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ABSTRACT

The complete spectrum of states in the supersymmetric principal chiral model based

on SU(n) is conjectured, and an exact factorizable S-matrix is proposed to describe scat-

tering amongst these states. The SU(n)L×SU(n)R symmetry of the lagrangian is manifest

in the S-matrix construction. The supersymmetries, on the other hand, are incorporated

in the guise of spin-1/2 charges acting on a set of RSOS kinks associated with su(n) at

level n. To test the proposed S-matrix, calculations of the change in the ground-state

energy in the presence of a coupling to a background charge are carried out. The results

derived from the lagrangian using perturbation theory and from the S-matrix using the

TBA are found to be in complete agreement for a variety of background charges which

pick out, in turn, the highest weight states in each of the fundamental representations of

SU(n). In particular, these methods rule out the possibility of additional CDD factors in

the S-matrix. Comparison of the expressions found for the free-energy also yields an exact

result for the mass-gap in these models: m/ΛMS = (n/π) sin(π/n).
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1. Introduction

Sigma-models in two dimensions have played an important rôle in helping us improve

our understanding of quantum field theory; in particular, they have provided illuminating

examples of integrable yet highly non-trivial quantum systems in which one can investigate

non-perturbative phenomena in an explicit way. It seems that a sigma-model based on a

Riemannian symmetric space G/H (withG andH compact Lie groups) is always classically

integrable, but that integrability may be spoiled by anomalies at the quantum level unless

H is simple (see [1] and references given there). A prominent subset of the class of quantum-

integrable sigma-models consists of the principal chiral models (PCMs). The target space

for a PCM is some simple, compact Lie group, G—which can of course be regarded as a

symmetric space G×G/G—so the basic field in the theory is a G-valued function U(x, t)

on Minkowski space. The lagrangian governing its behaviour is

L =
1

g
Tr
(
∂µU

−1∂µU
)
, (1.1)

where g is a dimensionless coupling, and the theory is clearly invariant under a global

symmetry group GL × GR which acts by left and right multiplication: U → gLUg
−1
R for

any gL and gR in G.

In four dimensions, lagrangians such as (1.1) have been studied for many years: they

are non-renormalizable but they are nevertheless useful in phenomenological, low-energy

descriptions of strong interactions in which the chiral symmetry GL×GR is spontaneously

broken to a diagonal flavour subgroup G. In two dimensions—which is the case of inter-

est here—such lagrangians are, by contrast, renormalizable, and spontaneous symmetry

breaking is not allowed on general grounds [2]. Furthermore, since these two-dimensional

models are integrable in the sense that they possess infinitely many conserved charges,

their S-matrices must factorize, and by enforcing this powerful constraint in conjunction

with the usual axioms of S-matrix theory, along with the existence of the unbroken GL×GR

symmetry, one can hope to determine the exact expressions for all scattering amplitudes.

For the cases where G is a classical Lie group, such S-matrices were conjectured

some time ago [3,4]. The spectrum is postulated to consist of particles transforming in

representations (R, R̄) of GL × GR, where R is some (possibly reducible) representation

of G. In the case G = SU(n) there are a total of (n−1) multiplets of particles, each

associated with the fundamental representations R = Ra of G with a = 1, . . . , n−1 and

with corresponding masses given by

ma = m
sin(πa/n)

sin(π/n)
, a = 1, 2, . . . , n− 1, (1.2)
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where m is the mass of the lightest state.4 Quite recently these S-matrices have been

subjected to a highly stringent test involving the Thermodynamic Bethe Ansatz (TBA)—

see [5] for the SU(n) case, and [6] for the other classical groups—using a technique which

was first applied to the O(N) sigma model [7,8] (see also [9,10,11,12]) based on ideas

developed in [13,14]. This work showed that the proposed S-matrices for the PCMs are

correct as they stand, without the addition of CDD factors, a potential ambiguity which

was never resolved in the original papers. The calculations which were performed to test

the S-matrices also led, as a by-product, to an exact formula for the mass gaps of these

models, and the results have since been confirmed by lattice simulations in various cases

[15,16].

Our aim in this paper is to extend the rather satisfying picture of the bosonic principal

chiral models sketched above to include their supersymmetric versions, at least when the

group is G = SU(n). When fermions are coupled to bosonic sigma-models in special ways—

either minimally or supersymmetrically—integrability can be maintained at the quantum

level, or even re-instated if it was originally broken through quantum effects in the bosonic

theory [17].5 This is one major motivation for studying supersymmetric integrable theories.

Another point, of more direct relevance to the work we shall describe here, is that even

if the original bosonic theory is quantum integrable, the addition of fermions can produce

dramatic changes, including a radical alteration of the spectrum. Thus, one finds that

typically a supersymmetric model involves something ‘genuinely new’, beyond the mere

addition of superpartners for each of the original bosonic states. The original bosonic

states may even disappear completely in some cases. We shall see below that it is just

this kind of radical alteration in the spectrum which is needed in order to understand the

supersymmetric SU(n) PCM.

It is not difficult to construct a supersymmetric counterpart of the bosonic lagrangian

(1.1) for a general group G, although there are a number of slightly different ways to write

the end result. We choose to supplement the original bosonic, G-valued field U with a

Majorana fermion ψ taking values in the Lie algebra of G and we take as the lagrangian6

L =
1

g
Tr
(
∂µU

−1∂µU − iψ̄γµ( ∂µψ + 1
2 [U−1∂µU, ψ] )− 1

16{ψ̄, γ5ψ}{ψ̄, γ5ψ}
)

(1.3)

(Our conventions for spinors in two dimensions are those of [18].) Note that the anti-

commutators appearing in the fermion interaction terms are elements of the Lie algebra

because of the Grassmann nature of the fermion fields. This model is supersymmetric,

and, like its bosonic counterpart, it has a global chiral symmetry group GL ×GR. In the

4 We use the obvious labelling for the fundamental representations, agreeing with [4], so R1 is
the ‘defining’ representation (n) and Rn−1 is its complex conjugate (n̄).

5 An example of the latter phenomenon occurs for the sigma models on CP
n−1, or

SU(n)/SU(n − 1)×U(1).
6 This can be derived in a number of ways; perhaps the most straightforward is to consider

the obvious modification of (1.1) in superspace and then to integrate out the auxiliary fields
to arrive at the expression above.
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way we have chosen to write the lagrangian, a general element (gL, gR) in GL × GR acts

according to

U → gLUg
−1
R , ψ → gRψg

−1
R (1.4)

which clearly leaves the theory invariant. It may seem strange at first that the fermions

transform only under GR, but this is just a matter of convention; there is an equivalent way

of writing the theory in which the fermions transform only under GL, these formulations

being related by a redefinition of ψ by conjugation with U .7

¿From now on we shall specialize to the case G = SU(n). In the next section we

shall construct an S-matrix which we claim describes the scattering of particles in this

theory, based on a certain assumption about the spectrum. We shall afterwards subject

this S-matrix—and hence also our assumption about the spectrum—to the same stringent

test involving the TBA that has already been successfully carried out in the bosonic case.

In this way we shall be able to show that in this model too, there are no allowed CDD

ambiguities in the S-matrix, and we shall be able to extract an exact expression for the

mass-gap. Before embarking on the detailed technical aspects of the construction of the

S-matrix and its verification, some discussion is in order about what the spectrum of the

theory defined by (1.3) is likely to be.

