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1. Introduction

Not long ago, a long–outstanding goal in theoretical physics was achieved. The Bekenstein–

Hawking formula for black hole entropy was shown to have a microscopic origin in an

explicit string theory computation. This computation was performed for extremal five–

dimensional Reissner–Nordström black holes in ref.[1]1, and then for the slightly non–

extremal case in refs[4,5]. The computation was further generalised to five–dimensional

rotating black holes in ref.[6].

String theory2 has long been heralded as a complete theory of quantum gravity. Over the

years, it has taught us that we should think of black holes as not merely solutions of the

background field equations of string theory, but as being made of strings, in some sense.

The string folklore is that a black hole solution of the background field equations is really

a condensate of the graviton, described perturbatively by string theory. So the problem of

computing properties of the black hole really addresses the problem of understanding how

to describe a black hole in terms of its most basic constituents, and not simply treating

it as a background about which to perturb. The type of calculation outlined in ref.[1] has

begun to make sense of a number of these ideas.

It is a strong coupling problem to compute the entropy of a black hole. However, the

insight gained over the past year into the structure of strong coupling string theory brings

with it the realisation that we might (in some special cases) be able to compute the

entropy in some weak coupling regime and trust that it may be successfully extrapolated.

Emboldened by the discovery[9] of the relevance of D–brane technology[10] to the study

of Ramond–Ramond (R-R) charged extended objects in types I and II superstring theory,

the authors of ref.[1] demonstrated that the intuition that D–branes can be thought of as

a weak coupling description of R-R charged black holes can be made precise.

The moral of the calculation is as follows: Extremal black holes (i.e., the strong coupling

description) with large multiples of the fundamental units of R-R charge, (and with some

large Neveu–Schwarz–Neveu–Schwarz (NS-NS) charge corresponding to an internal mo-

mentum, in the five–dimensional example of ref.[1]) seem to correspond at weak coupling

1 There is a qualitative proposal for a different string theory computation of the entropy in the

literature. See refs.[2,3].
2 We use the term cautiously. It is clear that string theory is more than a theory of strings, and

that the (unknown) complete theory necessarily admits descriptions in terms of other extended

objects. Overwhelming evidence for this has been accumulated over the past year. See, for

example, refs.[7,8] for (pre–D–brane era) discussions of suggestive computations, with references.

Precise computational power emerged with the discovery[9] that the extended objects called D–

branes[10] carry the basic units of Ramond–Ramond charge. Ref.[11] contains a presentation of

some of the basic techniques and applications of D–branes.
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to BPS3 excitations of bound states of D–branes carrying these elementary units of R-R

charges. The degeneracy of these excitations gives a result for the entropy which precisely

matches the entropy which one would deduce from the horizon area of the extremal black

hole using the Bekenstein–Hawking area law. The fact that the excitations are BPS is the

key to complete confidence in the statement that the extrapolation of this result to strong

coupling makes sense, a procedure which has borne much fruit in recent times. Additional

exciting results have been presented recently showing that it is possible (in the right limits)

to further compute the Bekenstein–Hawking entropy from first principles for non–extremal

black holes[4,5].

All of the examples of this type of computation have been for five–dimensional black holes.

It would be comforting to demonstrate that computations of the same spirit can be per-

formed in a four–dimensional setting. Such a demonstration is presented in this paper.

Our example involves the four–dimensional extremal Reissner–Nordström black hole solu-

tions of the Einstein–Maxwell system. This solution can be embedded into string theory in

many different ways[12–18]. We choose two T–dual embeddings which we study in a six–

dimensional string theory. Our calculation is as follows: Looking at the five–dimensional

subspace (t, r, θ, φ, x4) we see that the solution looks like a combination of a charged black

hole and a Kaluza–Klein monopole4, where the fifth dimension has been fibred over the

angular coordinates to give a Taub–NUT–like geometry[19]. In six dimensions, we see that

the solution has a momentum (or winding number in the T–dual) in the sixth dimension

