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Abstract. In response to increasing data challenges, CMS has adopted the
use of GPU offloading at the High-Level Trigger (HLT). However, GPU code is
often hardware specific, and increases the maintenance burden on software de-
velopment. The Alpaka (Abstraction Library for Parallel Kernel Acceleration)
portability library offers a solution to this issue, and has been implemented into
the CMS software (CMSSW) for use online at HLT. A portion of the final-state
particle candidate reconstruction algorithm, Particle Flow, represented a target
for increased performance through parallel operation. We discuss the port of
hadronic Particle Flow clustering to Alpaka, and the validation of physics and
performance at HLT for 2024 data taking.

1 Introduction

As the LHC increases collision rates during Run 3 and projects higher pileup scenarios for
the HL-LHC era, the CMS experiment [1] has adopted the use of GPU acceleration in the
High-Level Trigger (HLT) system [2]. The HLT uses a slimmed set of subdetector infor-
mation to make trigger decisions on data. The timing budget of HLT is limited to 500 ms
per event during Run 3 [3] and developments on improved reconstruction algorithms must
account for this. The Alpaka portability library [4] was introduced in CMSSW to offer a
hardware-agnostic approach to GPU source code and also provides simplified maintainabil-
ity across hardware back-ends. The Particle Flow (PF) algorithm [5] uses information from
all CMS subdetectors to perform global event reconstruction and produce final-state particle
candidates in each event. One particular step, the formation of clustered energy deposits in
the hadronic calorimeter (HCAL), was previously ported to a CUDA-only implementation [6]
and has been transitioned to Alpaka for use online at HLT.

The PF workflow is outlined in Fig. 1. Particle Flow uses reconstructed calorimeter hits
(rechits) and tracking information from the tracker and muon systems as inputs. The resulting
outputs are PF clusters and PF tracks, respectively. These elements are then linked together
to form PF blocks which are used in the creation of the final-state particle candidate objects.
Prior to the CUDA version, the formation of hadronic PF clusters was one of the most compu-
tationally intensive tasks during the PF reconstruction at HLT. Following the latest guidelines



Figure 1. Diagram of the general PF workflow in CMSSW

for GPU algorithms in CMS, the hadronic PF clustering was ported to the Alpaka portability
library.

Alpaka is a C++ portability library for the development of parallel algorithms that pro-
vides a common interface for targeting different CPU and GPU hardware and software back-
ends. The hierarchal parallelism structure is similar to CUDA providing developers with an
easier transition from CUDA to Alpaka based code. The goal for CMS is to establish a sin-
gle maintainable source code that can be run on a variety of hardware architectures close to
their native performance. To this end, several reconstruction algorithms have been imple-
mented with Alpaka and have been used at HLT. Before the introduction of Alpaka, each
algorithm required duplicate implementations, one written in C++ and one written in CUDA,
and the CMSSW framework required explicit switching points for using the CUDA version
only when an NVIDIA GPU was detected. This complication led to difficult development,
as numerous files had to be tracked and changes propagated between the backend specific
algorithms. Alpaka simplifies the development structure to a single set of source files which
are translated upon compilation to the backends supported by the framework. Moreover, with
Alpaka, in the case where no accelerator hardware is detected the framework defaults to serial
CPU operation. Thus all Alpaka developments targeting GPU parallelism function serially
as a backup.

2 The formation of hadronic PF clusters

The general PF clustering algorithm is the same across the hadronic and electromagnetic
calorimeters (HCAL and ECAL), however only the PF clustering of HCAL rechits has been
ported to Alpaka during the 2024 data taking period. The two processes targeted are the
translation from HCAL rechits to PF rechits, and the subsequent formation of HCAL PF
clusters. This is described in detail below and in [5].

Creation of the PF rechits:

HCAL local rechits are taken as inputs to create the PF rechit objects. An energy threshold cut
is applied to the rechits, varying based on detector conditions across the calorimeter geometry.
Each PF rechit stores the identification of its 8 nearest neighbors in a square grid which is a
key feature needed in the cluster formation. The collection of PF rechits are then used as the
primary input for the PF clustering algorithms.

Seeding of the PF Clusters:

PF clusters within an event are initially seeded from the local energy maxima rechits. Within
a set of neighbors, the highest energy rechits are selected as seeds under the condition that
they also pass an additional noise threshold. The thresholds are calorimeter dependent and
kept up to date in the configuration by reading from an online conditions database.