To get some idea of how to proceed it is useful to recall the relationship of PCMs

(whether bosonic or supersymmetric) to some other well-known integrable sigma-models,

particularly those with O(N) symmetry for which the target spaces are the spheres SN−1

with their standard round metrics. Notice that the first non-trivial member of this series is

the O(3) model, which has an alternative description as a sigma-model with target space

CP 1, reflecting the relationship between O(3) and SU(2) (the latter group acting naturally

as the symmetry group of complex projective space). The next member of the sequence is

the O(4) model, which is nothing but a re-writing of the SU(2) PCM, again reflecting the

usual homomorphism from SU(2) × SU(2) to SO(4).

The bosonic O(N) model has a very simple spectrum consisting of a single degenerate

multiplet of particles transforming in the vector representation of the group, and the S-

matrix for these states was found for N ≥ 3 in the original work of [19]. The super O(N)

model, on the other hand, was considered in [20,21] and was found to have a much richer

spectrum with additional particles transforming in each of the anti-symmetric tensor rep-

resentations of O(N). Witten and Shankar determined the S-matrix for the supermultiplet

transforming in the vector representation of O(N) when N > 4, but they found no consis-

tent solution for the cases N = 3, 4. The explanation which they proposed was based on

the suggestion that the super O(N) model should actually contain yet more particles: in

fact it is not difficult to see that the theory contains additional kink-like states, transform-

ing in the spinor representations of O(N), which arise just as in the Gross-Neveu model

[22] (the Gross-Neveu model is, after all, the fermionic sector of the super O(N) theory).

7 From the superspace point of view this ambiguity corresponds to a choice in how one defines
the component fields of a given group-valued superfield.
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The particles in the vector or tensor representations can be regarded as bound states of

these kinks, and it is now natural to suppose that in the particular cases with symmetry

O(3) and O(4) the bound states simply disappear, leaving only the kinks in the spectrum

(just as the ‘elementary’ particles in the sine-Gordon spectrum disappear for sufficiently

large coupling, leaving only the solitons). The S-matrix for the kinks is related to the

S-matrix of the kinks of the supersymmetric sine-Gordon model [23,24,25] (see also [26]).

For N = 3, this picture is confirmed by the equivalence with the CP 1 model, in which the

only states transform as doublets of SU(2), ie. spinors of O(3). For N = 4 we are led to

conclude that the only states of the SU(2) PCM should transform as spinors of O(4), or

in other words as representations (1/2,0) and (0,1/2) of SU(2)×SU(2).

This picture of the super O(N) model advanced by Witten and Shankar suggests

a natural conjecture concerning the spectrum of the super SU(n) PCMs, based on the

coincidence of these theories for N = 4 and n = 2. Thus, for general n, we may expect

to find states in the super SU(n) PCM transforming in the representations (Ra, 1) and

(1, Ra) of SU(n)×SU(n) (where 1 denotes the trivial representation) rather than in the

‘diagonal’ representations (Ra, R̄a) found in the bosonic theory. In the bosonic PCM we

can regard as ‘fundamental’ the states transforming in a representation (R1, R̄1), since

all other S-matrix elements can be deduced from these via the bootstrap equations. In

the supersymmetric theory, we can regard as similarly fundamental the kink degrees-of-

freedom transforming in representations (R1, 1) and (1, R1), from which all other S-matrix

elements are determined. Despite the different representations of the global symmetry

group which appear in the bosonic and supersymmetric cases, we shall see that the mass

relations (1.2) are unchanged.

In addition to suggesting the foregoing conjecture for the spectrum, the coincidence

of the O(4) model and the SU(2) PCM also gives important insight into the way in which

supersymmetry enters the construction. A closer examination of the S-matrix for the

spinor particles in the O(4) model [26] shows that the supersymmetric part is identical

to the soliton S-matrix in the supersymmetric sine-Gordon theory [25] at a particular

choice of the coupling where the scattering is reflectionless. This S-matrix is well-known

to be related to an affine SU(2) quantum group symmetry with deformation parameter q a

root of unity corresponding to level 2 [23]. The supersymmetry acts on the kink-quantum

numbers in a rather involved way that is intimately related to the quantum group structure,

as discussed in [27]. For the SU(n) PCM it is sensible to try to implement supersymmetry

in an analogous way, by association with an affine SU(n) quantum group with q a root

of unity corresponding to level n. We shall have a number of comments to make below

regarding various subtleties involved in this construction.
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2. The exact S-matrix

In this section we recall some general ideas which are useful in the construction of

exact S-matrices. After setting up a certain amount of technology we will be able to give a

succinct statement of our conjecture for the S-matrix of the supersymmetric SU(n) PCM.

The main idea in the approach we shall follow here is the notion of an S-matrix ‘block’

which is invariant under the action of a quantum group related to SU(n).8 Our S-matrix

will eventually be constructed in terms of such blocks and, along the way, we will explain

how the S-matrix for the bosonic PCM can be understood from the same point-of-view.

There are actually two kinds of blocks, one kind associated to the vertex-type realization

and another associated to the RSOS-type representations of a quantum group and we shall

need both kinds.9 The detailed construction of the blocks has been discussed at length in

the papers cited above and so we shall concentrate here on the characteristic properties of

the blocks, giving only those explicit expressions that we shall need later.

In the vertex picture, particle states transform in the fundamental representations

Ra, a = 1, . . . , n− 1, of SU(n). We denote single-particle states by vectors ξ(a)(θ) living

in the vector space Va which carries the representation Ra, where θ is the rapidity. The

corresponding blocks are matrices of the form S̃ab(θ)
N
M with M = (ξ(a), ξ(b)) and N =

(η(b),η(a)) which give the amplitude for scattering between particle states transforming

under the given representations:

S̃ab(θ)
N
M : ξ(a)(θ1) + ξ(b)(θ2) → η(b)(θ2) + η(a)(θ1), (2.1)

with θ = θ1 − θ2. The blocks enjoy the following properties. (i) They satisfy the Yang-

Baxter equation. (ii) They obey the the completeness or unitarity relation

S̃ab(θ)S̃ba(−θ) = I. (2.2)

(iii) They are crossing symmetric. (iv) They satisfy the su(n) bootstrap equations: if

Vc ⊂ Va ⊗ Vb (so c = a+ b if a+ b < n and c = a+ b− n if a+ b > n) then

S̃dc(θ) ≃ S̃da(θ − iub)S̃db(θ + iua), (2.3)

where ua = aπ/n if a + b < n and π − aπ/n if a + b > n. The equality in (2.3) holds

in the sense that the right-hand-side should be restricted to the subspace Vc ⊂ Va ⊗ Vb.

In fact we shall take the blocks to be the minimal expressions with this property, and we

8 The relation of S-matrices to quantum groups was first developed for SU(2) in [28] and later
extended to SU(n) in [29]. The extension to other algebras and to the RSOS representations
appears in [30]. A more unified approach was developed in [31].

9 This language is borrowed from integrable lattice models where the S-matrix elements play
the rôle of Boltzmann weights
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shall explain more fully below what this term means. (v) Finally, there is actually a one-

parameter family of blocks meeting all these conditions, and we can distinguish between its

members by labelling them with a certain real number λ. It turns out that these S-matrix

blocks are invariant under the action of a quantum group symmetry Uq(su(n)(1)) where

q = − exp−iπλ (2.4)

is the deformation parameter.

