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1 Introduction

While the energy increase of LEP will enable pair production of W 's and might open up the

threshold for new particles, notably the Higgs boson, a host of standard model processes will

also show up, as shown in Fig. 1.

Figure 1: Cross sections for some typical standard model processes.

For e+e� ! e+e� Z; e�eW;�e��eZ only the dominant t-channel contribution is shown. The

photons in Z and  are such that j cose j < 0:9. For ����� there is the additional cut

E >10GeV. In Z, W+W� and ZZ the photon cut is pT > 10GeV and all particles are

separated with opening angles: deV > 150; dV V 0 > 100; V = W;Z; .

Some of these processes can be considered as potential backgrounds to those most interesting
signals LEP2 intends to investigate. For instance, there are four-fermion processes that cannot
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be associated with the doubly-resonant WW production or with the Higgs-boson production.

Therefore, it is essential to know as precisely as possible the expected yield for these processes.

Quark- and lepton-pair production will be dominant reactions at LEP2 and can be exploited

for precision tests in this new energy range. Moreover, starting below the threshold for W

pair production one sees that other processes will take place, like for instance single Z and

W production. Beyond the WW threshold, one can envisage Z-pair production or even triple

vector-boson production, like WW, which involves the quartic vector couplings.

The aim of the Working Group has therefore been to provide as precise an evaluation as possible

of all those processes that were not investigated within theWW cross sections and distributions,

the MW or the Higgs groups in this Workshop, and which did not deal speci�cally with QCD

issues. The other objective was to indicate, like in the case of two-fermion and single-photon

processes, which interesting physics issues could be investigated.

2 Two-Fermion Production

2.1 General considerations, LEP2 vs LEP1

Quark- and lepton-pair production at LEP1 (and SLC) has provided one of the most stringent
tests on the Standard Model (SM) of electroweak interactions. It has also either constrained

or ruled out some alternative models, especially through their virtual indirect e�ects. At LEP2
energies, this process still remains one of the dominant processes. For instance, as evidenced
from Fig. 1, quark pair production has a larger cross section than the WW process, the bread
and butter of LEP2, and even larger after the inclusion of the initial state radiation (ISR).
In view of this expected wealth of events, it is worth enquiring if the characteristics of the
two-fermion observables will continue to be conducive to further tests of the SM and beyond.

One important observation, however, is that, as one moves away from the Z-peak, not only
fermion-pair production drops precipitously, but also the photon exchange becomes very im-
portant. The latter dominates the cross section for up-type quarks and even more so for �+��,
see Fig. 2. In particular, at

p
s = 175GeV one has �Z=� ' 0:27; 0:68; 3:52; 1:44 for �; u; d and

hadrons respectively. Another critical fact is the very large \correction" due to initial-state

radiation (QED). Above � 100GeV this more than doubles the muon Born cross section, as
displayed in Fig. 2. Therefore, it is essential that these corrections be controlled very precisely.
At LEP1 the latter were also very important, leading to a � 74% reduction factor of the peak
cross section, and were essentially due to soft-photon emission, while hard radiation (energetic

collinear photons) was inhibited. Indeed, around the resonance �Z acts as a natural cut-o� for

hard radiation. On the other hand, away from the Z-peak, the fast decrease of the cross section
favours the radiation of hard photons that boost the e�ective two-fermion centre-of-mass energy

back to the Z mass: this is the so-called Z return. Therefore, if for the inclusive two-fermion
cross section one looks at the invariant mass of the fermion pairs, mf �f =

p
s0 =

p
sx, one sees

that a large sample is clustered around mf �f 'MZ . The e�ect is quite dramatic for �q�q where,

at
p
s = 180GeV , about 70% of the events are \LEP1-type pairs", as one can see from Fig. 3.

Still, considering the canonical integrated LEP2 luminosity (500pb�1), one expects to measure

the various two-fermion observables with a good precision (even after discarding the Z-return
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Figure 2: The e+e� ! �+�� cross section before and after the ISR convolution. ISR is

included according to [1].

events) especially if one combines the 4 experiments. For instance, at
p
s = 175GeV , the

expected experimental precision on the muon cross section is about 1:3%, while for the hadronic�

one expects 0:7% [2]. The corresponding error for the forward-backward asymmetry of muons is
�A�

FB � 0:01 [2]. Note that this asymmetry is much larger than at LEP1. Another interesting
observable is Rb, with an expected overall accuracy of about 2:5% [3]. These numbers should
serve as benchmarks for the required accuracy on the theoretical calculations, �th . One should

aim, at least, at a theoretical precision below half the values quoted above. For instance, for
�h one needs �

th
h < 0:3%.

2.2 Radiative corrections and status of tuned comparisons

Although there have been many exhaustive studies of two-fermion �nal states and many pro-

grams have been successfully tested, the comparisons among these programs have been per-
formed and optimized for energies around the Z peak. For a very recent state-of-the-art in-

vestigation see [4], where the main emphasis was put on the expected theoretical accuracy,

assessed by comparing di�erent codes with di�erent implementations of the radiative correc-
tions. However, as for the case of ISR pointed at earlier, a few characteristics of the two-fermion

cross-sections are modi�ed and new aspects appear when going to higher energies.
In order to address the issue of the status and the perspectives of tuned comparisons for

e+e� ! �ff processes at LEP2 energies, it is worth reviewing the various building blocks for

computing observables related to the process e+e� ! �ff . We have:

�Here the WW events add as \backgrounds" that necessitate extra cuts.
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Figure 3: The invariant mass distribution of the hadrons at a centre-of-mass energy of 180GeV

before (solid) and after (dashed) cuts. The cuts reject an event if an isolated high energy photon

is seen in the detector; if not the acollinearity of the two jets has to be less than 200 and the

observed invariant mass larger than 0:4
p
s. The inlet is a blow-up (logarithmic scale) showing

what remains of the Z return events after cuts.

a) Pure electroweak corrections for the (kernel) deconvoluted distributions, including weak
boxes (WW and ZZ internal lines). The latter were neglected at LEP1 energies since
their relative contribution was of order 10�4.

b) Final state (FS) QED and QCD corrections.

c) Initial state (IS) QED radiation.

d) IS lepton- and quark-pair production (PP).

e) Initial-�nal (IF) QED interference.

The result of the implementation of each block is to be compared between di�erent codes
before a global comparison, which incorporates all the parts, is made. This not only avoids
eventual accidental cancellations, but also brings out the relative contribution of the various

\ingredients" entering in the totally convoluted \realistic observables". Within the study group,

issue a) (deconvoluted observables) has been investigated by comparing the results of three codes
based on di�erent approaches for the implementation of the kernel: TOPAZ0 [5] y, WOH [7]
and ZFITTER [8]. TOPAZ0 results have been computed in the 't Hooft-Feynman gauge, � = 1,
and within the MS scheme, WOH has also � = 1 but on shell (OS) renormalization scheme

yNote that TOPAZ0 has been particularly designed to run around the Z resonance and it is not optimized
for much higher energies. For the LEP2 study, TOPAZ0 has been modi�ed by upgrading the radiator function
according to ref. [6] and including the contribution from weak boxes.
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(RS) and, �nally, ZFITTER works in the unitary gauge and in the OS RS. All three codes have

adopted the input parameters:

M
Z

= 91:1884GeV; mt = 175GeV;

mH = 300GeV; �s(MZ
) = 0:123; ��1(M

Z
) = 128:896 (1)

A complete comparison incorporating all a)-e) (realistic observables) has been restricted to

TOPAZ0 (T) vs ZFITTER (Z) and covered a sample of six energies: the Z mass (in order to

establish a link with the LEP1 calculations) and six LEP 2 energies, i.e. 140; 150; 161; 175; 190;

205 GeV.

Because of the critical issue of the hard radiation at LEP2 energies and since both (T) and

(Z) now apply the same QED radiator function for the total cross section, issue c) has been

independently investigated by the Pavia group [9].

� Pure Electroweak Corrections: e�ective couplings and the box problem

The genuine electroweak corrections are by far the most interesting aspect of the two-fermion
observables. Indirect virtual e�ects of new physics can also mimic these corrections. Hence,
one needs to verify whether the strategies and approximations applied at the Z peak are still

at work. For example, a question related to the actual implementation of higher-order correc-
tions is connected with the attempt of parametrizing physical observables in terms of `running'
e�ective couplings. This language of e�ective couplings, which has been so successful at LEP1,
is deeply related to some factorization scheme that must be rediscussed at higher energies (for
instance, weak boxes were neglected at LEP1). This language reduces the computational com-

plexity, and does not introduce any t-dependence in the amplitudes, leading to a most useful
and successful parametrization in terms of e�ective (s-dependent) vector and axial-vector cou-
plings. Unfortunately, at LEP2 energies one expects the boxes to start resonating due to the
WW (and, to a lesser extent, ZZ) thresholds. Moreover, as can be inferred from a cut across
these boxes which reveals the e+e� !W+W� t-channel exchange, the box contribution is not

gauge invariant; in the same way that the t-channel for e+e� ! W+W� is not unitary.
To quantify the e�ect of boxes one should �rst address some theoretical considerations about
gauge invariance and give a procedure for isolating the e�ect of the weak boxes. It is well
known that only a proper arrangement of the radiative corrections to e+e� ! �ff , including
all contributions up to a given order, is gauge invariant. Every procedure designed for sub-

tracting some part from the whole answer, for instance deconvolution of QED radiation, must

respect gauge invariance. Formally, one writes the amplitude in terms of full 1PI vector-boson

self-energies, initial(�nal) vertex corrections and multiparticle exchange diagrams. Next, the
complex pole is derived in terms of the bare Lagrangian and, after a Laurent expansion, we end

up with the pole, the residue at the pole and the non-resonating background (that encapsulates
the t-dependence of the two-fermion amplitude), each of which is separately gauge invariant. It

turns out that at LEP2 energies the non-resonating background (to which the boxes contribute)
is not negligible. This is an unambiguous manifestation of the importance of the boxes.

