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Abstract

We discuss the quark-antiquark loop diagrams of an extended version of the
Nambu —Jona-Lasinio model that includes a description of confinement. We show how the
constraints of gauge invariance affect the calculations of such diagrams, if the qq system has
the quantum numbers of the rho or omega mesons. In the NJL model without confinement,
gauge invariance may be maintained by using a regularization scheme that respects that
symmetry. Alternatively, gauge invariance constraints may be imposed by introducing a
substraction procedure when evaluating the qq loop integrals (vacuum polarization diagrams).
We discuss the merits of such subtraction procedures in the presence of a confining interaction.
We also provide a calculation of the vacuum polarization diagrams of the NJL model that
includes the effects of confinement and also satisfies the constraints imposed by gauge
invariance. Our analysis provides some justification for the subtraction procedure used in
several studies of the NJL model. We also show, in a rather clear fashion, how confinement
serves to change the analytic properties of the polarization tensors, so that the tensor for the

theory with confinement has only a physical cut structure in the region of interest.




I. Introduction

In the application of the Nambu —Jona-Lasinio model to the study of hadron structure one
calculates quark-antiquark loop diagrams of the type shown in Fig. 1 [1]. In this work we will
concentrate on those diagrams that appear when the gg system has the quantum numbers J = 1",
with isospin 0 or 1. These diagrams arise in the study of the omega and rho mesons when using
the NJL model. For such studies it is important to include a model of confinement. We have
shown how that may be done in an earlier work [2]. For example, if we include a ladder of
confining interactions, as shown in Fig. 1b, we may define polarization tensdrs that do not have
the unitarity cuts that would have appeared, in the absence of confinement, if both the quark and
antiquark go on mass shell [3].

With reference to Fig. la, we define a tensor [2]
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where n,=3 is the number of colors and ng=2 is the number of flavors. Further,
Sk)=[k-m +ie]'l , where m is the constituent quark mass. Often, the integral of Eq. (1.1)
is regulated by including a cutoff, Az. After passing to a Fuclidean momentum space, one
imposes the condition ké < Ai- [1]. (Typically, A ~ 1 GeV is used.) That kind of
regularization destroys the gauge invariance of the result. Therefore, the following scheme has
been adopted [1]. In Eq. (1.1), v* is replaced by 4* =" -4q*/q* and 4" is replaced by

¥ =v"-4q"/ qz. This allows one to write

I*g) = -2 @IgD (1.2)

where




g"@ = g*" -q*q’1q* . (1.3)

This procedure imposes the condition q,J k(@) =J*%(q)q, =0. However, we must also have
J(0) =0 to avoid generating a mass for the photon [4,5]. That may be accomplished by making
a subtraction, so that J(g2) is replaced by J(g?) -J(0). This is the procedure used by Weise
and collaborators in their extensive applications of the NJL model to the study of hadron
structure [1]. (Note that, in their work, it was necessary to neglect ImJi (qz) , since those authors
did not include a model of confinement.) One may avoid making a subtraction by using a
regularization scheme that respects gauge invariance. For example, Friedrich and Reinhardt use
a proper-time regularization scheme and obtain vacuum polarization diagrams of the correct
structure in their study of rho-omega mixing [4]. (A more complete discussion of this matter
may be found in Ref. [5].)

In our work dealing with confinement, we have used a Euclidean-momentum-space cutoff
for spacelike q2 (q2 < 0) and a cutoff for each of the three-momenta in the loop integrals, when
q2 >0 [2]. The (Minkowski-space) cutoff, A5, used for q2 >0, was chosen so that the
vacuum polarization integrals calculated for g?>0 and g2 < 0 were (approximately) continuous
at ¢>=0. (See Fig. 2.) In our earlier work, we calculated the tensor

d*k
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where (g, k) was the vertex function that arose when we summed a ladder of confining

interactions [2,3]. Our calculation was made such that ¢, f“(q, k) =0. Thus, we could define