Let us elaborate on the last of these properties first. The quantum group Uq(su(n)(1))

is defined by a set of generators Hi and E±
i with i = 0, . . . , n−1 which obey the ‘deformed’

commutation relations

[Hi, E
±
j ] = ±aijE

±
j , [E+

i , E
−
j ] = δij

qHi − q−Hi

q − q−1
, (2.5)

where aij is the usual Cartan matrix for su(n)(1). We are interested here in the centerless

extension of the finite-dimensional quantum group Uq(su(n)), in other words, we will

always understand Uq(su(n)(1)) to mean the quantum loop group. The precise way in which

this acts as a symmetry of the S-matrix blocks is rather subtle, because it incorporates the

rapidity operator of the theory in a non-trivial way.

To explain how this works, let us begin by introducing the matrices H̃i and Ẽ±
i

i = 1, . . . , n−1 which represent the Cartan generators and simple-root step operators for

the finite-dimensional algebra Uq(su(n)) in the representation Ra. By definition, these

act on the vector space Va. Let us also introduce matrices Ẽ±
0 corresponding to the step

operators for the (non-simple) lowest root of su(n), and H̃0 = −
∑n−1

i=1 H̃i. In terms of

these matrices, the quantum loop-group generators are realized on single-particle states in

Va with definite rapidity θ by

Hi → H̃i , E±
i → e±siθẼ±

i (2.6)

with i = 0, . . . , n−1. Notice that on a fundamental representation the deformed commuta-

tion relations (2.5) reduce to those of the Lie algebra because the eigenvalues of the Hi are

only 0 or ±1. The set of real numbers si are the Lorentz spins of the symmetry generators,

and they can be viewed as a choice of (non-integral) gradation of the loop algebra. For

the vertex-type S-matrix blocks that we shall write down below, the appropriate choice for

these spins is

si = λ, i = 0, . . . , n− 1, (2.7)

so their values are fixed by the deformation parameter q. This can also be expressed by

saying that the loop algebra Uq(su(n)(1)) is realized in the principal gradation, but with

the standard loop parameter given by

t = (−q)−θ/iπ = eλθ, (2.8)
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which relates it to the rapidity and to q.

Lastly, we should note that to state precisely what is meant by a symmetry of the

S-matrix, we need to extend the action of the generators introduced above to multi-particle

states. For this we use the coproduct structure in the quantum group. Thus, the generators

extend to two-particle states according to

∆(E±
i ) = E±

i ⊗ q−Hi/2 + qHi/2 ⊗E±
i ,

∆(Hi) = Hi ⊗ 1 + 1 ⊗Hi.
(2.9)

Invariance under the quantum group means that these generators commute with the action

of the S-matrix blocks.

Having explained something of the symmetry properties of the vertex-type S-matrix

blocks, let us return to the bootstrap condition (2.3) written above. The blocks are minimal

solutions of these crucial equations in the sense that they have no poles on the physical

strip for values of the parameter in the range 0 < λ < 1/n. This means that although they

satisfy the su(n) bootstrap equations, there are no simple poles to signal dynamically that

Vc should be a bound-state of Va and Vb if Vc ⊂ Va ⊗Vb. (When we come to use the blocks

to write down physically meaningful S-matrices, the necessary poles will be incorporated

in additional scalar factors.) Nevertheless, the usual bootstrap procedure can still be used

to build up all the blocks, for any given representations, out of the elementary block S̃11(θ)

for the scattering of the n-dimensional defining representation R1 with itself. To complete

our description of the blocks for the vertex representations, let us finally give some explicit

formulas.

First of all, it is convenient to label the states by the weight vectors of the represen-

tations. In order to do this we introduce the weights ei, i = 1, . . . , n of the representation

R1, with inner products ei · ej = δij − 1/n. Now we can write down an expression for the

scattering of states

S̃11(θ)
kl
ij : ei(θ1) + ej(θ2) → ek(θ2) + el(θ1), (2.10)

by specifying the three non-zero components

S̃11(θ)
ii
ii = f(θ) sin (πλ− nλθ/2i)

S̃11(θ)
ji
ij = f(θ) sin (nλθ/2i) , i 6= j

S̃11(θ)
ij
ij = f(θ)e(2j−2i±n)λθ/2 sin (πλ) , i > j or i < j.

(2.11)

The function f(θ) is again minimal in the sense of having the least number of poles and

zeros on the physical strip—in this case none—necessary in order to ensure unitarity and

crossing symmetry. The explicit form of the function is [29]

f(θ) =
1

sin(πλ− nλθ/2i)

∞∏

j=1

Γ
(
1 + inλθ

2π + (j − 1)nλ
)

Γ
(
1 − inλθ

2π + (j − 1)nλ
)

× Γ
(

inλθ
2π + jnλ

)
Γ
(
− inλθ

2π + [(j − 1)n+ 1]λ
)
Γ
(
1 − inλθ

2π + (jn− 1)λ
)

Γ
(
− inλθ

2π
+ jnλ

)
Γ
(

inλθ
2π

+ [(j − 1)n+ 1]λ
)
Γ
(
1 + inλθ

2π
+ (jn− 1)λ

) .
(2.12)
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The information we have just given now determines all the blocks, because of the bootstrap

property. Of course the scattering matrix of the charge conjugate states, transforming as

Rn−1, can also be found by using crossing symmetry. If we introduce a basis for these

states denoted eī(θ) then we must have

S̃1,n−1(θ)
k̄l
ij̄ = S̃11(iπ − θ)lj

ki. (2.13)

It is important that the relation (2.13) is consistent with the bootstrap equations (2.3) and

also with unitarity (2.2).

We must now draw attention to some special behaviour of the quantum group sym-

metry for various values of q. For generic values, the only part of the conventional SU(n)

symmetry which survives unscathed in the quantum group is the Cartan subalgebra. But

if q2 = 1 then the quantum group invariance becomes a conventional Lie algebra invari-

ance, and then the blocks that we have introduced above are simply SU(n)-invariant. Note

in particular that the S-matrix blocks have a well-defined limit as λ → 0, which means

q → −1; this is known as the ‘rational’ limit. The Lorentz spins si of the generators

become zero in this limit, as one would expect. The resulting SU(n)-invariant blocks have

a special role to play, and we shall denote them by S̃
SU(n)
ab (θ).

The other significant special values for q occur when λ = 1/(n+k) where k is a positive

integer. In these cases it is possible to ‘restrict’ the vertex-type representations that we

have considered up till now and to pass to the so-called RSOS version of the S-matrix,

which is realized in terms of kink-like states. We now need to describe this in some detail.