x5. This is very similar to the situation in the pioneering examples. Once in six dimen-

sions we see that we have two (T–dual) D–Brane bound state excitation problems. One

of them is identical to that of ref.[1]. An important novelty here is of course that the D–

brane composite is really bound to a Kaluza–Klein monopole, and so we are addressing a

somewhat different bound state problem. In the strong coupling solution, the monopole’s

magnetic charge is essential in maintaining a constant modulus for the x4 direction, and

hence ensure that the four-dimensional string coupling is constant everywhere. For the

purposes of the degeneracy counting at weak coupling, the monopole does not affect the

internal structure of the D–brane excitations.

In section 2 we present the two T–dual six–dimensional problems as uplifted four–

dimensional black holes, calling them models ‘A’ and ‘B’ appropriately after the type

II string theories they live in. We compute and display the charges, horizon area, and

then the entropy in terms of these quantities. Section 3 briefly describes the weak coupling

3 States satisfying a Bogomol’nyi–Prasad–Sommerfeld bound. They are in reduced multiplets of the

supersymmetry algebra. Formulae for their masses and charges are protected by supersymmetry

regardless of the values of the coupling constants in the theory. So an enumeration of their number

is a reliable thing to extrapolate in coupling space.
4 This is quite distinct from the previous examples, where at this stage one really has a five–

dimensional black hole.
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bound state problems to which we map the field configurations of section 2. We review the

degeneracy counting arguments for model B in section 4 and then show how it translates

into the same counting for the isomorphic bound state problem in model A. The irrele-

vance of the monopole to the counting problem is also discussed in section 4. The entropy

computed by explicit enumeration of the degeneracy of BPS excitations agrees with the

Bekenstein–Hawking area law, as advertised.

2. Four–Dimensional Reissner–Nordström

The electrically charged extremal Reissner–Nordström solution of the Einstein–Maxwell

system:

I ∼
∫

d4x
√
−g

(
R −

1

4
F 2

)
(2.1)

is given by

ds2 = − V −2dt2 + V 2(dr2 + r2dθ2 + r2 sin2 θdφ2)

A =2V −1dt, V = 1 +
k

r
.

(2.2)

This solution has a degenerate horizon of non–zero area at r = 0. It was first considered in

the context of supergravity in [20] (see also [21]). More recently, supersymmetric as well

as non–supersymmetric embeddings of the extremal Reissner–Nordström black hole were

found in [12–18]. The particular embedding we consider preserves 1/4 of the spacetime

supersymmetries of heterotic string theory compactified on a six–torus, T 6 (see [15,18] and

references therein).

This solution preserves 1/8 of the supersymmetries of N = 8, D = 4 supergravity, which

arises as the low–energy limit of type II string theory compactified on T 6. In truncating to

heterotic string theory on T 6 or type II on K3×T 2, one has to make the correct sign choice

for the fields in accordance with the sign choice in the truncation from N = 8 to N = 4

(or, more precisely, in the truncation from N = 2 to N = 1 in D = 10). In this manner,

one of the four supersymmetries is preserved in the resultant N = 4, D = 4 supergravity

limit of these latter compactifications. The opposite sign choice can still be seen to be

supersymmetric, provided the opposite sign choice is made in truncating from N = 8 to

N = 4 [18]. In any case, we choose in this paper the embedding that is supersymmetric

in the appropriate theory, and which under T–duality and other duality transformations

remains supersymmetric with the same amount of supersymmetry preserved[22].