J* (g = -g*(9dg> . (1.5

In the limit that the current masses of the up and down quarks are equal, the tensors, J * (),
calculated for the rho and omega mesons are the same. Therefore, we can identify
J@? =J (@ =J(g?. InFig. 2, we show values of J,(¢?) calculated in Ref. [6]. (The
dotted line in the figure interpolates between the calculations made for g2 >0 and %<0 to
yield a continuous curve.) In Fig. 2, we see that f(p)(O) #0. We may make a subtraction to
obtain f(p)(O) =0, as discussed above. This subtraction does not change the momentum-space )
bosonization procedure we have used in our work. For example, we may define a 7 matrix in
the omega channel,

G,
T(q = S (1.6)
1 = (;"‘J J(w)(q )

where we have neglected reference to the Dirac and isospin matrices, for simplicity. (In Eqg.
(1.6), we have summed a string of gq loop integrals. The simplicity of the NJL model allows
us to provide a simple result for that sum.) In Eq. (1.6), G, is a parameter of the Lagraugian

of our extended NJL model,

- Ger/e - -
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Here, $Conf(x) refers to the model of confinement that we have introduced [2,3]. In a

momentum-space bosonization scheme, we may put [7]
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w

(1.8)

Equation (1.8) serves as a definition of the momentum-dependent coupling constant g, qq(qz) .
(The widths of the omega and rho mesons may also be considered. However, we do not enter
into that discussion here.) We now consider the subtraction procedure, replacing J (g% by
J (w)(qz) - J(»(0), for example. If we simultaneously replace G, ! by G, = G, 1 - J((0), we
see that gi qq(qz) and mj are unchanged. (On the other hand, replacing G, by (_}w does
significantly increase the (dimensionless) meson decay constant, g, that has an empirical value
of about 15.2 [6].)

In the present work, we wish to investigate the merits of the subtraction procedure, while
maintaining our model of confinement. To that end, we will introduce a regularization
procedure (Pauli-Villars) that respects gauge invariance and show how our model of confinement
may be implemented in this case. That analysis is carried out in Section II. In Section III we
provide further details concerning our model of confinement, while Section IV provides some

additional discussion.




II. Gauge Invariance and Confinement in an Extended NJI. Model

First, let us consider the calculation of the vacuum polarization tensor in QED. We will

follow the discussion of Kaku [8]. Kaku defines the tensor

d% 1 1
I = -e’T @.1)
M’M(q) ¢ r.[(z,n.)4 #k-m+i67”lf-m+ie
where the dependence on the fermion mass is made explicit. He then defines
g =1, (-1, y@ |, 2.2)
where M is the Pauli-Villars regulator mass. Further, we have the definition
I-Iull(q) = (gy.qu - qp,qy) ﬁl(qz) . (2‘3)

The result obtained for I1,(g?) is

172 172
2 2 2
+2[1+2m ] [41—1] cot'l[d'_mz--l] -1

g’ q
(2.4)
for 0 < g2 < 4m? [8].
Now let us assume that we regulate J(g 2) of Eq. (1.2) using the Pauli-Villars method.

We may call the result J(g 2) =J,.(q 2) -J M(qz) . The relation between f(qz) and fIl(qz) is then
- n.n -
JgH = iSLgP MY 2.5)
e

At this point we have not introduced the effect of confinement. (Note that the condition
J(g?» =0 corresponds to the requirement that fIl(qz) not have a simple pole at g2 =0.)

uations (2.4) and (2.5) yield a resuit for J (qz) valid in the region 0 < 2« 4m2,
q
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with J(0) =0, as expected.
In the case that g2 > 4m?, we may introduce
, )12
X = 1- _‘!mT , , (2'7)
q
and obtain
2 2 2.8
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and
) 512
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12x q q
(In Eq. 2.8), x<1.)
For g% <0, we may define
, 112
y=[1+4m (2.10)
lq”|

and write




2
J@g? = - ncnfq2 ~-In [_44__

2
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From Eq. (2.10), we see that y=>1. Note that J(g?) is real for q2 <4m?. We also note that

fi,0) = L2 [-mi‘ﬁ] . @.12)

(In QED, the dependence on In(M 2/ m2) is removed when introducing the renormalized charge.
The NJL model is not renormalizable and the various observables depen& upon the regulator
mass.) |

We now want to show how these results are modified when we introduce confinement.

In particular, our model of confinement will make the polarization tensor real for q2 <4aM?.