We must first specify the set of ‘kink’ states on which the RSOS S-matrices act, and

this depends on the choice of the integer k. By definition, the ‘kinks’ interpolate between

‘vacua’ which are labelled by the set of integrable highest weights of the affine algebra

su(n)(1) at level k. This set of highest weights can be written explicitly as

Λ =

{
n−1∑

i=1

miei, k ≥ m1 ≥ m2 ≥ · · · ≥ mn−1 ≥ 0

}
. (2.14)

where ei are the weight vectors introduced earlier. Now the kinks also come in a number of

different ‘species’ which are labelled by the fundamental representations Ra, so we denote

them K
(a)
µν (θ). Here µ, ν ∈ Λ and the kink can be thought of as carrying a topological

charge ν−µ which is a vector of eigenvalues of the Cartan generators. The final restriction

on the allowed single-kink states is that this charge must be a weight of the representation

Ra; namely ν − µ =
∑a

p=1 eip
with all the ip’s distinct. This restriction can be expressed

in terms of the representation theory of the affine algebra su(n)(1) at level k by saying

that there is an allowed kink state K
(a)
µν (θ) whenever the irreducible module with highest

weight ν occurs in the decomposition of the tensor product between the module with

highest weight µ and the module associated to Ra. What we have said fixes the allowed

one-kink states completely. Multi-kink states are now constructed as usual in quantum

mechanics, except that there is an additional ‘adjacency’ condition which requires that

8



successive vacua must coincide. Thus, the allowed two-kink states, for example, are of the

form |K(a1)
µ1µ2

(θ1)K
(a2)
µ2µ3

(θ2)〉 and similarly for any number of kinks.

We can now introduce the idea of an S-matrix block associated to the scattering of

these RSOS kinks, just as we did previously for the vertex representations. These RSOS

blocks share many of the nice properties of the vertex blocks that we discussed earlier:

(i) They satisfy the Yang-Baxter equation; (ii) they obey the unitarity condition; (iii)

they are crossing symmetric; (iv) they obey the su(n) bootstrap equations. The bootstrap

property means that we can, if we so wish, consider only the S-matrix elements for the

kinks associated to the representation R1, since all the others may be deduced from these.

The S-matrix elements

S̃
(RSOS,k)
11 (θ; µ)kl

ij : K
(1)
µ,µ+ei

(θ1) +K
(1)
µ+ei,µ+ei+ej

(θ2)

→ K
(1)
µ,µ+ek

(θ2) +K
(1)
µ+ek,µ+ek+el

(θ1),
(2.15)

are, like those in (2.11), non-zero only if charge is conserved, i.e. ei + ej = ek + el. The

explicit expressions for the non-zero elements are

S̃
(RSOS,k)
11 (θ; µ)ii

ii = f(θ) sin (πλ− nλθ/2i)

S̃
(RSOS,k)
11 (θ; µ)ji

ij = f(θ) sin (nλθ/2i)

√
(sij(µ + ei)sij(µ + ej))

sij(µ)
, i 6= j

S̃
(RSOS,k)
11 (θ; µ)ij

ij = f(θ)

[
sin (πλ− nλθ/2i) + sin (nλθ/2i)

sij(µ + ei)

sij(µ)

]
, i 6= j

(2.16)

(compare with (2.11)) where

sij(µ) = sin (πλ(ei − ej) · (µ + ρ)) , (2.17)

and ρ =
∑n−1

j=1 (n− j)ej is the sum of the fundamental weights of su(n).

The last point to discuss, which is central to our construction, is the issue of the

symmetry properties of these RSOS blocks. We explained above that the vertex blocks are

invariant under a quantum loop group Uq(su(n)(1)) where the generators have non-trivial

Lorentz spins given by (2.7). The first step in the construction of the RSOS blocks involves

starting with the vertex S-matrix and carrying out a conjugation operation which has the

effect of changing the action of the Uq(su(n)(1)) symmetry generators so that they have

modified spins, with (2.7) replaced by

s0 = nλ, si = 0, i = 1, . . . , n−1. (2.18)

This is effectively a change to the homogeneous gradation of the loop algebra. In a loose

sense, the RSOS reduction is now achieved by ‘modding-out’ with respect to the generators

which have just been rendered spin-less by this change in gradation (more properly the

RSOS blocks appear as intertwiners of irreducible representations of the finite-dimensional
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Uq(su(n))) so there is now just one surviving conjugate pair of symmetry charges with

non-zero spin. The last step, which requires λ = 1/(n + k), is to further restrict the

allowed space of states (passing from SOS to RSOS in statistical mechanical terminology)

according to the rules for allowed kinks which we expressed above in terms of the allowed

highest weights of su(n) at level k. So we arrive finally at a set of S-matrix blocks for

which most of the original quantum group symmetry has been lost, but for which there

remains a pair of conserved charges with Lorentz spins

±s0 = ±nλ = ± n

n+ k
. (2.19)

At this stage the possible connection with supersymmetry becomes apparent: on

choosing k = n the formula above tells us that the surviving charges have Lorentz spin

±1/2, and it is natural to suspect that they are supersymmetry generators. Unfortunately,

it is apparently not known at present how to show directly that these conserved quantities

really obey the correct supersymmetry algebra for all values of n. The question of how the

original quantum group relations descend to the RSOS picture seems to be rather poorly

understood, and there is even some considerable freedom in how these conserved charges

are defined to act in the restricted theory. (See the discussions in [23,24,25,27,32].) What

has been known for certain for some time is that in the simplest case, n = 2, it is possible

to show explicitly that spin-1/2 conserved quantities can be defined so as to obey the

supersymmetry algebra [23]. We will make the reasonable assumption that this can also

be done for general values of n. We have carried out a partial check of the next simplest

case based on SU(3) using brute force methods, and it appears that in this case too the

residual spin half charges can be defined so as to obey the desired algebra. In the absence

of a general construction for SU(n), however, we defer a more detailed discussion of this

point to another occasion.

To summarize: we will proceed on the assumption that the RSOS blocks with k = n

carry a good representation of supersymmetry. To add some additional reassurance on

this point, we should also emphasize that the S-matrix which we write down based on this

assumption will ultimately be subjected to a very stringent test. The conclusion will be

that it does indeed correspond to the original supersymmetric lagrangian (1.3).

We have now set up all the S-matrix technology that we need, but before we consider

the supersymmetric model it may be helpful to explain how the S-matrix of the bosonic

PCM is constructed from the point-of-view we have followed here. For the bosonic SU(n)

model, the particles transform in multiplets (Ra, R̄a) = (Ra, Rn−a) of the global SU(n)L×
SU(n)R symmetry. The states in the theory are consequently of the form

|ξ(a),η(n−a); θ〉 (2.20)

The S-matrix acting on these states is constructed out of two SU(n)-invariant vertex blocks:

Sab(θ) = Xab(θ) S̃
SU(n)
ab (θ) ⊗ S̃

SU(n)
n−a,n−b(θ), (2.21)
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where the tensor product structure corresponds to the product structure of the states in

the obvious way. Notice that there are no reflection processes between the degenerate

multiplets (Ra, Rn−a) and (Rn−a, Ra). The pre-factors Xab(θ) = Xn−a,n−b(θ) are a set of

scalar functions which obey the SU(n) bootstrap equations, the unitarity condition and

crossing symmetry independently, but which introduce simple poles on the physical strip

at just the right positions in order that the particle c appears as a bound-state of a and b

if c = a+ b or c = a+ b− n. These factors make the bootstrap dynamical. In fact Xab(θ)

is simply the minimal purely elastic S-matrix associated to su(n):

Xab(θ) =
a+b−1∏

j=|a−b|+1

step 2

sin(θ/2i+ π(j − 1)/2n) sin(θ/2i+ π(j + 1)/2n)

sin(θ/2i− π(j − 1)/2n) sin(θ/2i− π(j + 1)/2n)
. (2.22)

(In comparing this to the result of [3] one should note that our definitions of the group

SU(n)R differ by complex conjugation.)