2.1. Model B

The solution may be embedded into six–dimensional type IIB string theory (compactified
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on K3 for our discussion5) whose action contains the terms:

IIIB = 8V4

∫
d6x

√
−g

[
e−2Φ

(
R + 4(∂Φ)2 − (∂σ)2 −

1

12
H2

)
−

e2σ

12
F 2

(3)

]
. (2.3)

As is evident from this action, we are working with the string metric g. The remaining

fields σ, Φ, H and F(3) are the volume modulus scalar for K3, the six–dimensional dilaton

(a linear combination of the ten–dimensional dilaton and σ), the 3–form field strength for

the NS-NS 2–form B, and the 3–form field strength for the R-R 2–form A(2). We use units

where α′ = 1. We also retain V4, the volume of the K3 surface. The six–dimensional

solution is now:

ds2 = −V −2dt2 + V 2(dr2 + r2dθ2 + r2 sin2 θdφ2)

+ k2(dx4 − cos θ dφ)2 + L2

(
dx5 +

1

L
(V −1 − 1)dt

)2

;

A(2) =
L

λλ̃
V −1dt ∧ dx5 −

k2

λλ̃
cos θ dφ ∧ dx4;

eΦ = λ; eσ = λ̃; B = 0.

(2.4)

where V = 1 + k/r.

This solution can be seen to be supersymmetric as follows: in [18] it was shown that the

truncation of the type IIB theory to an N = 1, D = 10 theory consisting of its NS-NS fields

contained the extremal Reissner-Nordström black hole as a supersymmetric solution which

preserved a quarter of the remaining supersymmetries. In D = 10, this NS-NS solution is

related to the ten–dimensional uplift of the solution (2.4) by interchanging the R-R and

NS-NS two-forms. However, once the 4–form potential generating the self–dual 5–form

field strength of IIB is set to zero, the R-R and NS-NS 3–form field strengths appear in

an identical manner in the supersymmetry transformations in D = 10 [23]. It then follows

that the ten–dimensional R-R solution is supersymmetric, since the NS-NS version was

already shown to be so [18]. In compactifying back to six dimensions, the solution (2.4)

is then seen to be supersymmetric and preserves 1/4 of the spacetime supersymmetries of

the N = 2 theory.

The metric here is written in the standard form for Kaluza–Klein reduction. The first line

of the line element ds2 yields the four–dimensional Reissner–Nordström in the (t, r, θ, φ)

subspace. We have chosen the coordinate x5 to have periodicity 2π, while the 4π periodicity

of x4 is fixed by the fact that the (r, θ, φ, x4) subspace forms a Euclidean Taub–NUT–like

space[24]. The periodicity is chosen to avoid singularities on θ = 0 and θ = π. Conse-

quently, the (θ, φ, x4) subspace has the topology of a 3–sphere[25]. The five–dimensional

subspace (t, r, θ, φ, x4) thus forms essentially a magnetic Kaluza–Klein monopole [19], first

5 We could also consider a compactification on T 4.

4



found to be a solution of string theory in [13]6. In four dimensions, g44 and g55 will play

the role of scalar fields, which in this case are simply the constants k2 and L2. Similarly,

g5µ/g55 and g4µ/g44 play the role of four–dimensional gauge fields.

The solution carries the following six–dimensional conserved F(3) charges:

Q1 =
V4

2π5/2

∫

S3

e2σ ∗F(3) =
23

√
π

V4
λ̃

λ
k2;

Q5 = 23π3/2

∫

S3

F(3) =27π7/2 k2

λ̃λ
.

(2.5)

The off–diagonal metric component g5t indicates that the solution also carries momentum

P 5 in the x5 direction. Calculating the total ADM momentum yields

P 5 =
N

L
, where N = 28π3V4

k2L2

λ2
. (2.6)

Calculating the total ADM mass yields:

M = 210V4π
3 k2L2

λ2
. (2.7)

The extremal black hole has a horizon at r = 0 which has finite area given by7

A = 25π3k3L. (2.8)

The Bekenstein–Hawking entropy formula[29] then states that the entropy of this extremal

black hole is

S =
A

4GN
= 210V4π

4 k3L

λ2
, (2.9)

where GN is the effective Newton’s constant (16πGN)−1 = 8V4/λ2. Note that we can

write the entropy in the form S = 2π
√

Q1Q5N .