Instead of using the complex pole formalism, which is di�cult to implement in the codes, the

e�ect of the boxes in the comparison has been handled by agreeing on a procedure for \ex-
tracting" the WW exchange box diagram. Schematically, this diagram is denoted by B

WW
(�)
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as computed in a general R� gauge. It may be split, non-uniquely though, according to

B
WW

(�) = B
WW

(1) +
�
�2 � 1

�
�(�) = B

WW
(�0) + ��(�; �0) (2)

When working in the R� gauge, we can incorporate �� into the rest of the amplitude, which is

�-dependent, and compute explicitly the WW box diagram in any �0 gauge. This approach is

gauge invariant but not unique, especially when di�erent procedures are adopted like keeping

the weak boxes outside the QED convolution or performing re-summations. At this point we

can adopt two di�erent strategies. On the one hand, one can use the ZFITTER prescription

of including the weak boxes into the form-factors. These then become explicit functions of the

scattering angle. On the other hand, for comparison purposes, a proposal for \de-boxization"

has been made. As one presents results for QED deconvoluted quantities, we could also subtract

weak boxes from the data with few simple rules:

i It was agreed to substract B
WW

(� = 1). At LEP1 this contribution can be neglected, its
relative e�ect being of order 10�4.

ii those who work in the � = 1 gauge stop here,

iii those who work in any �0 gauge compensate the rest of the amplitude with ��(�0; 1).

The e�ect of weak boxes (as de�ned above) is studied on the deconvoluted observables Odec

(i.e. before the inclusion of any IS and FS radiation) through the quantity �B:

�B =
�dec

�0
� 1 where �dec = �0 + �box (3)

and �0 is the corrected cross section but without the inclusion of boxes.
First, for e+e� ! ��; �dd; �uu TOPAZ0 and ZFITTER are found to agree extremely well fromp
s = M

Z
up to LEP2 energies, including the region around the WW threshold. The relative

discrepancy is well below the per-mil level for both � and u and at worst 1:3 per-mil for d. There

is some minor (in view of the expected experimental accuracy) disagreement with WOH(W ):
j�(W � T )j� < 0:3% ; j�(W � T )ju < 0:5% ; j�(W � T )jd < 0:7%.
An important result, already pointed at, is that the e�ect of weak boxes is not negligible

(a few per-cent in terms of �B) especially around the WW threshold and at the highest LEP2
energies. For instance, at 205GeV, �B for the �; d; u channels is�1:1%(�1:2%),�2:2%(�2:6%),
�3:4%(�4:1%) for TOPAZ0/ZFITTER(WOH). The results for the other energies are displayed

in Table 1. This table also shows the e�ect of the boxes for �b�b and �hadrons. For these two

observables the comparison only involves TOPAZ0 and ZFITTER.

Comparisons of the results for �b�b reveals a discrepancy between TOPAZ0 and ZFITTER

which attains � 2% at
p
s = 161GeV and 205GeV while the agreement for d is excellent.

Looking in more detail, one sees that ZFITTER gives almost exactly the same �B for both d

and b. It should be remarked that, in ZFITTER (but not TOPAZ0) the top mass is neglected

in the boxes. The TOPAZ0 results suggest that the inclusion of the mass decreases the relative

e�ect of the box, as one would naively expect. This disagreement is in fact another indication

of the special role played by the b observables, a result reminiscent of the Z ! b�b at LEP1 and
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ECM ZFITTER TOPAZ0

(GeV)

�� �u �d �b �h �� �u �d �b �h

MZ +0.00 -0.01 0.00 0.00 +0.00 +0.00 +0.00 -0.01 0.00 0.00

100 -0.59 -3.56 -0.50 -0.51 -1.59 -0.59 -3.33 -0.40 -0.51 -1.41

140 +0.09 -11.09 +1.02 +0.94 -4.71 +0.07 -10.69 +0.84 +0.00 -4.66

150 +1.79 -10.00 +4.32 +4.36 -2.59 +1.81 -9.58 +4.09 +0.51 -3.10

161 +11.75 +3.52 +24.63 +24.90 +14.16 +11.81 +3.37 +23.38 +3.86 +10.17

175 +2.02 -12.64 +5.10 +5.14 -3.94 +1.84 -12.37 +4.67 +0.80 -4.29

190 -5.29 -25.25 -10.48 -10.60 -18.12 -5.58 -24.69 -10.25 -2.30 -16.45

205 -10.53 -34.89 -22.38 -22.56 -28.95 -10.95 -34.11 -21.66 -5.18 -25.60

Table 1: The e�ect (in per-mil) of Weak Boxes, �B, on �
�, �u, �d, �b and �h before convolution.

the top connection. Note, however, that the b-box result does not have the same conceptual
importance as the Zb�b vertex in the sense of the non-decoupling of the heavy top (or equivalently
the contribution of the Goldstone Bosons). Anyhow, this disagreement largely gets diluted and
disappears when considering the total hadronic cross section. For the hadrons, the largest
di�erence in �B (about 0:4%) shows up around the WW threshold where the e�ect of the boxes

is about 1%. The contribution of the boxes to �h is larger at 190GeV and 205GeV, reaching
about 2%.
Concluding on the e�ect of boxes and the comparison between the genuine weak corrections, we
mention that the e�ect of boxes on the forward-backward asymmetry for muons is well below
0.01 and that TOPAZ0 and ZFITTER have been checked to agree perfectly for this observable.

Once one has subtracted the e�ect of the boxes, the remaining building block of the genuine
electroweak corrections are essentially those one has dealt with at length at LEP1 (apart from
the fact that these are now evaluated at k2 6= M2

Z). It is then worth inquiring about what

one can learn from these \properly de�ned" observables that one has not from LEP1. In fact,
one could further subtract the k2 = M2

Z part and express the LEP2 observables in terms of
the corresponding LEP1 quantities as suggested in [10]. The LEP1 observables were powerful
enough in the sense that heavy particles, like the top, did not decouple, therefore allowing
to put stringent limits on (or even ruling out) models beyond the SM . Unfortunately, after

isolating the LEP1 observables, the remaining k2 functions do not show much sensitivity to
heavy particles, unless one is not far from their threshold. A most interesting topic concerning

the k2 dependence is the extraction of the running of �em. If this could be done unambiguously,

in a gauge-invariant way, one might hope to measure the non-Abelian contribution to the
running that exhibits anti-screening and which, at high-energy, slows down the growing of

�em. It has been suggested to exploit the pinch technique [11], but more work related to this
important issue is still needed.

� ISR: Pure QED radiation

We have already stressed the qualitative di�erence between initial state radiation at LEP1

vs LEP2 energies. Because of this important di�erence and the overwhelming e�ect of this
\correction" (see Fig. 1 and Fig. 2), it is crucial to reassess the implementations of the ISR
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and then see how the convoluted \realistic" observables compare in di�erent codes. This is

most conveniently done by convoluting the weakly-corrected cross section �dec (see Eq. 3) with

a radiator function, G(x = s0=s), that encapsulates the results of the QED corrections (virtual

corrections and real radiation)

�(s) =
Z 1

xcut

dx �dec(s
0) G(x) (4)

For a fully extrapolated set-up, xcut = 4m2
f=s. To cut the \Z-return" at LEP2, one may take

xcut > 0:5.

Clearly the O(�) result in G(x) is not su�cient. The O(�2) has been computed exactly[6]

while one can resum (at least) the soft photons to all orders. This resummation is important

especially for LEP1, and introduces an \exponentiation scheme ambiguity". A typical scheme,

or parametrization for G(x), after soft-photon resummation, is

G(x) = � (1 � x)��1�S+V + �H(x); � = 2
�

�
(L � 1) L = log

s

m2
e

(5)

where �S+V can be associated to the virtual and soft (bremsstrahlung) corrections while the
additive �H is due to the hard-photon radiation (added linearly here). The large corrections

are due to the \collinear logs" and formally one may write

�S+V =
1X
n=0

�
�

�

�n nX
i=0

SniL
i �H(x) =

1X
n=1

�
�

�

�n nX
i=0

Hni(x)L
i (6)

All schemes reproduce the leading logs, LL (i.e. Snn;Hnn) up to some order n. For LEP1, n = 2
is su�cient. However, not all schemes reproduce even the exact O(�2) result. This di�erence is
reected essentially in the hard part and explains why schemes and codes (reproducing only the
leading logs) that agree perfectly at LEP1 energies, no longer do so away from the resonance.
Thus, TOPAZ0 has partly upgraded its radiator to reproduce the exactO(�2) result. Using the
de�nitions set in ref. [12], both TOPAZ0 and ZFITTER use now a radiator function of type GA

(i.e. of the same kind as in Eq. 5). GA includes the completeO(�2) corrections computed in [6].

One also expects that di�erent parametrizations of the hard part a�ect mainly the inclusive
cross section, while if a large xcut value is imposed, that cuts away the hard radiation, the
di�erence between the two schemes gets substantially smaller. To quantify the impact of the

hard radiation terms and make a comparison with the situation at LEP1, the e�ect of the

order O(�3) LL versus the O(�2) (LL also) has been investigated in the case of ���. The
implementation of the LL is most easily and conveniently done within the framework of the

QED structure-function approach. The cross section obtained with a standard (LEP1) additive
structure function with up to second-order hard contributions (�Ad2) is compared against a non-

singlet additive structure function inclusive of up to third-order hard-photon e�ects [13, 14]
(�Ad3). Applied to LEP1 the relative contribution of the latter is below 10�4. Figure 4 clearly
illustrates the points raised above [9]. While a stringent xcut > 0:5 makes the higher-order

e�ects completely negligible (below 10�4), for loose cuts xcut < 0:3 (inclusive set-up) the e�ect
lies in the range (0.1-0.4)% .
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Figure 4: The relative e�ect of the third-order leading log hard corrections on ��� as a function

of the cut on the invariant mass. Four LEP2 energies are considered.