We are now ready to write down our conjecture for the states and scattering am-

plitudes in the supersymmetric SU(n) PCM. The two essential global invariances which

we need to incorporate are SU(n)L × SU(n)R and supersymmetry. The first of these can

be built in using the vertex-type blocks introduced above, once we have decided what

the allowed representations should be. Following our discussion in the first section which

compared PCMs to the family of O(N) sigma models, we conjecture that the super PCM

has a spectrum of particles with masses ma, given by (1.2), which transform in reducible

multiplets (Ra, 1) ⊕ (1, Ra) for a = 1, . . . , n−1. (Of course, such states are always de-

generate with their conjugates which transform as (Rn−a, 1)⊕ (1, Rn−a).) To incorporate

supersymmetry, these states must also carry additional quantum numbers on which the

super-charges act. Following our discussion above of RSOS-type blocks and their symme-

try properties, we shall take these to be RSOS kinks of type a with k = n. In short then,

the states in the model are of two general types

L : |ξ(a), 0, K(a)
µν

; θ〉 R : |0, ξ(a), K(a)
µν

; θ〉 (2.23)

where SU(n)L acts on the first quantum number, SU(n)R acts on the second quantum

number, and supersymmetry acts on the kink degrees of freedom. We emphasize that the

allowed kink states interpolate between the integrable weights of su(n) at level n according

to the rules which we summarized earlier.

Having specified the detailed struture of the states, we define the S-matrix as follows.

The scattering between the L multiplets is given by

SLL
ab (θ) = Xab(θ) S̃

SU(n)
ab (θ) ⊗ I ⊗ S̃

(RSOS,n)
ab (θ), (2.24)

and similarly between the R multiplets

SRR
ab (θ) = Xab(θ) I ⊗ S̃

SU(n)
ab (θ) ⊗ S̃

(RSOS,n)
ab (θ) (2.25)
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where Xab(θ) is the minimal elastic factor defined by (2.22). The scattering between the

L and R multiplets is defined to be

SLR
ab (θ) = I ⊗ I ⊗ S̃

(RSOS,n)
ab (θ). (2.26)

As usual, the tensor products are to be understood with respect to the product structure

of the states exhibited in (2.23). We emphasize that this is a conjecture for the complete

S-matrix, describing scattering amongst all the states in the theory.

The following points are worthy of note. (i) The scattering between the L and R

multiplets is completely diagonal in the space of global quantum numbers, as required by

the form of the global symmetry. (ii) It is only the LL or RR scattering which lead to

bound-states, because only these elements have poles on the physical strip provided by the

scalar factors Xab(θ). The LR scattering elements have no poles on the physical strip so

no bound-states which transform non-trivially under both SU(n)L and SU(n)R are formed.

(iii) Since the S-matrix elements are built out of the blocks, we can be assured that all the

S-matrix axioms are satisfied. Furthermore, due to the existence of simple poles on the

physical strip in just the right positions, provided by the factors Xab(θ), the multiplets can

all be considered as bound-states of the multiplets with a = 1. (v) There are no reflection

amplitudes between any two of the degenerate multiplets (Ra, 1), (Rn−a, 1), (1, Ra) and

(1, Rn−a).

Thus far, we have offered very little evidence to support our claim that this is the

correct S-matrix for the super SU(n) PCM. In the following sections, however, we will carry

out a very substantial test of this proposal. We shall find that our conjecture is completely

consistent with the lagrangian (1.3), and in particular that it correctly reproduces the

universal part of the beta-function. The nature of this test is explained more fully below.

At this stage, however, it may also be helpful to draw attention to one specific kind of

possible ambiguity in the S-matrix which our test will ultimately resolve.

As it stands, the S-matrix we have written down is the minimal10 expression which

satisfies all the axioms of S-matrix theory, along with the requirement that the states

can all be formed as bound-states on the elementary multiplet (R1, 1) ⊕ (1, R1). The

latter requirement was responsible for introducing the factors of Xab(θ) in (2.24) and

(2.25). However, it is always possible to multiply these expressions by CDD factors which

satisfy all the axioms independently, which passively respect the bootstrap equations, and,

moreover, introduce no additional poles onto the physical strip (although they introduce

additional zeros). These factors are of the form

Yab(α; θ) =

a+b−1∏

j=|a−b|+1

step 2

sin(θ/2i− π(j − 1 + α)/2n) sin(θ/2i− π(j + 1 − α)/2n)

sin(θ/2i+ π(j − 1 + α)/2n) sin(θ/2i+ π(j + 1 − α)/2n)
, (2.27)

10 ‘Minimality’ in this context means the expression with the smallest number of poles and
zeros on the physical strip.
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where α is a parameter 0 < α < 2. In principle, an arbitrary number of these factors with

different α’s could be introduced in the S-matrix elements LL and RR, and a different

set in LR scattering. One of the conclusions we shall reach in the following sections is

that there are no CDD factors of this type allowed in the S-matrix for the models we are

considering.

3. S-matrix versus lagrangian: perturbative calculation

Having arrived at a candidate S-matrix for the supersymmetric SU(n) PCM, our aim

is now to test this proposal by comparing it with the original lagrangian (1.3). There is

a technique for doing this which is by now well-established and which has been applied

to a number of different models, following the original pioneering work of [7,8] for the

O(N) sigma-model, so our explanation of the general method will be rather brief.11 The

technique involves modifying the Hamiltonian of the theory H → H − hQ where Q is a

conserved charge which generates a global symmetry of the model—in our case a generator

of SU(n)L × SU(n)R—and h is a parameter with the dimensions of mass which we put in

by hand. The idea is to calculate the ground-state energy of this new Hamiltonian, both

in perturbation theory and from the S-matrix using the TBA, and then to compare the

results to test the lagrangian/S-matrix equivalence. In fact neither of these calculations

can be performed exactly, but we can develop asymptotic expansions for the results which

are assumed to be valid when h is very large and which are sufficient to give a highly

non-trivial consistency check.

A standard perturbative analysis of the model (1.3) shows that it is asymptotically

free, with the coupling constant behaving as

1

g(µ)
= β1 ln

µ

Λ
+
β2

β1
ln ln

µ

Λ
+ O

(
ln ln

µ

Λ

/
ln
µ

Λ

)
(3.1)

where the universal part of the beta function is given by the coefficients

β1 = n/8π, β2 = 0. (3.2)

The scale Λ in these equations is defined by the requirement that there is no constant term

in the expansion for the running coupling written above; this depends on the renormal-

ization prescription being used and we shall eventually specialize to the MS-bar scheme.

For a given choice of the charge Q introduced above, it is not difficult to calculate the new

ground-state energy to one-loop, or in principle to some higher order in the loop expansion,

and when h ≫ Λ we can obtain an expression for the change in the ground-state energy

11 A recent summary which attempts to collect together the known results was given in [33]; a
more complete account is planned for the near future [34].
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density:

δE(h) = E(h) − E(0) = h2f1(h/Λ),

f1(h/Λ) =
a0

g(h)
+ a1 + O(g(h))

(3.3)

where the numbers aj are dimensionless quantities resulting from a calculation at a certain

number of loops indicated by their subscripts. Notice that the argument of the coupling

constant in this expression is h/Λ, which is a consequence of the fact that the final result

must be a renormalization-group invariant quantity and therefore independent of µ, the

subtraction scale.