6 In fact, this supersymmetric embedding of the extremal Reissner–Nordström black hole represents

a bound state[14,3,26,18] of two electric/magnetic dual pairs of dilaton black holes[20,27,12], each

in turn representing bound states of a Kaluza–Klein black hole and an H–monopole[28]. For our

purposes, however, the magnetic Kaluza–Klein monopole plays a particularly important role.
7 We are working with the six–dimensional area here. Of course, it can be written as the as the

product of the four–dimensional area with the volume of the x4,5 space. Note, however that the

correct topology of the horizon is S3
×S1. It is more natural to work in terms of six–dimensional

quantities, bearing in mind that the reduction to four–dimensional results is trivial.
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2.2. Model A

We now consider a solution of type IIA string theory compactified on K3 to six dimensions

with action:

IIIA = 8V4

∫
d6x

√
−g

[
e−2Φ

(
R + 4(∂Φ)2 − (∂σ)2 −

1

12
H2

)

−
e2σ

4
F 2

(2) −
e−2σ

4
F̂ 2

(2)

]
,

(2.10)

which is:
ds2 = −V −2dt2 + V 2(dr2 + r2dθ2 + r2 sin2 θdφ2)

+ k2(dx4 − cos θdφ)2 + L′2(dx5)2;

eΦ = λ′; eσ = λ̃;

B = L′(V −1 − 1)dt ∧ dx5;

A(1) =
1

λ′λ̃
V −1dt; Â(1) =

λ̃

λ′
V −1dt,

(2.11)

where again V = 1 + k/r. Here F(2) is the 2–form field strength for the (ten–dimensional)

R-R vector A(1), while F̂(2) is a 2–form R-R field strength for the vector Â(1). The latter

field strength is the six–dimensional Hodge dual of the 4–form field strength of the (ten–

dimensional) type IIA string. Finally, B is the NS-NS 2–form potential with field strength

H. This solution and the previous one (2.4) are precisely dual under a T–duality trans-

formation8 in the x5 direction if L′ = 1/L and λ′ = λ/L. As noted above the solutions

preserve the same amount of supersymmetry.

The solution has an electric F(2) charge

Q0 =
V4

π7/2

∫

S3×S1

e2σ ∗F(2) =
23

√
π

V4
λ̃L′

λ′
k2. (2.12)

There is also an electric F̂(2) charge:

Q4 = 4
√

π

∫

S3×S1

e−2σ ∗F̂(2) = 27π7/2 L′

λ̃λ′

k2. (2.13)

Finally the solution also carries an ‘electric’ charge from the NS-NS 3–form H, given by

W = 16πV4

∫

S3

e−2Φ ∗H = 28π3V4
k2

λ′2
. (2.14)

8 See for example ref.[23] for explicit details of how T–duality operates on the background fields in

type II theory.

6



The horizon (still at r = 0) area is:

A = 25π3k3L′. (2.15)

The Bekenstein–Hawking entropy formula[29] then states that the entropy of this extremal

black hole is

S =
A

4GN
= 210π4V4

k3L′

λ′2
, (2.16)

where GN is the effective Newton’s constant (16πGN)−1 = 8V4/λ′2. Note that we can

write the entropy in the form S = 2π
√

Q0Q4W .

These results are of course T–dual to the ones derived in the previous sub–section.

3. Two Bound State Problems

The next step is to identify the ingredients of the weak coupling description. This is done

by recalling the result of ref.[9] that the basic carriers of R-R charge in type II string

theory are p–dimensional extended objects which we shall call here ‘Dp–branes’. (We

reserve the term ‘D–brane’ for the more generic extended objects, or when we have bound

states.) In ten dimensions, the world volume of these objects couple to (p + 1)–form R-

R potentials, and they therefore carry ‘electric’ charges with respect to a (p + 2)–form

R-R field strength[11]. Therefore, by noting the amounts of charge that all of the R-R

fields in the solutions (2.4) and (2.11) have9, we can determine the composition of the

D–brane bound states which the solutions become at weak coupling. The NS-NS charges

(associated with g5µ, g4µ and B) then complete our picture of the underlying bound state

configuration. In model A, the electric B charge indicates the presence of ‘fundamental’

strings winding around x5.