While ZFITTER and TOPAZ0 use the same radiator function for the total cross section,
only ZFITTER implements the leading-log correction to the forward-backward asymmetry
as given in [15]. The latter involves a \non-symmetric "(i.e. it would vanish upon angular
integration) O(�2L2) contribution. This might be responsible for a tiny di�erence in A

FB
. The

comparison between TOPAZ0 and ZFITTER for the purely photonic convolution has been
made with two values of s0: the �rst corresponding to an inclusive set-up with s0 > 0:015 s and
the second to a loose cut on s0: s0 > 0:5 s. In this �rst comparison about the e�ect of ISR,
the contribution of the boxes discussed above is switched o�. The results are displayed for the
muon and hadronic cross sections, as well as the forward-backward asymmetry, in Table 2. For
��� in the inclusive set-up, there is excellent agreement for all the energies considered with an

almost constant relative deviation of about 3 per-mil. With a more stringent cut the agreement

is further improved and almost reaches the accuracy achieved at LEP1. As for A�
FB, the cut has

little e�ect on the absolute deviation which never exceeds 0:006 and is thus very satisfactory.

For the hadronic cross section, the worst deviation occurs at the WW threshold, attaining 7

per-mil in the inclusive set-up, but is reduced by an order of magnitude when the s0 cut is
applied. This table also shows the large reduction in the event sample when the stricter cuts

are applied, hence getting rid of the Z-return, as we discussed above.

� IS Pair Production (PP)

A consistent treatment of initial state radiation at O(�2) should include the radiation of ad-

ditional fermion pairs which also appear as a virtual correction at the two-loop level. Both
TOPAZ0 and ZFITTER have used the available results at O(�2) of the KKKS formulation [16].

This takes into account soft pair radiation with all events radiated up to some energy �� p
s

and hard-pair radiation
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s0 > 0:015 s s0 > 0:5 s

Ecm (GeV) ��(pb) �h(pb) A�
FB

��(pb) �h(pb) A�
FB

91.1884 1477.8 30442 -0.12891�10�2 1444.5 30320 -0.10435�10�2
1477.5 30444 -0.14298�10�2 1445.8 30326 -0.11169�10�2
0.20 -0.07 0.013 -0.90 -0.20 0.07

140 16.924 243.49 0.29892 7.4449 73.302 0.67141

16.879 243.30 0.29787 7.4380 73.214 0.67705

2.67 0.78 1.05 0.93 1.20 -5.64

150 13.676 189.70 0.29608 5.9608 52.284 0.64787

13.636 189.70 0.29659 5.9556 52.224 0.65244
2.93 0.00 -0.51 0.87 1.15 -4.57

161 11.085 148.33 0.28855 4.8799 39.325 0.62009

11.046 149.00 0.29436 4.8728 39.351 0.62396
3.53 -4.50 -5.81 1.46 -0.66 -3.87

175 9.0385 118.10 0.28826 4.0189 30.521 0.59394

9.0118 118.15 0.29194 4.0152 30.467 0.59749
2.96 -0.42 -3.68 0.92 1.77 -3.55

190 7.4763 95.922 0.28720 3.3516 24.394 0.57297
7.4545 95.633 0.28982 3.3494 24.304 0.57635

2.92 3.02 -2.62 0.66 3.70 -3.38

205 6.3184 80.021 0.28564 2.8479 20.119 0.55717

6.2989 79.459 0.28811 2.8465 20.014 0.56043

3.10 7.07 -2.47 0.49 5.25 -3.26

Table 2: Comparing the results of the ISR convolution with boxes switched o�. Two con�gu-

rations are considered: s0 > 0:015 s and s0 > 0:5 s. The �rst row is ZFITTER and the second

one is TOPAZ0. The third row is the relative deviation (in per-mil) for the cross sections and

(103�) the absolute deviation for the forward-backward asymmetry.

�pair = �S+Vpair + �Hpair ;

�S+V =
Z �2

4m2
dq2

Z (
p
s�
p

q2)2

(
p
s��)2

ds0
d2�4f

dq2ds0
;

d�H

ds0
=

Z s(1�
p

s0=s)2

4m2
dq2

d2�4f

dq2ds0
; �H =

Z s(1��=ps)2

szmin

ds0
d�H

ds0
(7)

The formula in Eq.7 involves two parameters � and zmin. The unnatural appearance of the

infrared separator � makes questionable the exponentiation of soft pairs. In [17], an expo-
nentiated result is given which is valid for leptons. No analogous treatment is available for

hadrons, where the O(�2) result must be corrected for numerically when considering in addi-
tion IS photon radiation. No e�ort at all has been made so far in order to `adapt' TOPAZ0

and ZFITTER for the treatment of radiated high-energy pairs. Both TOPAZ0 and ZFITTER
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do not exponentiate the \soft pairs" and �pair is added linearly to the cross section. There is

also the so-called zmin problem [16]. IS PP has been successfully compared around the Z reso-

nance for various values of this parameter, and �nally the default has been set to zmin = 0:25.

This corresponds to an experimental selection of Z decays where the invariant mass of the Z

products is at least 50% of the total and the soft{hard separator � has been �xed in the region

where we see a plateau of stability. However, above the WW threshold the four fermion chan-

nel becomes competitive and one must establish a clear separation between real four-fermion

events (see the section on four-fermion production below) and IS pair-production corrections

to two fermion events. It looks plausible to include into the corrections for two-fermion events

only very soft leptonic and hadronic pairs, i.e. something like zmin = 0:5; 0:6 corresponding to

70:7% or 77:5% of
p
s at

p
s = 200GeV. For the following comparisons, zmin = 0:5 has been

chosen.

The e�ect of pure photonic and pair-production initial state radiation on ��� is displayed in

Table 3 in terms of the relative contribution of the \pairs", �p. Although IS PP is very small

Ecm (GeV) ZFITTER TOPAZ0

91.1884 -2.57 -2.50
100 +4.41 +4.96
140 -2.95 -0.59
150 -3.43 -0.80
161 -3.58 -0.90

175 -3.90 -0.97
190 -4.10 -1.03
205 -4.27 -1.07

Table 3: The e�ect (in per-mil) of IS pair production, �p, on ��� with a cut s0 > 0:015 s and

zmin = 0:5. The �rst column is ZFITTER, the second is TOPAZ0.

(a few per-mil), we observe a much less satisfactory agreement between the two codes. With a
zmin = 0:5 cut the agreement ZFITTER/TOPAZ0 is remarkable up to the maximum positive
contribution, which happens to be around 100GeV, after which there is a consistent di�erence
of about 0:2 � 0:3%. Incidentally, for the inclusive ���, this is of the same order as the dis-
crepancy between the two codes when the IS PP is switched o� (see Table 2), with the result

that the two e�ects largely cancel. Inclusion of pair production at high energies requires more

theoretical work.

� IF QED interference

Although the formulations in TOPAZ0 and ZFITTER are totally independent, the IF QED
interference has been tested successfully over the whole range of energies.

� Global comparisons and realistic observables.

For the global comparisons, all the ingredients listed above are included simultaneously. It

should be noted that the weak boxes are added linearly to the cross section and are not con-
voluted with QED radiation. The outcome of this �nal overall confrontation are collected in

Table 4 for the case of s0 > 0:5s (and zmin = 0:5). For this value of s0, the radiative Z return at

LEP2 would be e�ectively discarded, and the observables would be more sensitive to the high
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Ecm (GeV) ��(pb) �h(pb) A�
FB

91.1884 1440.9 30243 -0.06278�10�2

1442.2 30249 -0.07646�10�2

-0.90 -0.20 0.14

100 110.47 2172.1 0.25148

110.32 2169.5 0.25202

1.36 +1.20 -0.54

140 7.5227 72.837 0.67444

7.5147 73.108 0.68313

1.06 -3.71 -8.69

150 6.0413 51.909 0.65176

6.0347 52.157 0.65933

1.09 -4.75 -7.57

161 4.9973 39.591 0.62250

4.9883 39.748 0.62937

1.80 -3.95 -6.87

175 4.0789 30.182 0.59910

4.0737 30.363 0.60559

1.28 -5.96 -6.49

190 3.3782 23.771 0.57940

3.3747 23.950 0.58565

1.04 -7.47 -6.25

205 2.8561 19.383 0.56462

2.8535 19.548 0.57071

0.91 -8.44 -6.09

Table 4: Overall comparison with a cut s0 > 0:5 s and zmin = 0:50 The �rst entry is ZFITTER,

the second one is TOPAZ0. The third entry is the relative deviation (in per-mil) for the cross

sections and (103�) the absolute deviation for the forward-backward asymmetry.

energy component of the kernel with the genuine electroweak corrections. For the muon cross
section, there is a remarkable agreement between the two codes almost equalling the level of

accuracy reached at LEP1. It is always below 0:2% at all energies. In fact, even when relaxing
the s0 cut to switch to the inclusive cross section, the agreement is excellent and much better

than the relative deviation observed in the case of the inclusion of pair production. As pointed
out above, the \more-than-needed" accuracy is partly due to some cancellation. For A�

FB, the

relative deviation does not compete with the one observed at LEP1 energies, nonetheless it
stays below the 0.01 mark. As mentioned earlier, part of the discrepancy may be attributed

to the di�erent inclusion of the pure QED ISR in TOPAZ0 and ZFITTER (the asymmetric

O(�2) is not implemented in TOPAZ0). For the hadronic cross section, the agreement is quite

satisfactory up to the WW threshold. Beyond this energy, it somehow degrades and reaches

even 0:8%. However, at these energies the box contributions (before convolution) were found
to show some discrepancy (see Table 1) that goes in the same direction as the discrepancy

revealed in the \realistic observable". Some of the deviation here should be attributed to the

di�erent treatment of the boxes for �b�b, and therefore one expects an improved agreement if
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the b boxes are calculated with the same input parameters.