In the next section we shall see how a similar expression can be found from the S-

matrix via the TBA, but rather than being a function of h/Λ the result is then of the

form

δE(h) = E(h) − E(0) = h2f2(h/m) (3.4)

where m is the physical mass of the particle states. Equating this to the previous expression

we see that f1(h/Λ) = f2(h/m) which gives a stringent test of the S-matrix and, if we know

each expression to sufficient accuracy, this equality will allow us to extract the mass-gap

m/Λ. A simple but very important observation is that the nature of the functions f1 and

f2, and hence the values of the constants aj, is dependent on the choice of the charge Q.

It turns out that if we choose Q so that a0 6= 0, in other words so that there is a tree-

level contribution to the ground-state energy, then it is sufficient to carry out a one-loop

perturbative calculation in order to get a convincing test of the S-matrix and to extract the

mass-gap. If a0 = 0 on the other hand, then one must work harder to obtain a non-trivial

check, and the mass-gap can only be obtained by calculating to three-loops or beyond.

It is clearly advantageous to choose a charge Q which leads to one-loop computation

and there is actually a general strategy by which this can be accomplished for a wide

class of (super) sigma-models [34]. In this paper, however, we shall simply mimic the

choice of charges already considered in the bosonic case [5] and show that these lead to

the desired classical term a0 6= 0, so that a one-loop calculation will suffice for a test of

the supersymmetric models too. To be specific, we shall consider here a modification of

the Hamiltonian

H → H− hQ where Q = (q · H,−q · H) (3.5)

is a hermitian generator in the Lie algebra of SU(n)L×SU(n)R, with H denoting the vector

of generators in the Cartan subalgebra of su(n) and q some vector whose components are

arbitrary numbers at this stage. From the action of the SU(n)L × SU(n)R symmetry on

the fields given in (1.4) we can deduce that the linearized action generated by this choice

of Q is

δU = i(q · H U + Uq · H)

δψ = −i(q · H ψ − ψ q · H).
(3.6)
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The desired change in the Hamiltonian written in (3.5) can now be effected by making the

substitution in the lagrangian (1.3):

∂0U → ∂0U + ih(q · H U + Uq · H),

∂0ψ → ∂0ψ − ih(q · H ψ − ψ q · H)
(3.7)

and we must expand the resulting expression in powers of h and in powers of unconstrained

fields so that we can identify the contributions which enter to various numbers of loops.

To carry out such an expansion, we first write the bosonic field in the form

U = exp i

(
n · H +

∑

α>0

(nαEα + n∗
α
E−α

)

)
(3.8)

where n (with no subscript) stands for a vector of real fields associated to our chosen Cartan

subalgebra, nα are complex fields corresponding to the positive roots, and the sum extends

over just these positive roots of the finite-dimensional Lie algebra su(n). It is now a simple

exercise to show that there is indeed a tree-level contribution for any non-zero choice of the

vector q and so a one-loop calculation will suffice for the purposes of making a non-trivial

comparison with the S-matrix. Because of this, we need only keep terms quadratic in the

fields, and it is not difficult to show that the fermions decouple completely to this order.

We may further simplify the result by discarding all terms independent of h, since we are

interested only in how the result changes as a function of this background parameter. This

implies that the contribution to the change in the ground-state energy at one-loop is given

by a lagrangian

L1−loop =
4h2q2

g
+

1

g

∑

α>0

( ∂n
α
∂n∗

α
− h2(q · α)2n

α
n∗

α
) (3.9)

which corresponds to a tree-level term, plus a number of free, massive bosons (whose

fields have been re-scaled to give canonical normalizations). Using standard dimensional

regularization with the MS subtraction scheme, the result for the change in the energy

density as a function of the running coupling is now found to be

δE(h) = −4h2q2

g(h)
− h2

4π

∑

α>0

(q · α)2
[
ln(q · α)2 − 1

]
+ O(g(h))

= −h
2q2n

2π
ln

h

ΛMS

− h2

4π

∑

α>0

(q · α)2
[
ln(q · α)2 − 1

]
+ O

(
ln ln

h

ΛMS

/
ln

h

ΛMS

)

(3.10)

where we have simply substituted the two-loop expression for the running coupling given

earlier in order to write the answer explicitly as a function of h.

To complete our perturbative calculation, we wish to make some convenient specific

choices for the vector q which defines Q in (3.5) and which has so far been left arbitrary.
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We recall that the general method we are seeking to apply entails a consideration of the

states with the largest charge/mass ratio, since these will make a dominant contribution to

the new ground-state when h becomes sufficiently large (we will discuss this in a little more

detail in the next section). We will follow standard convention and agree to normalize Q

so that it has eigenvalue +1 on this preferred set of states. We would like to choose q

so that there are as few of these preferred states as possible, since any reduction in the

number leads to a significant simplification in the TBA calculation.

All states in our theory belong to either left-handed or right-handed representations Ra

of SU(n), and for each of these representations we are free to choose a basis of simultaneous

eigenstates of H, the eigenvalues being just the weights, of course. The action of Q on

these states is then

Q|ξ(b), 0, K(b)
µν

; θ〉 = (q · ξ(b))|ξ(b), 0, K(b)
µν

; θ〉,
Q|0, ξ(b), K(b)

µν
; θ〉 = −(q · ξ(b))|0, ξ(b), K(b)

µν
; θ〉.

(3.11)

The idea now is that the best we can do to select a small number of preffered states is to

pick out those corresponding to the highest weight ωa of the representation Ra of SU(n)L,

or the lowest weight −ωa of the representation Rn−a of SU(n)R by choosing q proportional

to ωa for some fixed a. More precisely, it is clear that the correct normalization of the

charge Q is achieved by taking

q = ωa/(ω
2
a) (3.12)

and that then the kink-multiplets

|ωa, 0, K
(a)
µν

; θ〉 and |0,−ωa, K
(n−a)
µν

; θ〉 (3.13)

are indeed the states in the spectrum with the largest charge/mass ratio having Q eigen-

value +1. If we substitute the choice of q given by (3.12) into our general formula for the

ground-state energy given above we find

δE(h) = − h2n2

2πa(n− a)

[
ln

h

ΛMS

+ ln

(
n

a(n− a)

)
− 1

2
+ O

(
ln ln(h/ΛMS)

ln(h/ΛMS)

)]
(3.14)

which we shall be able to compare with the result of the S-matrix calculation carried out

in the next section.

Before concluding this section it may be useful to make some comparison with the

analogous calculation for the bosonic PCM as analyzed in [6,5]. The one-loop lagrangian

derived above is exactly the same, as a function of q, as that found in the bosonic case,

and this means that the one-loop expression for the ground-state energy is unchanged, as

a function of the running coupling g and of q. Superficially, then, it may seem that our

perturbative calculation is ignorant of the presence of fermions in the theory, since they

have decoupled to this order. In fact the fermions do, nevertheless, play a rôle, and the final

result for the ground-state energy as a function of h, is different from the bosonic case.
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This happens for two reasons. First, the running coupling behaves quite differently in the

theory with fermions and, specifically, the vanishing of the second β-function coefficient

is characteristic of a sigma-model with supersymmetry [18]. This means that we get a

different result for the ground-state energy as a function of h and q. Secondly, there is

a further modification because, compared to the bosonic case, the choice of q written in

(3.12) involves a different normalization. This reflects the fact that in the supersymmetric

PCM all states lie in either left- or right-handed representations while in the bosonic

theory they live in diagonal representations (requiring an extra factor of two to ensure Q

has maximum eigenvalue +1).