3.1. Model B

In the type IIB theory, we have a solution with magnetic charge Q5 and electric charge Q0

with respect to the R-R 3–form field strength. The fundamental objects which carry these

charges in six dimensions are D1–branes, otherwise known as D–strings. From the ten–

dimensional point of view, there are a number of ways to construct composite D–strings

in compactifying to six dimensions. Type IIB string theory contains 3–, 5– and 7–form

9 Note that in the previous sections we have used normalisations which ensure that our charges

are integer amounts of the basic units [9,11]. Thus the R-R charges simply count the number

of the corresponding D–branes in the underlying bound state. The energetic reader may find it

instructive to check that the analogous formulae yield also the correct integral quantisation for

the momentum and winding number.
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field strengths in ten dimensions, for which D1–branes, D3–branes and D5–branes carry

electric charge. In compactifying from ten to six dimensions on K3, the last two extended

objects can wrap themselves around the 2– and 4–cycles of K3 and appear as D–strings

in six dimensions.

The case which we consider here is a compactification in which Q5 D5–branes (which

carry magnetic R-R 3–form charge) wrap around the whole of an internal K3, appearing

as strings in six dimensions, forming a composite with Q1 D1–branes (which carry electric

R-R 3–form charge). BPS excitations of such a configuration preserve 1/4 of the spacetime

supersymmetries in the N = 2 theory, as the problem requires. This D–string composite

must also have momentum P 5 = N/L in the compact x5 direction in order to match

the g5µ charge of the black hole configuration (2.4). This D–brane composite is the same

object as found in ref.[1]. Finally, we ascertain from the g4µ charge in the solution (2.4)

the presence of a magnetic Kaluza–Klein monopole. Hence, the complete configuration is

comprised of the D-string composite bound to a Kaluza–Klein monopole.

3.2. Model A

In the (T–dual) type IIA theory, the situation is slightly different. We have electric NS-NS

3–form charge (winding number) W , the smallest unit of which is carried by fundamental

type IIA strings, together with electric R-R charges Q0 and Q4, which are carried by D0–

branes in six dimensions. In ten dimensions, our type IIA compactification has a D4–brane

(which carries electric 6–form charge in ten dimensions) wrapped about the K3, appearing

as a D–particle in six dimensions. The bound state problem is one involving a D–particle

composed of Q0 D0–branes and Q4 wrapped D4–branes, threaded by10 fundamental type

IIA strings winding around the x5 circle with total winding number W . As before, the D–

particle is placed in the monopole background, which provides the extra magnetic charge.

Once again, BPS excitations of this bound state will preserve 1/4 of the supersymmetries.

4. Microscopic Entropy

4.1. Model B

To evaluate the entropy of the black hole, we need to simply count the various BPS

excitations of the bound states which we discussed in the previous section. The problem

of R-R bound states has received much attention recently, and much of the counting

techniques used in the black hole computations rely on results derived in refs[31,32].

10 Such configurations of R-R ‘beads’ on a NS-NS ‘necklace’ have been considered recently in ref.[30]

in a different but not unrelated context.
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In the problem presented in the type IIB theory the answer is very familiar, as it has been

used several times now[1][4][5]. Let us set it up as a standard piece of elementary D–brane

calculus[11]. We have Q1 parallel D1–branes and Q5 parallel D5–branes bound together.