Let us also mention that KORALZ has also been upgraded for LEP2 energies. KORALZ[18]

is a Monte-Carlo program for e+e� ! 2f n (f = �; �; u; d; c; s; b; �) which includes YFS ex-

clusive exponentiation of initial and �nal state bremstrahlung. Weak boxes are implemented.

Full details may be found in [19].

As a conclusion, fermion pair production is under control. The study has also revealed

which particular points require further investigation, i.e. especially the treatment of IS pairs.

An important fact is the con�rmation of the importance of the box contribution for all the

two-fermion channels, mainly at the WW threshold and at the highest LEP2 energies. This

should be kept in mind or compensated for when attempting to parametrize the two-fermion

observables in terms of running e�ective couplings or s-dependent form factors. Another im-

portant aspect that needs a more detailed study is how di�erent codes compare when realistic

cuts (such as accolinearity cuts, cuts on the energy and scattering angle of the fermions) are

applied on the fully dressed observables. A very preliminary investigation, restricted to the
muon case, shows that the agreement between TOAPZ0 and ZFITTER somehow degrades
when implementing an accolinearity cut. At the same time the integration error in TOPAZ0 is
larger than what is at the Z peak. All this shows that more optimisation for LEP2 energies is

needed, especially when introducing speci�c cuts.

3 Single-photon production

When studying fermion pair production the special case of neutrinos was not addressed, since
this contributes an invisible cross section. At LEP1 [20], the latter can be inferred from the
measurement of the lineshape, once it is assumed that all the visible modes are counted in
�e;�;� and �h. Another, less competitive, method at LEP1, is the measurement of the single
photon yield from e+e� ! ���. At LEP2 this technique is the only available way to reveal

the production of stable neutrals. One may think of the supersymmetric neutralinos and
sneutrinos or a fourth generation neutrino, to cite a few. For these heavy \beyond the SM"
neutrals, one needs to retain su�cient energy to produce them. Consequently, the associated
radiation will tend to be softer than the typical photons coming from the SM radiative
neutrino background. Actually, the latter are mostly very energetic and are easy to trigger on,

since they are predominantly photons that recoil against real Z0 decays to the 3 light neutrino

pairs. Once again, we are dealing with the radiative Z return, that produces very energetic

photons. Thus the situation is much more promising than at LEP1.

3.1 Experimental requirements

Single-photon counting experiments at LEP1 have been rather delicate due to the essentially
soft nature of the single photons. This necessitated low-trigger thresholds and high control of

backgrounds in order to achieve sensitivity to the Z0 invisible width [21]. In general, LEP1

experiments have required E > 1:5 GeV and have restricted to the large polar angle region
j cos(#)j < 0:7. At LEP2, the photon energy spectrum from e+e� ! ���() gives highly

energetic photons which are easy to trigger on and can be measured well. The detectors
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are expected to function with similar performance as at LEP1. One relevant di�erence is

that the minimum polar angle at which one can detect electromagnetic particles (veto angle),

is likely to increase from about 25 mrad at LEP1 to about 33 mrad at LEP2 due to the

installation of additional background shields to protect the tracking chambers from backgrounds

produced at the higher beam energies. This will lead to more stringent cuts on the transverse

momentum scaled to the beam energy, xT = pT=Eb, designed in order to kinematically eliminate

backgrounds from, e.g., radiative Bhabha scattering (where the two electrons are below the veto

angle). Moreover, LEP2 physics studies involving ISR can use the forward acceptance more

readily than at LEP1, due to the much higher energies involved. Details depend on backgrounds

and requirements: counting or measuring. Based on current analyses (studying for example

e+e� ! ) acceptance in polar angle in the region j cos(#)j < 0:95 should be achieved for

photons with su�cient pT . Using canonical cuts of xT = pT=Eb > 0:05 and j cos(#)j < 0:95,

leads to a cross-section of about 5 pb for
p
s = 180 GeV. So, there is potential for a 2%

measurement of the inclusive cross-section per experiment for an integrated luminosity of 500

pb�1, indicating that a theoretical precision below 1% (4 experiments) is desirable. Given the

striking nature of such events and the favourable energy spectrum, it is likely that measurements
will be statistics limited and not limited by experimental systematics. On the other hand, to
achieve this accuracy a precise knowledge of the SM cross section is needed, also taking into
account that some approximations used at LEP1 are no longer valid. Moreover, of particular
interest to experimentalists is the inclusion in Monte Carlo codes of additional hard photons

to the single photon, as such photons a�ect the acceptance when emitted at detectable polar
angles.

3.2 Calculations for e+e� ! ���: lowest-order and radiative correc-

tions

Neutrino-pair production in association with a photon is not entirely due to Z decays. For �e
there are additional W -exchange diagrams where the photon can be an ISR or from \internal
radiation" (involving the non-Abelian WW vertex). These W -exchange diagrams are not
negligible at all at LEP2 energies, contrary to LEP1 [20]. For instance, comparing the purely s-

channel ����� with �e��e, there is about a factor 2 enhancement of the latter at
p
s = 175GeV,

brought about by the t-channel. This applies for a visible photon with E > 10GeV and
j cos �ej < 0:9. Therefore, some of the approximations that worked so well for LEP1 and al-
lowed for an easy implementation of the higher-order corrections are no longer valid.

An excellent approximation at LEP1, the so-called PIA [22], is obtained by taking the Z contri-

bution complemented by the limitMW ! 0 (and switching o� the WW). This reproduces the
exact result within 1%. Another equally good approximation convolutes the neutrino-pair cross

section (with MW ! 0) with a radiator function[23]. These same approximations overestimate
the result of the full calculation by some 30%, already at

p
s = 150GeV z.

Because of the failure of these approximations as the energy increases, the implementation of

the higher-order corrections for this three-body reaction requires a special attention. Full one-

loop QED corrections have been computed [25, 26], while complete O(�) weak corrections are
presently known only for the \sub-process" e+e� ! Z [27]. Higher-order QED corrections,
necessary to match the experimental precision reached at LEP, are taken into account in the

zThis is obtained with E > 1GeV; j cos �e j < 0:966, [24].
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Monte Carlo [24, 28] and semi-analytical codes [23] used by LEP collaborations, through the

QED structure-function approach (SF) or the YFS algorithm to implement multiphoton e�ects.

For instance, within the SF method [29], the QED-corrected cross section can be written as [30]

�(s) =
Z
dx1 dx2 dE dc D(x1; s)D(x2; s)

d�

dEdc
; (8)

where d�=dEdc is the exact spectrum of Ref. [25], the photon variables refer to the centre-of-

mass frame after initial-state radiation, and D(x; s) is the electron (positron) structure func-

tion. The explicit expression of D(x; s), including soft multiphoton emission and hard collinear

bremsstrahlung up to O(�2), can be found in [30].

Figure 5: The QED-corrected and the Born cross section for e+e� ! ��� as a function of the

centre-of-mass energy at LEP2. The approximations are detailed in the text. The cuts on the

photon are Emin
 = 1 GeV and #min

 = 20�.

Fig. 5 shows the QED-corrected cross section of e+e� ! ��� as a function of the centre-of-
mass energy at LEP2, assuming the cuts Emin

 = 1 GeV and #min
 = 20�. The dash-dotted line

represents the lowest-order total cross section obtained after integrating the exact photon spec-

trum d�=dEd cos # [25], the solid line is the result obtained according to the structure-function

formulation of Ref. [30] (i.e. in the case of convolution of the full spectrum [25], including Z
and W diagrams), and the dotted line, reported for the sake of comparison, shows the results

obtained by simulating the approach of Ref. [24], namely correcting the Z contribution only,
and adding to this result the W -exchange diagrams at tree levelx. Two considerations are in

xStrictly speaking, in Ref. [24] the SF approach is applied to the complete O(�) QED corrections to the Z
exchange contribution of e+e� ! ���. In the comparison reported here, the SF is applied to the tree level
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order. First, the QED-corrected cross section at LEP2 is higher than the Born one as a conse-

quence of the Z radiative return: the e�ect is to enhance, in this experimental set-up, the Born

cross section by a factor of about 1.3. Secondly, the convolution of the full spectrum is in good

agreement (within 1%) with the approach based on Ref. [24] because the QED-corrected cross

section is largely dominated by the Z radiative return, and the tree-level contribution of W

diagrams and W{Z interference is almost at over the full energy range spanning from LEP1

to LEP2. The agreement between the two calculations is within the expected experimental

accuracy.

Figure 6: The energy distribution of the seen photon, without and with initial-state QED cor-

rections, for a LEP1 (Eb = 48 GeV) and a LEP2 (Eb = 87:5 GeV) energy. The cuts on the

seen photon are the same as with the previous �gure. The numbers of events integrated in the

case with ISR and without are proportional to the corresponding integrated cross sections.

The single-photon energy distribution is shown in Fig. 6 after including the higher order

ISR. The results con�rm the qualitative arguments given above concerning the LEP2 vs LEP1

comparison. Two peaks are clearly visible in the photon energy distribution, both at LEP1 and
LEP2 energies: the higher one is located at the energy value of about (1�M2

Z=s)
p
s=2, the lower

one is due to 1=E (soft photon) peaking behaviour. As can be seen, the main modi�cations

introduced by initial-state radiation are to reduce the higher peak and to enhance the lower
one. The most important conclusion is that at LEP2 even after taking into account additional

radiation, there still is a prominent peak around the recoil hard photon, hence allowing for

a better discrimination of the heavy neutrals and improving the LEP1 limit on the number
of neutrinos via the radiative method; even if this will not match the super-precision of the
line-shape method. Further simulations of single-photon distributions at LEP2 versus LEP1

e
+
e
� ! ��� cross section. Weak corrections are implemented through an improved Born approximation in

both cases. It has been checked that both versions agree within 1% with the approach of convoluting the full
spectrum.
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energies obtained analyzing the events generated by the Monte Carlo of Ref. [31] are given

and commented in Ref. [30]. All the above results have been produced by means of a new

Monte Carlo event generator [31] developed for radiative neutrino counting measurements at

LEP1/LEP2 and based on eq. (8).