III. Numerical Results

It is useful to introduce the notation J%’(g) for the tensor defined in Eq. (1.4). Recall
that m is the constituent quark mass. (Note that we may replace 4* by *, if we are using a

regularization scheme that preserves gauge invariance.) Let us define

" = IN@ - @ , G-1

where J f{(q) is obtained from Eq. (1.1) upon replacing m by M. (The tensor defined in Eq.
(3.1) is depicted in a schematic fashion in Fig. 3a.) Note that we do not include confinement
in the calculation of J};(g).

It is useful to rewrite Eq. (3.1):

g = 1) - T @]+ e -1 @] (3.2)

where we have added and subtracted J ,‘;V(q) . It is also useful to define

TeNg) = -2 @I - 3-3)

For completeness, we also write
g =10 @ -1 @ (3.4)
= -zl - 3-3)

The value of J (qz) was given in Egs. (2.5)-(2.9), where we gave the results for the Pauli-Villars
regularization procedure, without reference to confinement. The second bracketed term of Eq.

(3.2) may be written as [2]
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d*k
4

-8 @ -T2 @] = (-Dnen/Tr [ [(T4@, b - 418,07 iS,(q +b)] B4

@7)
where S, (k) =[k-m +ie]”!. The contributions to the integral in Eq. (3.4) are finite only in a
limited region, since I'*(g, k)—>+* (in the frame where g=0), if | %| is large. To see this
in more detail, let us consider some results of Ref. [2], obtained by first performing the

Integration over k0 in the calculation of f(q 2) . We record Eq. (3.14) of Ref. [2]:

Jig® = ~neny & [_m 72191 'I‘I'+i{'1‘£'_a{ *PI*+02'_*}‘£* 63
@Qn)’ | E(k) q° - 2E(%) +ie q° +2E(%)

where E(%) = (k2 +m?)V2, and where the I'*~ and I'"* parametrize the confinement vertex
calculated there. In Eq. (3.5), @, =a; '=-2%%/3m and a, =a, ' =4E*(%)/3m%. The
corresponding integral, without confinement, is obtained from Eq. (3.5) by putting
I~ =I'"*=m/%? and I";_ = I‘;+ =1 [2]. (Note that the arguments of the various I'’s areq®
and |%| in the frame where q=0.) For |%| > 0.7 GeV, we have T*~ =T"* =m/%? and
I‘;- =I‘£+ =1. Thus, the integral over |%| in Eq. (3.4) only receives contributions if
| %| <0.7 GeV. (That is, we may extend the integral over large values of | k|, once
| %| > 0.7 GeV, without changing the result.)

Note that J(g?) is real and that we may drop the ie in the denominator of the first term
of Eq. (3.5). That follows, since I‘I_(qo, | %]) and I‘;-(qo, | %|) are equal to zero at the on-

mass-shell point, where qo = 2E(?). We see that the cut that would have been present for

g% > 4m? has been eliminated, when using our model of confinement.

- 11 -




IV. Discussion
It is useful to compare the results obtained in Section III for j(qz) with a subtracted

function. Let us define

Joar@® = T @) - I, 0) . @4.1)

The function f(p)(qz) was shown in Fig. 2 and was taken from Ref. [6]. (Note that,
in the calculation of f(p)(qz), we used the regularization scheme that involved the cutoffs
Ap and A;. Thus, this function makes no reference to the PauliTVilla:s regularization
procedure that was wused when defining f(p)(qz) = Jm(qz) -JM(qz), or
T )@ = 7@ ~T3fg) U@ ~T1aD1+ U@ - T @1 =1@*) + 1 @%) - T (g D)].)
The function J_;(g?) is shown in Fig. 4 as a solid line. We see that J .50 =0, as follows
from Eq. (4.1). In Fig. 4, we also show the function .7(q2) , calculated with M =0.6 GeV and
m=0.260 GeV. The calculated value of J (0) was equal to -0.004 GeV?. That quite small
nonzero value has its origin in the various approximations used in calculation of the confining
vertex, I™(q,k). In Fig. 4, we have made .7(q2) consistent with the gauge invariance
constraint, }(O) =0, by adding 0.004 GeV? to the calculated values. The fact that the two
curves of Fig. 4 are quite similar lends some justification for the subtraction procedure that was
used when a regularization scheme that did not respect gauge invariance was introduced [1,2].