This configuration yields the following decomposition of the spacetime Lorentz group:

SO(1, 9) ⊃ SO(1, 1)⊗ SO(4) ⊗ SO(4), (4.1)

where the first factor acts along the D–string world sheet (t, x5), the third acts in the

rest of the D5–brane world–volume (x6, x7, x8, x9) and the second in the rest of spacetime

(x1, x2, x3, x4). In studying the BPS excitations of the bound states which have the high-

est degeneracy, we study the (1,5) and (5,1) open string sector[4], i.e., oriented strings

stretching between the D1– and D5–branes11. There are 2 bosons with NN boundary con-

ditions12, 4 with DD and 4 with ND. Working in the light–cone gauge, these give a zero

point energy of −1/12. The NS sector fermions in the four ND directions will be integer

moded. Accordingly, the vacuum energy of the NS fermions cancels that of the bosons,

while the integer moding produces a degenerate vacuum (like the R sector does in ordinary

NN string theory) forming a spinor under the world–volume SO(4) mentioned above. It

is a boson under the spacetime SO(1, 5) Lorentz group. After the GSO projection, it is a

two–dimensional representation. The R sector fermions will have half–integer moding in

the four ND directions and thus produce vacuum energy 1/12 again, giving a zero energy

degenerate vacuum, which is a spinor of the SO(1, 5), i.e., it is a spacetime fermion. The

GSO projection and a requirement that the state is left–moving (as we are interested in

BPS excitations) reduces the number of states to two, matching the spacetime bosons from

the previous sector. As (1,5) and (5,1) states are different (we are considering oriented

strings here), we have 4Q1Q5 boson–fermion ground states.

Our configuration carries momentum N in the x5 direction around which the D–string is

wrapped. The number of ways, d(N), of distributing a total momentum N amongst the

(1,5) and (5,1) strings is given by the partition function:

∑
d(N)qN =

(
∞∏

n=1

1 + qn

1 − qn

)4Q1Q5

. (4.2)

For large N , this gives d(N) ∼ exp(2π
√

Q1Q5N), and S = ln d(N) yields precisely the

entropy (2.16) we computed for our black hole using the Bekenstein–Hawking area law, in

section 2.

4.2. Model A

The counting problem as presented above readily lends itself to adaptation to other prob-

lems. One such is the T–dual type IIA configuration discussed as the second bound state

11 This is true for large Q1 and Q5

12 Here, ‘N’ means Neumann, while ‘D’ means Dirichlet.
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problem in the previous section. Here, we have first to consider the D–particle as a bound

state of Q0 D0–branes and Q4 D4–branes, the latter wrapping around the K3 as before.

Clearly we do not need to study this configuration’s vacua in any more detail, as we will

arrive at exactly the same conclusions as for the problem above, because they are T–dual:

T–duality exchanges Neumann with Dirichlet boundary conditions for the x5 direction and

so the modings will not change.

We therefore have a bound state D–particle with 4Q0Q4 microstates in boson–fermion

pairs. However, now we do not have momentum in the x5 direction. It is the winding

number that plays the important role here. The electric NS-NS 3–form charge of the black

hole solution tells us that there is a large x5 winding number W in the problem, which is

of course carried by the fundamental type IIA strings. The BPS excitations of the bound

state which we want to consider are therefore those where we have distributed this winding

number W amongst the 4Q0Q4 boson–fermion pairs which we counted as (0, 4) and (4, 0)

fundamental type IIA strings. We simply ask that we give these states winding number

in as many ways as is possible to make total winding number W . So the configurations

of strings which we considered connecting the constituents of the bound state are allowed

to wind w times around the x5 direction before connecting between two D–branes. The

configurations thus look like NS-NS ‘necklaces’ made of fundamental winding IIA strings,

with a R-R ‘bead’ (the D–particle composite) somewhere along its length. The number of

ways, d(W ) of distributing the winding W is given by the partition function:

∑
d(W )qW =

(
∞∏

w=1

1 + qw

1 − qw

)4Q0Q4

. (4.3)

This yields the same entropy previously computed for model B, which is in agreement with

the Bekenstein–Hawking area law.

Once again, we stress that the bound state exists in a Kaluza–Klein monopole background,

whose role at weak coupling was simply to contribute to the measured charges, but at

strong coupling returns us to the configurations of section 2.

