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Abstract
Superconducting magnets in particle accelerators are subject to various forces, radiation, high
voltages, or thermal gradients. These can cause failures such as inter-turn shorts, which can be
very challenging to detect after the magnets are installed in the accelerator. Measurements in the
time- and frequency domain can pinpoint outlier magnets or precursors of such failures.
Interpretable, physics-driven simulations can facilitate this by studying if manufacturing
tolerances cause the observed behaviour or if it can be correctly classified as an outlier. An
equivalent circuit model is proposed to simulate superconducting accelerator magnets’
impedances. The physics-driven model includes various coupled, non-linear effects in the
superconductors, such as superconducting filament magnetisation, inter-filament and
inter-strand coupling currents, eddy currents in the strands’ copper and various magnet
components, and stray capacitances. The model is validated against a wide range of available
time- and frequency-domain measurements performed at the Large Hadron Collider at CERN.
A very good agreement is achieved across the different measurements and domains. The
network model is computationally very inexpensive while still preserving good accuracy and
interpretability. The model can hence be used to reproduce impedances of superconducting
magnets accurately for performance evaluations and to investigate the impact of failures.

Keywords: accelerator magnet, superconducting coil, fault diagnostics, frequency-domain,
impedance measurements, AC-loss

1. Introduction

Superconducting magnets play a crucial role in particle
accelerators, such as the Large Hadron Collider (LHC).
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Understanding their electrodynamic behaviour is essential for
optimising their performance and ensuring reliability. The
complex impedance as a function of frequency can give valu-
able insights into this behaviour. However, the impedances
of superconducting magnets are generally difficult to inter-
pret. The characterisation of the impedances of superconduct-
ing magnets and the establishment of an impedance baseline
for their operational parameters serve to enhance the cur-
rent understanding of superconducting magnet performance.
Furthermore, they offer guidance on critical design consider-
ations, which can be employed to minimise energy losses and
optimise operational efficiency for future prototypes.
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During their operation, the magnets are often subject to
large forces, radiation, high voltages, and thermal gradients.
With the expanding lifetime of such superconducting systems,
the number of failures or breakdowns steadily increases and
can cause some costly downtime. Faults, such as inter-turn
short circuits, are very challenging to detect after the supercon-
ducting magnet is installed in the machine. Identifying those
failures at an early stage or detecting precursors of breakdowns
can help to significantly improve the reliability, availability,
and performance of superconducting particle accelerators.

Measurements of the complex impedance, as a function
of the frequency, are used to evaluate the electromagnetic
behaviour across a wide range of regimes and conditions.
Similar approaches to detect faults and to ensure electrical
integrity were already used in the past, for example, for short-
circuit detection in non-planar coils in fusion stellarators [1,
2], in CICC model coils [3], and for monitoring and con-
trolling the resin impregnation process in Nb3Sn coils [4].
Other approaches try to detect failures by applying machine
learning algorithms to large data sets of time-domain meas-
urements and to spot anomalies [5].

However, to apply these types of measurements or ana-
lyses for fault or non-conformity detection, it is necessary
to obtain a detailed understanding of the observed measure-
ments and ensure interpretability. A detailed and validated
model of a superconducting magnet that captures its electro-
magnetic behaviour under various conditions and consistently
across time and frequency domains can help in this endeavour.
Moreover, utilising these models to simulate and investigate
failure scenarios can shed more light on how failures mani-
fest themselves in measurements in the time- and frequency
domains, provide references for a variety of scenarios, and
help in identifying promising measurement techniques that
may be able to detect failures at an early stage.

Computationally inexpensive network models of super-
conducting magnets in the frequency domain have already
been derived in the past. However, these models are not
able to account for all important electromagnetic effects or
incorporate their non-linear nature [6–13] or can not eas-
ily incorporate and simulate faults or non-conformities [14].
Other approaches lack physical interpretability as electro-
magnetic effects can not be directly mapped to specific
components of the network model [15, 16]. Transient or time-
domain simulations of superconductingmagnets utilising vari-
ous approaches exist widely. However, these approaches
generally focus on single magnets and can not feasibly
account for a chain of magnets. Other approaches, util-
ising network models for a chain of superconducting mag-
nets, can provide valuable insights but can not incorporate
non-linear, frequency-dependent behaviour and lack physical
interpretability [10, 12].