To understand the role of confinement in the calculation of the vacuum polarization
diagrams, we compare J sub(qz) and ReJ'(qz) in Fig. 5. There, we see the rapid rise in the
value of ReJ (qz) near the threshold value of q2 =4m? =0.27 GeV2. Since J Sub(qz) contains
the effects of confinement, the unitarity qq cut is absent. Therefore, there is no rapid rise seen

for g% = 4m? in the case of J sub(qz) . (As noted earlier, j(q 2) will have an imaginary part for

-12 -




q2 >4M%=1.54 GeVZ, since we did not include confinement in the calculation of those
diagrams where m was replaced by the regulator mass, M.)

In summary, we have shown that a subtraction procedure used previously appears to be
in accord with a more fundamental approach to the maintenance of gauge invariance in the
regularization of the integrals of the NJL model. [See Fig. 4.] We have seen, rather Clearly,
how our model of confinement removes the unphysical quark-antiquark unitarity cut. We have
also seen how the qz-dependence of the integrals considered here undergoes significant

modification in the presence of confinement. [See Fig. 5, where we compare Ref(qz) and

jsub(qz) ]
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Fig. 1 a)

b)

Fig. 2

Fig. 3 a)

Figure Captions

The fundamental loop-integral of the NJL model that serves to define the tensor
-iJ#¥(g) is shown. Here the quark propagators are S(k) = [k -m+e]”!, where
m is the constituent quark mass.

The vertex function, T'*(q, k), that sums a ladder of confining interactions is

shown as a filled triangular area. The driving term is * in the case of the
omega meson and v 75 in the case of the rho.

The loop integral that defines the tensor -if#%(q) is shown. Note that

J#¥(g) is real, since the vertex function vanishes if both quarks go on mass shall
simultaneously.

Values of f(qz) =f(p)(q2) are shown. (This figure may be found in Ref. [6].)

For q2 <0, confinement was neglected and the calculation was done using a

Euclidean momentum space, with Az =1.0 GeV. For q2 > 0, confinement was

taken into account. That calculation was made in Minkowski momentum space

with a cutoff on all three-momenta in the loop integral of A5 =0.702 GeV [6].

The dotted curve serves to interpolate between the two calculations.

The figure serves to define -iJ “*(g) as the difference between a quark loop

integral (including confinement) and the loop integral with the Pauli-Villars

regulator mass. [See Eq. (3.1).] (Propagators with the mass M are shown as

lines with a large filled circle imposed. We have not included confinement for

such propagators.)
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Fig. 4

Fig. 5

b)

The figure depicts Eq. (3.2) in a schematic fashion. The value of the first
bracket in Fig. 3b may be obtained using the procedures described in Ref. [8].
(See Section II for analytic expressions for the first bracket.) Note that the
calculation of the second bracket does not require regularization. (See Section
IL.)

The dotted curve represents j(q 2) of Eq. (3.1), while the continuous line
represents the value of J,,(¢%) =J(;)(@®) -7 ;(0). The calculation of J(g?) was
made form = 0.260 GeV and M = 0.6 GeV. [Note that _J-(qz) has an imaginary
part for g >4M 2 since we did not include the confinement vertex in the
integrals containing the regulator mass M.] Values of f(p)(q 2) were taken from
Ref. [6], where the cutoffs, Ay and A;, were used in the regularization
procedure.

The dashed curve shows the value of J(g2) =7,(q%) - Jp(q?>). [See Egs. (2.6)-
(2.11).1  Only ReJ (qz) is shown. The continuous curve represents
J wp'd 2) =7 w4 2) -J (p)(O) and is the same as the corresponding curve shown in
Fig. 4. This figure shows the effects of confinement in the calculation of the
vacuum polarization diagrams. (Note that ImJ (q2) is nonzero for q2 > 4m2.)
The calculation of J(¢?) and J(g®) was made with m 4=0.26 GeV and

M=0.6 GeV.

- 16 -




/ 5










0.5 1.0

q%(GeV?)

G ¥




1.0

e S