Figure 2. Diagram representing a topological cluster containing multiple seeds, shown in red. Each
seed will become its own PF cluster.

Topological clustering of PF Rechits:

After the seeding algorithm, the rechits are processed into topological clusters within the
same depth segmentation of the calorimeter. The topological clusters are formed via the
neighbor information of rechits, and all rechits with common sides are associated with the
same topological cluster as in Fig. 2. Multiple seeds are allowed per topological cluster and
these will serve as the basis for the energy sharing step of PF clustering.

Energy sharing of PF Clusters:

The primary feature of the PF clustering implementation is the energy sharing algorithm,
where individual rechits can share a fraction of their energy between multiple PF clusters.
This is accomplished by a Gaussian mixture model, based on the distance of a rechit to the
cluster seed. The PF rechits, j, then contribute a fraction of their energy, f ji to a cluster, i,
according the model:

f ji =
Aie−(c⃗ j−µ⃗i)2

/(2σ)2∑N
k=1 Ake−(c⃗ j−µ⃗k)2

/(2σ)2
, (1)

Ai =

M∑
j=1

f jiE j, µ⃗i =

M∑
j=1

f jiE jc⃗ j. (2)

where M is the number of rechits in the topological cluster and N is the multiplicity of seeds.
E j and c j are energy and position of the rechit, and Ai and µi are the energy and position
of the cluster. σ is the assumed Gaussian width given as a configuration parameter to the
algorithm, typically given a value of 10. Through iteration, the calculated fraction of energy
for each rechit influences the final position of the cluster until the model converges.

3 Porting to Alpaka

A CUDA version of the clustering algorithm was previously developed, and the parallelism
structure of Alpaka allows for mostly direct translation. However, to properly support parallel
operations CMSSW has adopted the use of structure-of-arrays (SoA) data formats which are
packaged into "portable collections". The portable collection implementation in the frame-
work allows for minimal memory copies between the host (CPU) and device (GPU). The
portable collection will remain on the GPU memory until a piece of code downstream calls
for the collection on the host. A limitation of this framework is that the size of the portable



Figure 3. Example of energy sharing between two clusters.

collection must be declared on the host before being used in kernel running on GPU. In gen-
eral the recommendation is to declare the largest possible size for the SoA even if in most
processed events it will be relatively sparse. This can lead to a misuse of GPU memory in
a case like those of the PF clusters, where the size of the rechit fraction array varies greatly.
To better manage the memory usage, the clustering kernel was split in two with an interme-
diate, runtime copy of the exact SoA size needed passed back to the host. The performance
impact in the memory transaction is minimal and the memory usage is much more conserva-
tive allowing additional Alpaka code to execute on the GPU without encountering memory
bottlenecks.

Exploiting parallelism in the creation of PF rechits and PF clusters is mostly straightfor-
ward. In the case of the PF rechits the thresholds are applied asynchronously thanks to the
simplicity of the operation. Each rechit is assigned to a GPU thread where all the associated
information is calculated and stored before moving to the PF clustering steps. The seeding of
PF clusters operates similarly, as threshold operations are computationally simple. Given the
CUDA implementation, porting to Alpaka was straightforward.

Topological clustering of the PF rechits is aided by an efficient GPU connected-
component labeling algorithm, ECL-CC [7]. This algorithm was initially developed for
CUDA and thus is highly parallelized. The use in PF clustering is the first implementa-
tion of ECL-CC using Alpaka, and translated almost directly using Alpaka’s functionality
in CMSSW. The key features are the "intermediate pointer jumping" and "hooking" opera-
tions. ECL-CC uses graph data as input to label the vertices, v, and associated edges from the
neighbors, (u, v). Intermediate pointer jumping in essence is a path-halving technique which
exploits the GPU parallelism and reduces the number of times the algorithm must traverse any
given path of connected components. Edge processing, also known as the hooking operation,
includes functionality for high degree vertices using thread, warp, and block level granularity
depending on the number of vertices. However, in the formation of the topological clusters
the grid-like nature of the neighbors constitutes a vertex degree of 8 and only thread level
granularity is needed. Occasionally when updating the edge information the algorithm can
create data races between threads as the primary operation is synchronization free. These data
races are benign due to an inherently atomic write to shared memory, and that each update is
equally valid regardless of the thread. Saving on synchronization time increases the speed of
ECL-CC and no issues arise from this.