4. S-matrix versus lagrangian: TBA calculation

We now turn to the calculation of δE(h) from the S-matrix using the TBA. It is clear

that if we make the choice of charge given in (3.12) and then increase h from zero until

it exceeds the threshold value ma, it will become energetically favourable to populate the

ground-state with particles in the multiplets (3.13). We shall assume in what follows that

the new ground-state effectively contains only particles corresponding to the preferred

states (3.13). The idea behind this assumption is that the preferred states (3.13) with

the largest charge/mass ratio should repel all other states and thereby dominate the new

ground-state. Some support for this picture is obtained by considering which other states

might also appear in the new ground-state. For it to be energetically favourable for a state,

labelled by ξ(b), to appear in the ground-state, it must have positive charge, i.e. ξ(b)·ωa > 0.

But if this condition is satisfied then ξ(b) + ωa cannot be a weight of a fundamental

representation (the latter requires ξ(b) ·ωa < 0 as a necessary condition); hence the states

labelled by ξ(b) cannot form bound-states with the states (3.13) from which we deduce that

the forces between them cannot be attractive. This kind of argument should make our

assumption seem plausible, but it does not provide a rigorous proof. In fact, our hypothesis

can actually be proven from an analysis of the full TBA equations of the theory, but the

proof is rather technical and so we have chosen not to reproduce it here (see [34] for details),

relying instead on the less rigorous but more physical foregoing arguments. The reason the

hypothesis is so important is that it allows us to deal directly with a much simpler set of

TBA equations because we can immediately restrict to configurations containing only the

states (3.13). Our final result—the agreement between the perturbative calculation and

the TBA calculation—will also confirm that this working hypothesis is correct.

The idea behind the TBA is to consider the thermodynamics of a gas of the particles

which interact via the exact factorizable S-matrix [35]. Since the number of particles

is preserved it makes sense to consider single particle states. One then imposes periodic

boundary conditions to get equations relating the densities-of-states of the various particles.

From these equations conventional thermodynamic arguments lead to an expression for the
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free energy at finite temperature and with chemical potentials. The ground-state energy

density in the presence of a coupling to a charge corresponds to the zero temperature limit

with some specific chemical potential. The difficulty facing us is that, even though we have

restricted to the subspace of states (3.13), these degrees of freedom still do not interact

purely elastically as far as their kink degrees-of-freedom are concerned. In finding the

equations for the particle densities-of-states one has to perform a diagonalization in the kink

subspace. Fortunately, however, the S-matrix elements in this subspace are proportional to

RSOS Boltzmann weights of an integrable lattice model and the relevant diagonalization

has already been performed12 and we shall simply quote the result for the Bethe equations

which relate the densities-of-states.

We denote the densities of occupied states in rapidity space of the two multiplets

in (3.13) as σL(θ) and σR(θ). Our normalization is such that, for example
∫∞

−∞
dθσL(θ)

gives the number of occupied L-states per unit length of real space. The densities of

un-occupied states, or holes, are denoted σ̃L(θ) and σ̃R(θ), respectively, so that the total

densities-of-states are therefore σ̃L(θ) + σL(θ) and σ̃R(θ) + σR(θ), respectively.

The diagonalization in the kink subspace introduces additional terms which behave

as if they come from particles with zero mass associated to the simple roots of SU(n) and

carrying a ‘string-length’. These fictitious particles are known as magnons and we denote

their densities as ra
p(θ) and their associated hole densities as r̃a

p(θ), where p, the string-

length index, and a, which labels the simple roots of the algebra su(n), both run from 1

to n− 1.13 The Bethe equations relating these densities are

σ̃L(θ) +B(a) ∗ σL(θ) + C(a) ∗ σR(θ) + a(n)
p ∗ ra

p(θ) =
ma

2π
cosh θ,

σ̃R(θ) +B(a) ∗ σR(θ) + C(a) ∗ σL(θ) + a(n)
p ∗ rn−a

p (θ) =
ma

2π
cosh θ,

(4.1)

along with the magnon equations

r̃b
p(θ) + A(n)

pq ∗K(n)
bc ∗ rc

q(θ) = δbaa
(n)
p ∗ σL(θ) + δb,n−aa

(n)
p ∗ σR(θ). (4.2)

In (4.1) and (4.2) we have used the notation f ∗ g(θ) =
∫∞

−∞
dθ′f(θ− θ′)g(θ′) and a, b and

p, q all run from 1 to n− 1 (repeated indices are summed). The kernels appearing in (4.1)

are

B(a)(θ) =
[
A(∞)

nn

]−1

∗A(n)
aa (θ),

C(a)(θ) =
[
A(n+1)

nn

]−1

∗A(n)
n−a,a(θ) − A

(n)
n−a,a(θ),

a(n)
p (θ) =

1

2π
· sin(πp/n)

cosh θ − cos(πp/n)
.

(4.3)

12 See [36] for a discussion in the context of S-matrix theory. In fact not all the relevant
eigenvalues have been obtained, as far as the authors are aware; however, the resulting TBA
equations are identical to those conjectured for SU(n) on the basis of the universality of the
TBA equations [37].

13 In general the string length index runs from 1 to k − 1, but in this case the level k = n
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If we define Fourier transforms as

f(θ) =

∫ ∞

0

dx

π
cos(θx)f̂(x), (4.4)

then by definition

[f ]−1(θ) =

∫ ∞

0

dx

π
cos(θx)

1

f̂(x)
, (4.5)

and to complete the definition of the kernels we have

Â(k)
pq (x) =

2 sinh(min(p, q)πx/n) sinh((k − max(p, q))πx/n) cosh(πx/n)

sinh(kπx/n) sinh(πx/n)
, (4.6)

where 1 ≤ p, q ≤ k − 1 and K̂
(k)
pq (x) =

(
Â(k)(x)−1

)

pq
. The kernels are related to the

S-matrix elements of the states (3.13), but unfortunately not in a simple way.14

To find the TBA equations (in our case at zero temperature), in the presence of the

coupling to the charge, one minimizes the value of the new Hamiltonian H − hQ, which

for a macroscopic configuration is
∫ ∞

−∞

dθ

2π
(ma cosh θ − h) (σL(θ) + σR(θ)) , (4.7)

subject to the Bethe equations (4.1) and (4.2) as a constraint. The result of the variational

problem can be expressed in terms of the ‘excitation energies’ for the particles ǫL,R(θ) and

the magnons ξa
p (θ), with

δE(h) =
ma

2π

∫ ∞

−∞

dθ
[
ǫ−L (θ) + ǫ−R(θ)

]
cosh θ, (4.8)

which satisfy the TBA equations:

ǫ+L (θ) +B(a) ∗ ǫ−L (θ) + C(a) ∗ ǫ−R(θ) − a(n)
p ∗ ξa,−

p (θ) = ma cosh θ − h,

ǫ+R(θ) +B(a) ∗ ǫ−R(θ) + C(a) ∗ ǫ−L (θ) − a(n)
p ∗ ξn−a,−

p (θ) = ma cosh θ − h,

ξb,+
p (θ) + A(n)

pq ∗K(n)
bc ∗ ξc,−

q (θ) = −δbaa
(n)
p ∗ ǫ−L (θ) − δb,n−aa

(n)
p ∗ ǫ−R(θ).