4.3. The Monopole

The above discussions (which follow that presented in ref.[4]) are complementary to the

one presented in ref.[1], where the same behaviour in the large N (or W ) limit arises from

the elliptic genus of a sigma model whose target is a symmetric product[32] of K3. The K3

is assumed small compared to the circle x5 and the D1–brane components of the D–string

bound state are free to explore the K3, about which the (relatively frozen) D5–brane is

wrapped.

It is clear from this point of view that only relative motions of the D–branes in the

x5, x6, x7, x8 and x9 directions are relevant to the degeneracy counting problem. Exci-
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tations in the transverse directions corresponding to separating the bound state are irrel-

evant. The monopole has no structure in the x5, x6, x7, x8 and x9 directions and hence

it only produces a transverse potential. Thus it will not affect the counting discussions

presented above.

Further note that in isolation the monopole is a soliton and hence has no intrinsic entropy.

Hence the entropy of the total bound state system arises entirely from the contribution of

the D–branes computed above.

5. Conclusions

We have demonstrated that the entropy of four–dimensional extremal Reissner–Nordström

black holes can be computed in essentially the same way as pioneered in ref.[1] for five–

dimensional black holes: Computing in the black hole is a strong coupling string theory

problem, but we can compute the entropy in the weak coupling limit using D–brane calcu-

lus, and extrapolate our results back to the strong coupling regime, secure in the knowledge

that as we have computed the degeneracy of BPS excitations, our data is protected by su-

persymmetry. A crucial difference between our situation and that of ref.[1] is that our

bound states live in a monopole background. This monopole has no effect on the weak

coupling counting problem, however the extra magnetic charge is essential in producing

the non–singular four–dimensional field configuration.

It is interesting to note that in the five–dimensional cases like ref.[1], there are three

charges parametrising the black hole, two R-R and one NS-NS. The precise arrangement

of the charges is essential in producing a nonsingular black hole with a finite area horizon.

One may observe[33]13 that all solutions related to the latter under the five-dimensional

U–duality group E6(6) are similarly nonsingular because the horizon area is related to

cubic invariant of E6(6). In the present problem, the addition of the monopole charge is

essential in producing a finite area horizon. The combined arrangement of four charges

must combine in the quartic invariant of the four dimensional U–duality group, E7(7), (see

refs.[34,35]) which is conjectured to determine the area of the black hole horizon [34]. It

would be of some interest to verify explicitly that the area in the present solutions is given

by this E7(7) invariant.

One interesting aspect of the computation was to study how it took on different forms in

a T–dual picture. Of course, the entropy should be independent of T–duality (and more

generally, U–duality[35]), and it is pleasing to see how this happens in detail so cleanly.

In particular with the substitution L′ = 1/L and λ′ = λ/L in the model A results, we

have Q0 = Q1, Q4 = Q5 and W = N . One should expect that this result will work more

generally. We displayed only a subset of the class of embeddings of the four–dimensional

13 We thank Joe Polchinski for bringing this matter to our attention.
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Reissner–Nordström solution into type II string theory. There are other embeddings which

are T–dual to those discussed here, and others which are not [17,18]. One example of the

former is to T–dualise model A along the x4 direction. The resulting configuration involves

D1–branes wrapping the x4 direction, fundamental strings wrapping the x5 direction and

D5–branes wrapping the K3 and the x4 direction. There is also a NS-NS solitonic 5–

brane wrapping the K3 and x5, replacing the role of the monopole. Some of the latter

embeddings can be obtained, for example, by using string/string duality[35][36] to go from

type IIA on K3 to heterotic string theory on T 4, performing an O(22, 6) rotation and

then using string/string duality to return to type IIA. The class of backgrounds thus

generated contains a rich family of interesting (and presumably equivalent) bound state

problems involving varying amounts of R-R and NS-NS charged extended objects in diverse

backgrounds. It would certainly be interesting to study more of these, as they would shed

more light on the problem of bound states in string theory, extremal black holes and

perhaps non–extremal black holes.
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