This contribution describes the extended derivation and full
validation of a recently developed equivalent lumped-element
circuit model that can accurately reproduce the electro-
dynamic behaviour of a superconducting accelerator magnet
in the time and frequency domain [17]. The paper is struc-
tured as follows: first, the general modelling approach of this

two-dimensional networkmodel will be described in section 2.
The model accounts for various non-linear, dynamic effects
such as inter-strand-coupling currents (ISCCs) (section 2.1),
eddy currents in the copper of the conductors (section 2.2),
inter-filament-coupling currents (IFCCs) (section 2.3) and per-
sistent currents (PCs) and magnetisation (section 2.4) [18, 19].
Moreover, the model also incorporates eddy currents in the
metallic components of the magnet, such as the beam screen
(BS), cold bore (CB), copper wedges (W), and coil-protection
sheets (CPSs) (sections 2.5 and 2.6). The equivalent lumped-
element parameters for the network model are either derived
utilising analytical equations or are pre-simulated by dedic-
ated finite-element models (FEMs). As all of these dynamic
effects are tightly connected, it is important to couple them
in the model together. The derivation of the mutual coupling
between all the effects will be described in section 2.7.

The model is validated against a wide range of available
measurements of the superconducting LHC main dipole in
section 3. The cross-section of the main dipole, including the
considered metallic components, is shown in figure 1 and will
be described in more detail in section 3.1. In section 3.2,
the model is validated in the frequency domain against fre-
quency transfer function measurements (TFMs) of a stand-
alone dipole from CERN’s magnet test facility at different
temperatures, as well as against TFM performed on various
magnets in the chain of magnets in the LHC tunnel. The effect
of the BS eddy currents in the model is validated with ded-
icated special measurements. In section 3.3, the model valida-
tion in the time domain is presented. The simulation results are
compared to signals acquired during fast power aborts (FPAs)
in the LHC main dipole circuits. It is shown that the network
model is very computationally inexpensive and hence, can be
included in complex circuits comprising thousands of other
components.

Section 4 summarises the findings of this work as guidance
on design considerations for future high-field accelerator mag-
nets. Finally, section 5 gives the conclusion and outlook.

2. Modelling approach

The lumped-element network model, aiming at reproducing
the electromagnetic behaviour of a superconducting magnet in
the time- and frequency-domain, includes the magnet’s main
inductance Lmag [H], which can be split up into smaller ele-
ments such as for example turn inductances. All these induct-
ances are in series, each carrying a current Imag [A], gener-
ating an applied magnetic flux density Ba [T] in the magnet.
The series inductances are mutually coupled with Mmag [H].
Moreover, also resistances Rmag [Ω] are in series with these
inductances, which are either the resistances of the magnet
cables in the normal state or are zero in case the magnet is
in the superconducting state. Finally, also stray capacitances
to ground CGND [F] are included.

Due to a changing current İmag [A s−1] flowing through
the magnet coil, a field change Ḃa [T s−1] is introduced
in the magnet components and conductors. According to
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Figure 1. Cross-section of one aperture of the LHC main dipole
magnet showing the coil turns, copper wedges, cold-bore,
coil-protection sheets and beam-screen. The coil geometry is
generated with [20].

Lenz’s Law, the magnetic field change induces a specific cur-
rent density Jec [Am2], totalling to an equivalent induced
current Iec [A]. The induced current density generates a
field change Ḃec [T s−1], opposing the applied field change.
Within the volume where the current density is generated,
the general relation between the total magnetic field change
Ḃtot = Ḃa + Ḃec and the induced field change is defined by
the time constant τec [s] given in:

Bec =−τecḂtot [T]. (1)

The induced eddy currents follow a given path, closing in a
loop and can hence be represented by an equivalent inductance
Lec [H]. The induced currents generally flow or close through
a resistive material, which can be represented by an equivalent
resistance Rec [Ω], generating a loss Pec [W].