3.3 Towards a single-photon library

During this Workshop, the problem of �nding a general approach to the computation of the

single-photon spectrum associated to any process of the kind e+e� !(invisible) has been

addressed. In particular, possible approximations have been studied that, starting from the

e+e� !(invisible) cross section, could allow to get the corresponding single-photon spectrum

in a straightforward way. The Standard Model process e+e� ! ��� can act as a benchmark

for this purpose. Instead of the exact formula for the neutrino single-photon spectrum, one can

use as a kernel in the convolution formula (8) an approximate factorized photonic spectrum

given by

d�approx

dxdc
= �0((1 � x) s)H

(�)(x; c; s); (9)

where �0 is the total Standard Model cross section of e+e� ! (Z;W )! ��� and H(�)(x; c; s)

is the angular radiator proposed in Ref. [30] and derived from O(�) pt-dependent structure
functions [32]. It describes the probability of radiating a photon with a given energy fraction
x = E=Eb at the angle # (c � cos#).

This approximation can be used as a basic tool to develop a library of single-photon events,
including standard and non-standard (in particular SUSY) processes. Indeed, given as a kernel
the total cross section corresponding to a process of the type e+e� ! (invisible) objects,
dressing it with the angular radiator H(�), according to eq. (9), amounts to attaching a photon
line on the external charged legs, including the \universal", factorized form of the photonic

radiation. The above recipe has been checked against the exact Standard Model single-photon
spectrum and found to be accurate at the level of a few per cent [30]. The same method has
very recently been applied to the single-photon signature of the SUSY process e+e� ! ��

(for the most general gaugino/higgsino composition of neutralinos in the MSSM)[33]. Its cross
section has been obtained by convoluting the cross section for the channel e+e� ! �� with the

radiator function and found to be very hard to disentangle from the neutrino background (see
the Neutralino Section in the New Particles Report for some results on this channel).

4 Photon-pair production

Photon-pair production is essentially a pure QED process, that is not very sensitive to the
genuine weak radiative corrections. Therefore, contrary to the single-photon production, there

is no new phenomenon to take into account with respect to LEP1. One way to exploit this
clean channel is to probe the indirect e�ects of alternative models such as the exchange of a

heavy excited electron or a contact interaction. However, to conduct these tests it is essential
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to take into account the order O(�3) QED corrections that could mimic new-physics e�ects.

The corrected di�erential cross section may be written as:

 
d�

d


!
�3

=

 
�2

s

1 + cos2�

1 � cos2�

!
(1 + �QED) (10)

where � is the photon scattering angle with respect to the beam. �QED includes the virtual,

soft and hard bremsstrahlung corrections [34]. This higher-order factor has been veri�ed to be

needed in order to reproduce the LEP1 data [35] as shown in Figure 7.

This correction will have to be included also at LEP2. However, one expects the sensitivity
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Figure 7: (a) shows the comparison of the measured di�erential cross section with the QED

prediction for the process e+e� ! () as a function of j cos �j. (b) shows the same cross

sections normalized to the QED Born level prediction. The comparison leads to a �2 = 0.53/dof.

to the anomalous e�ects to be enhanced at LEP2, since the latter increase with energy, while

the QED cross sections falls. For instance, the e�ect of an excited heavy electron that may
be parameterized by a scale �� (depending on the chirality of the coupling) [36] or a general

dimension-6 contact interaction with a scale � [12, 37] modify the di�erential cross section
according to

(d�=d
) = (d�=d
)QED (1 + �new) (11)

where �new �= �s2=2
�
1=�4

�
�
(1 � cos2 �) for the excited electron assumption and with an

analogous expression for the contact interaction. A comparison of the measured and QED

predicted di�erential cross sections, including the deviation, are reproduced from the L3 exper-

iment in Figure 8. At LEP2, with an integrated luminosity of about 66 pb�1, the lower limit

on the scale of the contact term � is expected to increase from 600 to 800 GeV, while that
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Figure 8: Comparison of the measured di�erential cross section with the QED predictions in-

cluding the deviations for the parameter values shown in the �gure, as a function of j cos �j. The
cross sections are normalized to the radiatively corrected QED cross section. The functional

e�ect of �+ and � is the same.

describing the excited electron, �+ and ��, will go up to 200 GeV. These limits scale as the

1/4 power of the integrated luminosity.

5 Four-Fermion Processes

5.1 Classes of Feynman diagrams

At LEP2 centre-of-mass energies, four-fermion �nal states are produced with large cross sec-

tions. These are not only due to real WW and ZZ pair production with subsequent decays
W ! �ff 0 and Z ! �ff , but arise from several production mechanisms, each giving sizeable con-
tributions to the four-fermion cross section in speci�c con�gurations of the �nal-particle phase

space. In Fig. 9, all the possible classes of four-fermion production diagrams are shown. The

largest total cross sections arise from themultiperipheral diagrams. Here, two quasi-real photons
are exchanged in the t-channel, giving rise to forward (and undetected) electrons/positrons plus

a �ff pair with a non-resonant structure (the so-called \two-photon" processes). For instance,
one has �(e+e� ! e+e� �+��) � 102 pb for M�� > 10GeV. On the other hand, although

interesting for QCD studies (see the  Physics report) and as a main background for missing

energy/momentum events (see the New Particles Physics report), these classes of processes do
not sizeably contribute to �nal states that are of interest for the studies of W;Z and Higgs bo-

son production. In the latter case, the main contributions come from double-resonant diagrams

(conversion and nonabelian-annihilation diagrams in Fig. 9). Also single-resonant processes
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Figure 9: Four-fermion production classes of diagrams.

(proceeding through abelian-annihilation, bremsstrahlung, fusion and single-resonant conver-

sion graphs) can give an important contribution to vector-boson physics, when the invariant
mass constraint on one of the �nal fermion pairs is relaxed. A particular example is given by

the single W;Z production, e+e� ! e�W ! e�ff 0 and e+e� ! eeZ ! eeff . In this case,

most of the cross section is due to single-resonant bremsstrahlung and fusion diagrams, where

an almost real photon is exchanged in the t-channel and one �nal electron escapes detection.

In a sense, one could rename these channels as \three-(visible)fermion" processes.
Some aspects of four-fermion processes are studied elsewhere in this report. Here we concen-

trate essentially on providing analytical (or semi-analytical) approaches. A particular attention
is given to total cross sections especially in the case of forward electrons. We will also list the

cross sections for the entire list of the four-fermion processes when some canonical cuts are

imposed, as given by some available codes on the market, thus complementing the studies of
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Figure 10: Total cross-section for e+e� ! e���u �d, all diagrams (solid), for, a), no cut on the

�nal electron, and b), a cut on the electron angle with respect to the beams �e > 8o. Dashed and

dotted lines show the double-resonant and t-channel contribution , respectively.

the Events Generators for WW Physics group.

5.2 Single-W production

The cross section for single (on-shell W ) production is shown in Fig. 1 and is dominated by
the t-channel photon exchange. However, this is only one of the sub-processes that contributes
to e+e� ! e���u �d. Complete tree-level cross sections for the process e+e� ! e���u �d have
been computed using the GRACE system [38] with the complete set of tree-level diagrams

and taking into account all fermion-mass e�ects. This allows to integrate with no cuts over

the forward-electron angle and exactly assesses the relative importance of double-resonant W
diagrams versus single-resonant W and non-resonant diagrams [39]. In Fig. 10, after applying
some realistic experimental cuts on the quark ( Eu; �d > 1GeV and angular separation from

the beam �u; �d > 8o), the comparison of the total cross sections for all the diagrams (that is,

20 graphs) with the double-resonant subset (given by conversion plus nonabelian annihilation

graphs, total of 3) and the t-channel subset (given by bremsstrahlung, fusion andmultiperipheral

graphs, total of 10) is shown for a) no cut on the �nal electron, and b) a cut on the electron angle
with respect to both beams �e > 8o. The dominant contribution to the t-channel subset is given

by the 4 diagrams where a photon is exchanged in the t-channel, with the e� scattered in the

forward direction {. One can see that, below the WW threshold, the single-resonant and non-

{There is a very subtle problem with the implementation of the W width. A naive \running" width leads
to disastrous predictions, see [39]. A general discussion about the implementation of the W width and gauge
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resonant diagrams give a substantial contribution to the total cross section. At
p
s = 190GeV,

their contribution is 4.4% of the total, while it increases at larger
p
s. On the other hand,

imposing a cut on the forward electrons strongly depletes the t-channel contribution.

Figure 11: Invariant u �d-mass distribution for e+e� ! e���u �d at
p
s = 180 GeV. The solid and

dashed curves are, respectively, as for cases a) and b), of the previous �gure.

It is also interesting to compare the e�ect of the single-resonant and non-resonant diagrams
on the quark-pair invariant mass distribution. Figure 11 shows how t-channel production can
alter the Mu �d distribution and eventually play a role in the W mass determination.