The bulk of development focused on the energy sharing and PF cluster calculations. The
core PF clustering algorithm remains the same, but is optimized where available. In Alpaka,
a tiered computation is done based on the size of the cluster. Clusters with single seeds are
processed quickly using an individual GPU thread per rechit to calculate the cluster position
and energy. Depending on the size of larger clusters, GPU shared or global memory is used



Figure 4. Comparisons of reconstructed HCAL PF cluster energies with Legacy CPU and Alpaka GPU
clustering algorithms as measured in Run 3 2024 data

and the clusters are processed iteratively. In the case of exotically large clusters a slower
global memory only kernel is available as a backup.

4 Performance Results

The port was validated for the Alpaka GPU and Alpaka CPU serial backends against the
legacy clustering in both physics performance and timing at the HLT. Figure 4 shows the
cluster energy comparison between the Alpaka GPU and legacy CPU outputs. We see good
agreement where energy discrepancies greater than 1% occur in just 0.00001 % of HCAL PF
clusters.

Figure 5 shows the performance of the port for a variety of configurations on an HLT
computing node. The full HLT processing chain is run and by using Alpaka PF clustering on
GPU we see a 2.5% speedup under the typical HLT configuration. Looking at just particle
flow the CPU only timing at HLT averages 46.1 ms, or 7.1% of the overall HLT timing. By
switching the the GPU algorithms, particle flow timing reduces to an average of 33.2 ms
showing significant improvement.

5 Conclusion

The Alpaka port of hadronic PF clustering has proven to have a significant impact on the
event processing time at HLT while retaining the same physics results as the original CPU
only algorithm. The use of Alpaka specifically has lightened the maintenance burden as
well due to the extensive hardware compatibility of the library. This hardware compatibility
additionally opens up many options for balancing price and performance when upgrading the
HLT computing farm, or offline computing sites as well.



Figure 5. The event throughput of a CMS HLT configuration employed during the 2024 data-taking
period. Each measurement runs the configuration on 40,000 events of proton-proton collision data from
2024 at an average pileup of 62.5. The blue points represent the event throughput achieved by executing
the HLT with all the available heterogeneous modules on GPU. In contrast, the magenta ones depicts
the event throughput when using the Alpaka-CPU version of PFRechit and PFCluster. The green points
showcase the event throughput when utilizing the legacy version of PFRechit and PFCluster on CPU.
Notably, the plot demonstrates a 2.5% speedup in HLT performance when utilizing 8 jobs with 32
threads each (standard data-taking HLT settings).

References

[1] CMS Collaboration, The CMS Experiment at the CERN LHC, JINST 3, S08004 (2008).
10.1088/1748-0221/3/08/S08004

[2] CMS Collaboration, The CMS trigger system, JINST 12, P01020 (2017). 10.1088/1748-
0221/12/01/P01020

[3] CMS collaboration, Development of the cms detector for the cern lhc run 3, Journal of
Instrumentation 19, P05064 (2024). 10.1088/1748-0221/19/05/P05064

[4] E. Zenker, B. Worpitz, R. Widera, A. Huebl, G. Juckeland, A. Knüpfer, W.E. Nagel,
M. Bussmann, Alpaka – An Abstraction Library for Parallel Kernel Acceleration, in
2016 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW) (2016), https://github.com/alpaka-group/alpaka/

[5] CMS Collaboration, Particle-flow reconstruction and global event description with the
CMS detector, JINST 12, P10003 (2017). 10.1088/1748-0221/12/10/P10003

[6] CMS Collaboration, Heterogeneous Reconstruction of Hadronic Particle Flow Clusters
with Alpaka Portability Library (2024), http://cds.cern.ch/record/2898660.

https://doi.org/{10.1088/1748-0221/3/08/S08004}
https://doi.org/10.1088/1748-0221/12/01/P01020
https://doi.org/10.1088/1748-0221/12/01/P01020
https://doi.org/10.1088/1748-0221/19/05/P05064
https://github.com/alpaka-group/alpaka/
https://doi.org/10.1088/1748-0221/12/10/P10003


[7] J. Jaiganesh, M. Burtscher, A high-performance connected components implementation
for gpus (2018). 10.1145/3208040.3208041

https://doi.org/10.1145/3208040.3208041