(4.9)

In the above, we have defined

f±(θ) =

{
f(θ) f(θ)>

<
0

0 otherwise.
(4.10)

The above TBA equations can be drastically simplified because a
(n)
p (θ) is a positive kernel

for all θ; hence the solution for the magnon terms is simply

ξb
p(θ) = −δbaa

(n)
p ∗ ǫ−L − δb,n−aa

(n)
p ∗ ǫ−R(θ), (4.11)

14 The reason for this is that the macro-states are actually full of magnon n strings and so the
kernels B

(a)(θ) and C
(a)(θ) are the derivatives of the phases shifts of the scattering of the

particles (3.13), but in the background of an n string magnon ‘sea’ [36].
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with the consequence that ξb,−
p (θ) = 0. After taking this into account, it is easy to see

that the remaining equations are symmetric in L and R; hence the solution to (4.9) clearly

has ǫL(θ) = ǫR(θ) ≡ ǫ(θ). So finally we are left with a single integral equation

ǫ+(θ) +R ∗ ǫ−(θ) = ma cosh θ − h, (4.12)

and the change in the ground-state energy density is

δE(h) =
ma

π

∫ ∞

−∞

dθǫ−(θ) cosh θ. (4.13)

The Fourier transform of the kernel R(θ) = B(a)(θ) + C(a)(θ) is explicitly

R̂(x) =
2eπx/2 sinh(πax/n) sinh(π(n− a)x/n) sinh(πx/2)

sinh2(πx)
. (4.14)

¿From the single integral equation we can use the results of [9,5] (based on the original

work of [38]) to develop an expansion for δE(h) in the asymptotic regime h ≫ m. The

nature of the solution depends upon whether or not R̂(x) vanishes at the origin. In the

present case we see that R̂(0) = 0 which implies that δE(h) for this model is therefore of the

type encountered in the bosonic sigma models, like the principal chiral models [5], rather

than the fermionic models. In other words it has an expansion which precisely matches

the perturbative result with a classical term of O(1/g) present, so that a0 6= 0.

To find the first few terms in the expansion of the solution one has to write the Fourier

transform of the kernel in the form 1/(G+(x)G−(x)) where G±(x) are analytic in the upper

(lower) half planes with G−(x) = G+(−x). This determines uniquely

G+(iξ) =
n√

πa(n− a)ξ

Γ(1 + aξ/n)Γ(1 + (n− a)ξ/n)Γ(1 + ξ/2)

Γ2(1 + ξ)

× exp

(
ξ

2
ln ξ + ξ

(
−1

2
− a

n
ln
a

n
− n− a

n
ln
n− a

n
− 1

2
ln

1

2

))
.

(4.15)

Following the discussion in [5], if G+(iξ) has an expansion for small ξ like

G+(iξ) =
k√
ξ
e−aξ ln ξ

(
1 − bξ + O(ξ2)

)
, (4.16)

then the first few terms of the ground-state energy for h≫ m are given by

δE = − h2k2

2

[
ln

h

ma
+ ln

(√
2πke−b

G+(i)

)
− 1 + a(γE − 1 + ln 8)

+(a+ 1
2
) ln ln

h

ma
+ O

(
ln ln(h/ma)

ln(h/ma)

)]
.

(4.17)
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Our kernel does indeed have an expansion of the form (4.16) with

k =
n√

πa(n− a)
, a = −1

2
,

√
2πke−b

G+(i)
=

23/2n2eγE/2

πa(n− a)
sin
(πa
n

)
, (4.18)

and so the first few terms in the ground-state energy are

δE(h) = − h2n2

2πa(n− a)

[
ln
h

m
+ ln

(
n2 sin(π/n)

πa(n− a)

)
− 1

2
+ O

(
ln ln(h/m)

ln(h/m)

)]
, (4.19)

where we have used the mass formula (1.2) to relatema to the mass of the lightest multiplet,

namely m.

5. Comparison and Conclusions

Comparing (4.19) with (3.14), we find that the results from the TBA calculation and

the perturbative calculation are in complete agreement for each of the charges defined by

(3.12). It is important to realize that the results of the calcualtions for these different

charges are logically independent; each of them probes the S-matrix in a slightly different

way, and we have shown that they all correctly reproduce the universal beta-function

coefficients written in (3.2). We take this as very strong evidence that our conjectured S-

matrix does indeed provide the correct description of the supersymmetric SU(n) principal

chiral sigma model. The comparison also leads to the exact result for the mass-gap:

m

ΛMS

=
n

π
· sin

(π
n

)
. (5.1)

Once again, it is non-trivial that the same result is obtained for each of the charges in

(3.12).

The question of CDD ambiguities deserves special attention. As we have said pre-

viously, in writing down any S-matrix proposed on the basis of symmetries and general

axioms, we always have the freedom to multiply by CDD factors which respect all the ba-

sic principles automatically, which do not introduce any new poles onto the physical strip,

and which satisfy the bootstrap equations. In our case this corresponds to multiplying the

S-matrix elements Sab(θ) by products of factors of the form (2.27). More precisely, suppose

we introduce such factors with parameters αj for LL and RR scattering and parameters

βk for LR scattering. The effect of these is to modify the kernels B(a)(θ) and C(a)(θ), and

hence the kernel R(θ):

R̂(x) → R̂(x)− Â
(n)
aa (x)

cosh(πx/n)

∑

j

cosh(π(1−αj)x/n)−
Â

(n)
a,n−a(x)

cosh(πx/n)

∑

k

cosh(π(1− βk)x/n).

(5.2)

21



But from (4.6), we see that the modified kernel no longer has R̂(0) = 0 and the agreement

with perturbation theory is therefore destroyed, by virtue of the remarks made in section

3. Modification by CDD factors in particular is therefore ruled out if we are to maintain

consistency with the lagrangian. Of course one could always introduce additional CDD

factors which give extra poles on the physical strip, but in that case the resulting S-matrix

would require the existence of new states.

For the case of SU(2), our result provides the solution of the supersymmetric O(4)

sigma model. As suspected in [21], the vector particle of the theory is no longer stable and

the spectrum just consists of the kinks transforming in the spinor and anti-spinor repre-

sentations (that is (1/2, 0)⊕ (0, 1/2) of SU(2)×SU(2)). It is interesting that the analogous

spectrum which we have proposed for the general super SU(n) model—and which we have

checked by our calcultions—is markedly different from the bosonic case, with particles

transforming non-trivially under the left-handed or right-handed symmetry groups, but

not under both. It would be intersting to find some semi-classical understanding of this.

Finally, we must return to an important assumption which we made and whose validity

we have not demonstrated directly, but which is certainly borne out by our final results. We

have not shown explicitly that our S-matrix for the super SU(n) PCM is invariant under

N = 1 supersymmetry. However, we do know that it commutes with conserved spin-

1/2 charges, it is only their algebra which has not been directly established for general

n, and in fact this algebra has been checked explicitly for n = 2 in [23] and partially

by us for n = 3. It would be interesting and worthwhile to show explicitly how N = 1

supersymmetry is realized on the SU(n) RSOS kink S-matrices at level n; in a sense this

would relate the construction to the general scheme for supersymmetric scattering laid out

in [39]. There are similar—although perhaps not identical—issues concerning the N = 2

S-matrices proposed in [32] and to our knowledge these points are still unresolved. We

believe that the final agreement of our S-matrix with a supersymmetric lagrangian provides

compelling evidence that our assumption about supersymmetry is correct; we also hope to

examine this question in more detail in the future.
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