5.3 Exact cross sections versus e�ective approximations

When including all the tree-level diagrams for a four-fermion process in a computer program,

one can loose some insight on which subsets of diagrams are really dominant and which are

\sub-leading". On the other hand, in order to treat correctly the phase-space integrations and

to get a reliable result, one should distinguish the main/secondary groups of diagrams. At

the same time it is also useful to check the reliability of e�ective approximations that allow to
evaluate given subsets of diagrams in a much simpler way. The natural way of forming subsets

of diagrams is by isolating subgraphs that (with the in- and out- intermediate particles taken
on mass shell) correspond to some gauge-invariant process of lowest order [41] (other ways

of decomposition have not been successful, especially at high energies [42]). In this section,
such a procedure is illustrated in the particular process e+e� ! e+e�b�b. This channel is

important as a background for Higgs bosons searches. Figure 12 shows the 48 diagrams that

make up the complete set (excluding the two that involve Higgs bosons): 8 multiperipheral, 16

invariance is discussed in the WW Physics Report. See also[40].
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bremsstrahlung (single or non resonant, with a =Z in the t-channel), 8 conversion (single- or

double-resonant) and 16 annihilation (single- or non-resonant) graphs. The �rst three classes of

diagrams involve the subprocesses  ! b�b, e! V e (V = ; Z) and e+e� ! V V , respectively.

The contribution of each subset to the total cross section has been computed exactly at tree

level by CompHEP[43], and then compared with the corresponding results obtained through

appropriate e�ective approximations that are described in the following.

Note that, in general, interferences between di�erent subsets are found to be negligible at

LEP2 energies, with the exception of the interferences of the bremsstrahlung diagrams with

the Z ! b�b decay, and the conversion diagrams with the � ! e+e� and Z ! b�b decays (that

gives -24 fb at
p
s = 200GeV). Then, apart from the interference between the bremsstrahlung

diagram with Z ! b�b and the one with � ! b�b, which gives -3.2 fb at
p
s = 200GeV, all other

interferences are found to be less than 1 fb at the same energy [41].

� E�ective approximation for multiperipheral diagrams.

Using the equivalent photon spectrum in the Weizs�acker-Williams (WW) approximation [44], we

can write the approximate formula for the total k cross section corresponding to multiperipheral

diagrams (�rst row in Fig. 12)

�( ! b�b) =
Z 1

4m2
b
=s
dx1

Z 1

4m2
b
=x1s

dx2 �̂( ! b�b) f(x1; �) f(x2; �) (12)

where f(x; �) is given by [45]

f(x; �) =
�

2�

 
1 + (1� x)2

x
log

1� x

x2
1

�
� 2

1� x

x
+ 2x�

!
(13)

and � = m2
e=4m

2
b . The subprocess cross section is given by (see, for instance, [46])

�̂( ! b�b) =
2�2�

27ŝ

�
(3� v4) log

1 + v

1� v
� 2v(2 � v2)

�
(14)

where v =
q
1� 4m2

b=ŝ. The results obtained through eq. (12) after a numerical integration are
shown in Fig. 13 (dashed curve), and compared with the exact computation (solid curve) that

includes also the multiperipheral Z- and ZZ-exchange diagrams (the last two are found to be

suppressed by a factor 10�3 and 10�6, respectively, relative to the dominant  contribution).
The agreement is excellent (indeed, the two curves overlap completely).

� E�ective approximation for t-channel photon exchange (bremsstrahlung) dia-

grams.
Diagrams including the subprocess �e ! Ze (second row in Fig. 12) are well approximated
by

�(�e! Ze) =
Z xmax

xmin

dx

Z Q2
max

Q2
min

dQ2df(x;Q
2)

dQ2
�̂(�e! ZejQ2)Br(Z ! b�b) (15)

where
df(x;Q

2)

dQ2
=

�

2�

 
1 + (1� x)2

xQ2
� 2m2

ex
1

Q4

!
(16)

ki.e. no cut on the invariant b�b mass, mb�b. The case including a cut on the invariant fermion mass and
applications to the mf �f distribution are given below.
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Figure 12: Complete set of diagrams for the process e+e� ! e+e�b�b.
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with the integration limits

Q2
min = m2

e

x2

1 � x
; Q2

max = m2
Z (17)

xmin =
(me +mZ)

2

s
; xmax =

(
p
s�me)

2

s
:

On the other hand, for the diagrams including the subprocess �e! �e, one has

�(�e! �e) =
Z xmax

xmin

dx

Z Q2
max

Q2
min

dQ2 1

�

Z (
p
ŝ�me)

2

4m2
b

dM2
�

M3
�

df(x;Q
2)

dQ2
�̂(�e! �ejQ2)�(� ! b�b)

(18)

with the integration limits

Q2
min = m2

e

x2

1� x
; Q2

max = 4m2
b (19)

xmin =
(me + 2mb)

2

s
; xmax =

(
p
s�me)

2

s
:

The cross section for the subprocess �e ! V e, where V denotes Z or �, can be written in
the form

�̂(�e! V ejQ2) =
�2e�

ŝ
CV

 
2(2x2V � 2xV + 1) log

�+ �

�� �
+ (20)

+�
xe(7xV + 1) + xxV (3x

2
V � 2xV + 1)

xe + xxV (xV � 1)
+O(xe; x)

!

where

xZ = m2
Z=ŝ, x� = m2

�=ŝ

CZ =
8s4W � 4s2W + 1

12s2W c2W
, C� =

2
3

� = 1� xV + xexV � x2e � x(1� xe � xV )

� = [(1 + (xe � x)
2 � 2xe � 2x)(1 + (xe � xV )

2 � 2xe � 2xV )]
1=2

xe = m2
e=ŝ, x = �Q2

=ŝ, ŝ = xs

� E�ective approximation for conversion, single and double-resonant diagrams.
We start from the conversion subprocess e+e� ! �� (diagrams in the third row in Fig. 12).
In this case

�(e+e� ! �1(f1 �f1)
�
2(f2

�f2)) =
1

�2

Z (
p
s�2mf2

)2

4m2
f1

dM2
�
1

M3
�1

Z (
p
s�M1 )

2

4m2
f2

dM2
�
2

M3
�2

�̂(e+e� ! ��)�(� ! f1 �f1)�(
� ! f2 �f2) (21)
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where the o�-shell photon decay width is given by

�(� ! f �f ) =
�

3
Q2
fTcM�(1 + 2xf )

q
1 � 4xf (22)

Q2
f = 1=9 for the b-quark and 1 for the electron, xf = m2

f=M
2
� . The color factor Tc is equal to

3 for b-quark and 1 for the electron. The subprocess cross section is given by [47]

�̂(e+e� ! ��) =
�2�

s
CD

 
AD log

�D + �D

�D � �D
� 3�D�D

!
(23)

where

CD =
4

1 � x1 � x2
, AD = 1 + (x1 + x2)

2

�D = 1 � x1 � x2, �D =
q
1 + (x1 � x2)2 � 2x1 � 2x2

x1 = M2
�1
=s, x2 = M2

�2
=s.

For the single-resonant process e+e� ! �Z one has

�(e+e� ! �(f1 �f1) + Z(f2 �f2)) =
1

�

Z p
s

4m2
f1

dM2
�

M3
�

�̂(e+e� ! �(f1 �f1) + Z(f2 �f2))

�(� ! f1 �f1)Br(Z ! f2 �f2) (24)

where the subprocess cross section is given by the formula eq. (23) with the parameters

CD =
4

1 � x� � xZ

8s4W � 4s2W + 1

2s2W c2W
, AD = 1 + (x� + xZ)

2

�D = 1� x� � xZ, �D =
q
1 + (x� � xZ)2 � 2x� � 2xZ

x� = M2
�=s, xZ = m2

Z=s.

The cross section for the double resonant process e+e� ! ZZ, with the subsequent decays

of Z in the narrow width approximation, is given by the subprocess cross section eq. 23 with
parameters

CD =
38s8W � 32s6W + 24s4W � s2W + 1

16s4W c4W

1

1� 2xZ
, AD = 1 + 4x2Z

�D = 1� 2xZ , �D =
p
1 � 4xZ,

multiplied by Br(Z ! f1 �f1)Br(Z ! f2 �f2).

In �gure 13, one can see that the exact computation (solid) is always reasonably recovered
by the above approximations (dashes). Indeed, adding the approximate formulae for multi-

peripheral, single and double conversion incoherently (with no interferences) the total cross
section is reproduced within 5%.

It is also possible to improve on the approximation for the conversion diagrams that involves
the Z, by including the �nite-width e�ects and even the ISR, as we will discuss below.
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Figure 13: E�ective approximations (dashed lines) and exact calculations (solid lines) corre-

sponding to various subsets of diagrams for the process e+e� ! e+e�b�b.

5.4 Radiative corrections within the multiperipheral diagrams.

In this section, we discuss the accuracy of di�erent versions of the Weizs�acker-Williams (WW)

approximation [44] in describing both the integrated cross section (with a cut on the invariant
mass of the fermions) as well as their pT distribution in two-photon processes. The e�ect of

the QED corrections to the subprocess is also discussed within the approximation. In order to

isolate the e�ect of the WW approximation error from other uncertainties (like QCD e�ects in
two-photon hadron production), we study the  ! �+�� production as a reference process
for more general cases.

Within the approximation the tree-level cross section is given by eq. (12), implemented with a
cut on the invariant mass of the �� pair. Several functions for the photon ux can be found in

the literature, with the aim of giving more accurate descriptions of the exact rates. Indeed, it

can happen that one formula can reproduce the total cross section quite precisely, but is less

successful as far as some distributions are concerned, or vice versa. In general, the accuracy of

a given approximation is both process and experimental-cut dependent.

Here, we compare how two di�erent ux functions fare with the exact tree-level and one-loop
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QED corrected result. This correction is only applied to the sub-process  ! �� [48]. The

phase-space integration of the �nal state (7-dimensional for the 4-bodies and 10-dimensional

for the 5-bodies) was performed by using the Monte Carlo integration package BASES [49].

The following two Weizs�acker-Williams spectra were examined

f (1) (x) =
�

�x

�
[1 + (1 � x)2]

 
ln
2(1� x)E

m
� 1

2

!

