obtain partial information by noting th
tight correlation between the anglesa andg of the unitarity
triangle, or by assuming an SU~3! relation between
strangeness-changing and strangeness-preserving peng
amplitudes. One can even dispense with particle identific
tion, summingp1p2 andp6K7 modes, if only crude con-
straints on parameters are desired. As a result of the stro
anticorrelation betweena and g in the physically allowed
region of parameter space, thepK modes are particularly
helpful in resolving a discrete ambiguity associated with th
behavior of the function sin2a which would be present if one
studiedpp modes alone.

In the simplest case examined, where the assumption
d50 and the strong correlation betweena andg in the al-

d
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FIG. 6. Scatter plots in thea-g plane for non-
zero input values ofd ~labels above columns! for
the pointsp1, p2, p3 of Table I ~labels to left of
rows!. Here 0°<~a,g!<180°. ~a! M5100; ~b!
M51000; ~c! M510 000.
-
d

ent
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lowed parameter space were utilized, we found that a sam
of events corresponding to 100p1p2 and 100p6K7 events,
with a correspondingly reduced number of detecte
B6→KSp

6 decays, was sufficient to reduce the allowed r
gion in parameter space by roughly a factor of two, depen
ing on the values of the CKM angles.

In the more general case in whichd'0 but no relation
betweena andg was assumed, we found that by assumin
SU~3! symmetry for penguin amplitudes we could obtai
unique solutions fora andg, with some possibility of dis-
crete ambiguity whena is small andg is large~correspond-
ple

d
e-
d-

g
n

ing to r,0 in the language of the Wolfenstein parametriza
tion!. Even when a distinction between charged pions an
charged kaons is not possible~Sec. III D!, partial information
on the parameters can be obtained, since the time-depend
effects are expected to be confined to thep1p2 channel and
thus a measurement of the parameterC ~defined in Sec. II! is
still possible.

In the most general case of nonzero final-state phase d
ferencesd we find that the program described here require
approximately 102/~sin2 d sin2 g! decays of neutralB’s to
charged pions~and a similar number ofpK events! in order
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FIG. 7. Scatter plots in thea-d plane for non-
zero input values ofd ~labels above columns! for
the pointsp1, p2, p3 of Table I ~labels to left of
rows!. Here 0°<a<180°; 2180°<d<180°. ~a!
M5100; ~b! M51000; ~c! M510 000.
s,
in
s
-
e
g

to free oneself from assumptions of SU~3! breaking at the
30% level in penguin amplitudes. A Monte Carlo program
has shown that one begins to get useful information with 1
such decays~to be compared with about 10 in the prese
data sample!. The full power of the method becomes appa
ent as the sample exceeds 1000 and approaches 10 000.
under such circumstances, a discrete ambiguity remains
sociated with the size of final-state phases. Arguments ex
nal to those presented here@such as the allowed regions in
the ~a,g! parameter space, the expected magnitude of SU~3!
breaking, and the expected size of final-state phases# may be
00
nt
r-
Even
as-
ter-

necessary to resolve such ambiguities.

ACKNOWLEDGMENTS

We thank J. Bjorken, F. De Jongh, H. Lipkin, D. London,
H. Quinn, P. Sphicas, and S. Stone for fruitful discussion
and the CERN Theory Group for a congenial atmosphere
which part of this collaboration was carried out. A.D. wishe
to thank G. Harris for valuable advice on Monte Carlo meth
ods. M.G. and J.L.R. wish to acknowledge the respectiv
hospitalities of the SLAC and Fermilab theory groups durin



94-
h-
er

rt
of
at

ad

is

ts
lu-

re

54 3319WEAK PHASES FROMB DECAYS TO KAONS AND . . .
parts of this investigation, and J.L.R. thanks the Physics D
partment of the Technion for its hospitality. This work wa
supported in part by the United States—Israel Bination

TABLE II. Output values of weak and strong phases, for give
values of input weak and strong phases, in degrees. Only spuri
solutions visible in the plots of Figs. 6~c! and 7~c! are shown.

ain gin din aout gout dout Notes
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92.5 88.8 140.6 c

95.7 69.2 80.2 89.1
69.5 98.9 90.8 a

65.8 88.0 74.2
143.1 31.1 145.4 91.1 a
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120.3 36.9 5.7 135.7 34.0 6.5
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APPENDIX: DETAILS OF CLUSTER ALGORITHM

Given a set of values forA, B, C, D, E, andF, the values
of a, g andd are not necessarily determined uniquely. Apa
from the ambiguities associated with the numerical nature
the algorithm, there can also be discrete ambiguities. In th
case the set of triplets~a,g,d ! consistent with all the ob-
served quantities will form clusters in the~a,g,d ! space, for
any given set ofA,B,C,D,E,F. The number of clusters cor-
responds to the number of discrete solutions and the spre
within a cluster corresponds to the~numerical! error on that
particular point. The average of all points in each cluster
taken to be thecentral valuefor that cluster and is plotted in
Figs. 5, 6, and 7 as a single point. The number of poin
plotted for each data set is thus the number of discrete so
tions for that data set.

The ambiguities associated with the numerical nature a
expected to becontinuous; i.e., for any pointi to belong to a
cluster, there should be at least one pointj in the cluster such
that ua i2a j u<Da, whereDa is the least countin a in the
numerical algorithm. Two pointsi and j belonging to differ-
ent clusters will fail to satisfy this condition. Different clus-
ters can thus be separated from each other.
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