�x
2

2
(lnx� 1)� (2� x)2

2
ln(2� x)

�
; (25)

f (2) (x) =
�

�x

(
[1 + (1� x)2] ln

 
2(1 � x)

x

E

m

!
� (1� x)

)
(26)

with f (1) (x) [WWA(1)] and f (2) (x) [WWA(2)] replacing f(x; �) in Eq.13 (note that the inte-

gration limits depends on the cut on M�� now).

�(pb) Born soft + loop hard O(�) corr.

exact 6.017(6) �2:361(2) 2.403(2) 0.70(5)
WWA(1) 6.171(4) �2:392(1) 2.463(3) 1.16(6)
WWA(2) 8.370(6) �3:224(2) 3.316(4) 1.10(5)

Table 5: Total cross section for � -pair production at
p
s = 180GeV with the invariant-mass cut

M�� > 30 GeV. The photon contribution is separated into soft and hard at k = 1keV . The

last column shows the O(�) correction in %.

Table 5 summarizes the various components of the QED corrected total cross section calcu-
lated at

p
s = 180 GeV. The only kinematical cut applied isM�� > 30GeV. The �rst spectrum,

with f (1) (x), reproduces the exact integrated cross section within 2% while the second choice
overestimates the integrated cross section by almost 30%. Note that the O(�) correction is

small, about 1% and is reproduced in all three cases. The impact of the choice of the photon

spectrum on the pT distribution for the the �� was also studied. The results are shown in
Fig. 14. We observe that the �rst approximation reproduces nicely the exact distribution for

small pT (pT < 20GeV) while the second one is more suited in the medium pT range, though

both fall down too fast in the large pT region (where, however, the statistics is very poor).
From this example, one can conclude that the best choice of the non-leading term in the WW

approximations depends on which quantity one wants to reproduce. For instance, the WWA(2)
has been preferred in the analysis of pT distributions of two-photon process with high pT at

TRISTAN [50].
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Figure 14: a) Pt distribution of �� at
p
s = 180 GeV for M(�� ) > 30 GeV based on the exact

calculation. b) shows the ratio of the WWA approximations over the exact result [see text for

the de�nitions of WWA(1) and WWA(2)].

5.5 Improved semi-analytical calculations for conversion-type four-

fermion �nal states

We have already discussed how the conversion type diagrams can be approximated. The above
approximations can be further improved by including �nite-width e�ects and inserting ISR. In

this sub-section, we report on four-fermion cross sections and invariant mass distributions as
obtained by the semi-analytical method. All angular degrees of freedom in the phase space (�ve
at tree level, seven if the ISR is included) are integrated analytically. After these analytical
integrations, elegant and short expressions are obtained for invariant mass distributions. Fast,

numerically stable, and highly precise numerical algorithms are then used to integrate the

remaining phase-space degrees of freedom, namely the two or three squared invariant masses.
Semi-analytical results are, however, not suitable for experimental simulations. In this sense,

the semi-analytical and the Monte Carlo approach are complementary, and semi-analytical
results may serve as benchmarks for numerical approaches, which usually rely on the Monte

Carlo technique. A short review of semi-analytical calculations may be found in [51].

� Convolution formulae at tree level

In the framework of the semi-analytical technique, total four-fermion production tree-level cross
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sections are given by

�Born(s) =
Z
ds1

Z
ds2

p
�

�s2
�
X
k

d2�k(s; s1; s2)

ds1ds2
: (27)

Squared invariant masses for �nal-state fermion pair are represented by s1 and s2, and � �
�(s; s1; s2) with �(a; b; c) = a2+b2+c2�2ab�2ac�2bc. The subscript index k labels cross section
contributions from squared amplitudes or interferences with distinct Feynman topologies and

coupling structure. Partial double-di�erential cross sections have the form

d2�k

ds1ds2
= Ck(s; s1; s2) � Gk(s; s1; s2) : (28)

Coupling constants and o�-shell boson propagators are collected in Ck, while Gk is a kinematical

function obtained after �vefold analytical integration over the angular phase-space variables.

Both Ck and Gk are given by very compact expressions. For di�erent charged current (CC) and

neutral current (NC) processes, Ck and Gk may be found in references [51, 52, 53, 54, 55].

�Complete O(�) ISR with soft photon exponentiation

A total four-fermion cross section with complete O(�) ISR corrections including soft photon

exponentiation is given by

�ISR(s) =
Z
ds1

Z
ds2

sZ
(
p
s1+

p
s2)2

ds0

s

X
k

d3�k(s; s
0; s1; s2)

ds1ds2ds0
(29)

with the reduced squared center of mass energy s0 and

d3�k(s; s
0; s1; s2)

ds1ds2ds0
= Ck(s0; s1; s2) �

h
�ev

�e�1Sk +Hk

i
; (30)

where �e = 2 �
�
[ln(s=m2

e) � 1] and v = (1 � s0=s). Both the soft+virtual and hard contribu-
tions, Sk and Hk, split into a universal, factorizing, process-independent and a non-universal,
non-factorizing, process-dependent part. Using the twofold di�erential Born cross sections

�k;0(s
0; s1; s2) �

p
�

�s02
� Gk(s0; s1; s2), one obtains

Sk(s; s0; s1; s2) =
h
1 + �S(s)

i
�k;0(s

0; s1; s2) + �Ŝ;k(s
0; s1; s2) ;

Hk(s; s
0; s1; s2) = �H(s; s0) �k;0(s

0; s1; s2)| {z }
Universal Part

+ �Ĥ;k(s; s
0; s1; s2)| {z }

Non�universal Part

(31)

with the O(�) soft+virtual and hard radiators �S and �H in the universal part given by

�S(s) =
�

�

"
�2

3
� 1

2

#
+
3

4
�e �H(s; s0) = �1

2

 
1 +

s0

s

!
�e : (32)

If the index k is associated with s-channel e+e� annihilation diagrams only, non-universal
ISR contributions are not present. Non-universal ISR contributions originate from the angular
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Figure 15: The NC8 cross section. The solid line represents the Born cross section, the dash-

dotted line includes universal, and the dotted line includes all ISR corrections. In the inset,

the universally ISR corrected NC8 cross section is compared to the contributions from Z0 and

photon pair production.

dependence of initial state t- and u-channel propagators. Since the non-universal cross section
contributions �Ŝ;k and �Ĥ;k do not contain the large logarithm �e, they only yield small cross

section corrections up to a few percent. However, the analytical structure of �Ŝ;k and �Ĥ;k is
very complex. An important feature of the non-universal corrections is the so-called screening

property, i.e. an overall damping factor s1�s2=s2 in the non-universal corrections [52, 55, 56]. It
is important to note that screening is a likely property with respect to the proper high energy
unitarity behavior of the completely ISR corrected cross section. Semi-analytical treatments of

complete ISR are presented in references [52, 55, 56]. Details of the non-universal contributions
may be found in [56, 57].

As an example for numerical results, �gures 15 and 16 present total cross sections for the NC8

process

e+e� ! (Z0Z0; Z0; ) ! �+�� b�b (33)

without and with invariant fermion-pair mass cuts [56]. In �gure 15, the cross section correction
due to universal the ISR varies between 12% at

p
s=130 GeV and 21% at 600 GeV. The

additional relative correction from the non-universal ISR increases from 9 0=00 at 130 GeV to

4.2% at 600 GeV. From �gure 16 one can see how the NC8 cross section approaches the cross

section for the NC2 reaction e+e�! (Z0Z0)! �+�� b�b when invariant fermion-pair mass cuts

are tightened. For the NC2 reaction, the e�ect of universal ISR varies between {28% at the
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Figure 16: The e�ect of cuts of 2 ��Z and 5 ��Z around the Z0 mass MZ on the NC8 (`All

Graphs') and Z0 pair (`ZZ Graphs') cross sections. The cuts were applied to both the �+��

and the b�b pair invariant masses s1 and s2. All cross sections are universally ISR corrected.

Z0 pair threshold and approximately +10% at 600 GeV. Non-universal corrections to the NC2

reaction amount to less than half a percent below and around the threshold and rise to 1.5%
at 600 GeV. Results for the NC24 process, that is with complete set of diagrams contributing
to e+e�! f1 �f1 f2 �f2, with f1 6= f2 6= e; �e, are found in reference [54] (see also below). Details
of semi-analytical results for Higgs production and CC processes are reported by the working
groups Higgs, WW cross sections and distributions, and Event Generators for WW Physics in

this Report.

5.6 Cross sections for all four-fermion �nal states with inclusion of

all diagrams

In this section, we report on the results of a study of the tree-level cross sections for all
possible four-fermion �nal states, as listed in Tables 6-8. The complete set of diagrams is taken

into account in each case (the corresponding total number of diagrams (Nd) is shown in the

same tables). Higgs-boson contributions are not included. This comparative study involves

seven codes: ALPHA [58], CompHEP [43], EXCALIBUR [59], grc4f (a package for computing

four-fermion processes based on GRACE [38]), WWGENPV/HIGGSPV [60], WPHACT [61]
and WTO [62]. For a detailed description of the codes see the Event Generators for WW

Physics Report. In this comparison ISR and gluon-exchange diagrams for the hadronic four-
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NN e
+
e
�

! Nd ALPHA CompHEP EXCALIBUR grc4f HIGGSPV� WPHACT WTO

1 e+e��e��e 56 257.3(2) 255.4(13) 256.7(2) 256.8(7) | 257.0(2) |

2 e���e���
+ 18 227.1(1) 227.8(5) 227.2(1) 227.0(2) 226.9(4)� 227.3(1) 227.2(1)

3 e���e���
+

4 �ee
+�����

5 �ee
+�����

6 �+������� 19 228.6(2) 227.3(8) 228.6(2) 228.7(7) | 228.6(0) 228.6(1)

228.3(2)[m]

7 �+���� ��� 225.1(4)[m]

8 ��������
+ 9 218.5(1) 218.4(4) 218.2(1) 218.5(2) 218.4(1)� 218.6(2) 218.1(0)

218.3(2)[m]

9 ��������
+

10 e+e�e+e� 144 | | 109.7(2) 109.0(6) | 109.6(2) |

11 e+e��+�� 48 | 113.1(15) 116.6(2) 116.5(3) 112.8(19) 116.8(2) |

111.6(1)[m]

12 e+e��+�� 58.68(5)[m]

13 �+���+�� 48 5.456(5) 5.439(32) 5.476(10) 5.467(9) 5.65(52) 5.472(5) 5.460(17)

5.387(7)[m]

14 �+���+�� 3.786(3)[m]

15 �+���+�� 24 11.00(1) 10.95(4) 10.99(2) 10.97(4) 11.01(1) 11.02(2) 11.00(1)

9.25(1)[m] 9.233(16)[m]

16 e+e������ 20 | 14.13(4) 14.15(2) 14.14(3) 14.34(17) 14.16(1) |

17 e+e��� ���
18 �e��e�

+�� 19 17.78(2) 17.78(5) 17.92(4) 17.75(3) 17.79(1) 17.81(1) 17.83(15)

17.39(3)[m]

19 �e��e�
+�� 11.08(1)[m]

20 �� ����
+�� 10 10.10(1) 10.09(3) 10.14(2) 10.10(3) 10.10(1) 10.09(2) 10.05(3)

10.038(8)[m]

21 ������
+�� 8.533(6)[m]

22 �e��e�e��e 36 4.091(2) 4.108(22) 4.087(2) 4.085(5) | 4.089(1) |

23 �e��e����� 12 8.335(4) 8.335(9) 8.335(3) 8.335(6) 8.369(54) 8.339(1) 8.356(2)

24 �e��e�� ���
25 ���������� 12 4.065(4) 4.107(8) 4.071(1) 4.063(4) 4.067(7) 4.068(1) 4.117(1)

26 �� ����� ���
27 ������� ��� 6 8.245(4) 8.234(9) 8.240(3) 8.240(4) 8.237(6) 8.241(1) 8.241(1)

Table 6: Cross sections (in fb) for all the leptonic four-fermion �nal states. The

superscript [m] marks all the results where complete fermion-mass e�ects are

taken into account. The asterisks in the HIGGSPV column distinguish cross

sections computed by the WWGENPV version of the program.
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NN e
+
e
�

! Nd ALPHA CompHEP EXCALIBUR grc4f HIGGSPV� WPHACT WTO

1 e���eu �d 20 692.9(5) 693.3(13) 692.8(4) 692.5(4) 691.9(12)� 692.7(5) 692.8(3)

2 e���ec�s 692.1(5)[m]

3 �ee
+d�u

4 �ee
+s�c

5 �����u �d 10 666.3(4) 664.9(11) 666.9(4) 666.2(4) 666.8(5)� 666.7(4) 666.2(1)

6 �����c�s 665.7(4)[m]

7 �+��d�u

8 �+��s�c

9 �����u �d 665.7(4)[m]

10 �����c�s 665.3(4)[m]

11 �+��d�u

12 �+��s�c

13 e+e�u�u 48 | 85.78(63) 86.87(9) 86.88(9) 84.91(93) 86.80(15) 87.64(34)

14 e+e�c�c 78.20(42)[m]

15 e+e�d �d 48 | 42.77(21) 43.05(5) 42.95(7) 43.61(41) 43.01(9) 43.35(23)

16 e+e�s�s

17 e+e�b�b 36.51(5)[m]

18 �+��u�u 24 24.71(2) 24.58(6) 24.80(3) 24.69(3) 24.68(1) 24.69(2) 24.59(4)

24.48(3)[m] 24.53(3)[m]

19 �+��c�c 24.57(6)[m]

20 �+��u�u 20.29(3)[m]

21 �+��c�c 20.39(5)[m]

22 �+��d �d 24 23.74(2) 23.65(7) 23.70(4) 23.71(1) 23.73(1) 23.71(2) 23.58(5)

23.60(1)[m]

23 �+��s�s

24 �+��b�b 22.98(3)[m]

25 �+��d �d 20.03(3)[m]

26 �+��s�s

27 �+��b�b 19.49(2)[m]

28 �e��eu�u 19 23.89(2) 23.88(5) 23.89(1) 23.82(4) 23.95(5) 23.87(1) 24.02(14)

29 �e��ec�c 24.26(3)[m]

30 �e��ed �d 19 20.66(2) 20.62(5) 20.67(1) 20.63(2) 20.67(8) 20.65(1) 20.68(4)

31 �e��es�s

32 �e��eb�b 19.63(2)[m]

33 �����u�u 10 21.04(2) 21.07(3) 21.09(1) 21.07(2) 21.08(1) 21.09(1) 21.13(14)

34 �����c�c 21.32(2)[m]

35 �� ���u�u

36 �� ���c�c

37 �����d �d 10 19.88(2) 19.80 (4) 19.86(1) 19.85(2) 19.86(1) 19.87(1) 19.89(4)

38 �����s�s

39 �����b�b 19.16(1)[m]

40 �� ���d �d

41 �� ���s�s

42 �� ���b�b

Table 7: Cross sections (in fb) for all the semileptonic four-fermion �nal states.

The notation is the same as in Table 6.
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fermion �nal states (when implemented) are switched o�. The e�ect of non-zero fermion masses

for some of the processes has also been investigated by ALPHA and grc4f (see Tables 6-8).

Total cross sections have been computed at the centre-of-mass energy
p
s = 190GeV, with

the following cuts: E`� > 1GeV , Eq > 3GeV , �(`� � beam) > 10o , �(`� � `0�) > 5o ,

�(`� � q) > 5o , Mqq(
0) > 5GeV (cuts on the fermion energy variables are loosened in the case

of massive fermions). Furthermore, in order to better check the agreement among the di�erent

codes, a canonical set of input parameter has been agreed upon in all the computations, that

is MZ = 91:1888GeV, �Z = 2:4974GeV , MW = 80:23GeV , �W =
3GFM

3
Wp

8�
= 2:0337GeV ,

��1(2MW ) = 128:07, GF = 1:16639 10�5GeV�2 , sin2 �W from �(2MW )

2 sin2 �W
=

GFM
2
W

�
p
2
. In Table 6,

the cross sections for all the four-lepton �nal states are shown, in Table 7 the ones for the

semileptonic states and in Table 8 the ones for the hadronic four-fermion states. The error in

the last one or two digits, corresponding to the Monte Carlo event generator, is also shown in

parenthesis. One can see that the agreement among the di�erent central values is in general at

the level of a few per-mil, and even better in some cases. Note that, with the cuts above, the

e�ect of the fermion masses can be not negligible, as can be seen by comparing the rates for
muons to those for � 's for instance, (cf. Tables 6-7).

NN e
+
e
�

! Nd ALPHA CompHEP EXCALIBUR grc4f HIGGSPV� WPHACT WTO

1 u�ud �d 35 2063(1) 2045(7) 2064(1) 2064(3) | 2064(0) 2062(1)

2 c�cs�s 2063(3)[m]

3 u �ds�c 11 2015(1) 2019(6) 2015(1) 2015(1) 2015(1)� 2015(1) 2014(0)

2013(3)[m]

4 d�uc�s

5 u�uu�u 48 25.65(3) | 25.75(1) 25.58(8) 25.36(17) 25.73(1) |

6 c�cc�c 26.36(3)[m]

7 d �dd �d 48 23.49(2) | 23.49(1) 23.49(8) 23.28(14) 23.49(1) |

8 s�ss�s

9 b�bb�b 22.11(11)[m]

10 u�uc�c 24 51.54(5) 51.58(10) 51.59(2) 51.57(3) 51.60(4) 51.64(5) 51.50(7)

52.21(5)[m] 52.28(3)[m]

11 u�us�s 24 49.58(5) 49.47(14) 49.69(1) 49.68(4) 49.71(4) 49.66(3) 49.67(11)

12 u�ub�b 48.68(5)[m]

13 c�cd �d 50.35(7)[m]

14 c�cb�b 49.29(5)[m]

15 d �ds�s 24 47.04(5) 46.95(9) 47.12(2) 47.12(3) 47.11(6) 47.11(3) 47.11(9)

16 d �db�b 46.08(4)[m]

17 s�sb�b

Table 8: Cross sections (in fb) for all the hadronic four-fermion �nal states.

The notation is the same as in Table 6.

6 Three Vector-Boson Production

LEP2 can in principle be sensitive to quartic self-interactions of the electroweak vector bosons,

through the production of two bosons plus one large-angle hard photon in the channels e+e� !
WW, ZZ and Z. While the inclusion of quartic couplings is essential to maintain gauge
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invariance, these couplings cannot be simply isolated as subtle cancellations among many di-

agrams, including also trilinear couplings, take place. Nevertheless, triple vector-boson pro-

duction can be used as a test for the presence of anomalous couplings, in particular WW

ZWW and ZZ [63].

Figure 17: Three vector-bosons cross sections. The applied cuts are cos �eV > 15o (V = W�; Z)
and cos �V V > 10o, as well as a cut on p


T > 10 GeV.

The cross-sections for the production of three vector bosons are shown in Figure 17, where

(generous) angular cuts cos �eV > 15o (V = W�; Z) and cos �V V > 10o, as well as a cut on
p

T > 10 GeV, have been imposed to avoid backgrounds. TheWW cross section increases very

sharply near 170GeV (just above threshold) but LEP2 has barely enough energy to produce
these �nal states with healthy statistics. One must therefore strive for the highest possible
energy in order to increase the statistics. Furthermore, the sensitivity to anomalous couplings

also rises with energy. Estimates using the above cuts have shown that even with a centre-of-

mass energy of 230 GeV, one would need a two-orders-of-magnitude increase in precision to
reach the level needed to test New Physics.
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