Based on these assumptions, each of the dynamic, non-
linear effects can be represented by a coupling loop, consist-
ing of the inductance Lec and resistance Rec, coupled to the
respective inductance of the magnet with a mutual inductance
Mec [H]. A simplified example representing a magnet with two
inductances, each coupled to two equivalent coupling loops, is
shown in figure 2.

Consider a single coupled loop a, coupled to one magnet
inductance Lmag,1. The respective voltage across one magnet
inductance, coupled to n equivalent loops and p coil induct-
ances, is:

Vmag,1 = İmag,1Lmag,1 +
n∑

x=1

İec,xMec,1,x+

p∑
k=1

İmag,kMmag,1,k [V] ,

(2)

In the following, we will perform the derivation in the ‘open-
circuit’ configuration, assuming the current only flows through

Figure 2. Equivalent lumped-element network model, showing the
modelling approach with two equivalent loops coupled to the
inductances of a magnet.

the inductance Lmag,1 (e.g. Imag,k = 0 ∀ k ∈ [1,p]). The voltage
within the coupling loop can be calculated as follows:

Vec,a = Rec,aIec,a+İec,aLec,a+Mec,1,aİmag,1 = 0 [V], (3)

giving the definition for the mutual coupling between the
inductance of the equivalent loop and the magnet inductance.
The equivalent lumped-element parameter for a general loop
can then be calculated as:

Rec =
Pec

I2ec
[Ω], (4)

Lec = τecRec [H], (5)

Mec =

{
İecLec+RecIec

İmag
∀t s.t.İmag ̸= 0

0 otherwise
[H], (6)

where Iec is the equivalent induced current in the loop. One
way to obtain such an equivalent current is to integrate the
absolute value of the induced current density over the con-
sidered cross-section:

Iec =
1
2

ˆ
A
|Jec| dA [A], (7)

where half of the absolute value is needed, as otherwise, by
the law of conservation of current, the integral would result
in zero. Pec is the total power loss generated by this equi-
valent induced current. The derivations in equations (4)–(6)
assume Iec and Pec to be calculated without consideration of
the other effects. Coupling between the different equivalent
loops can also be included and will be described in section 2.7.
Moreover, the mutual coupling of the loop with the magnet
inductance is not defined for a constant magnet current, as no
currents are induced.

One way of assessing the impact of a coupling effect is to
look at the differential inductance of the magnet Lmag,D [H].
Assuming the flux linkage λ(Imag) [Wb] as a function of the
current, the differential inductance is defined as the ratio of
flux change over a given change of current Lmag,D = dλ

dI . An
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alternative definition can be found as the ratio of voltage across
the magnet inductance and the current change:

Lmag,1,D =
Vmag,1

İmag,1
. (8)

By rearranging equation (3) for the induced current changeİec:

İec,a =−
Iec,aRec,a+Mec,1,aİmag,1

Lec,a
[A]. (9)

and dividing the voltage across the inductance in equation (2)
by the current change, one obtains the differential inductance
as:

Lmag,1,D =
Vmag,1

İmag,1
(10)

= Lmag,1 −
(Mec,1,a)

2

Lec,a
− Rec,aIec,aMec,1,a

Lec,aİmag,1
(11)

= Lmag,1 − k2Lmag,1 −
Mec,1,a

τec,a

Iec,a
İmag,1

[H], (12)

where we introduced the coupling coefficient k = Mec√
LecLmag

[-].

In a superconductingmagnet, it can sometimes be sufficient
to only consider the turns or even apertures as lumped induct-
ances. However, the electromagnetic effects still need to be
resolved on the strand or filament level. If the calculated equi-
valent parameters Rec and Lec of the loops for an effect are
very similar, one can limit the number of loops by summing
them together and hence reduce the computational time signi-
ficantly. Combining equation (9) of the induced current change
in one equivalent loop again with the voltage Vmag,1 across the
magnets inductance in equation (2) gives for the case of n= 2
(e.g. x= 1= a and x= 2= s):

Vmag,1 =İmag,1Lmag,1 −Mec,1,a
Mec,1,aİmag,1 + Iec,aRec,a

Lec,a

−Mec,1,s
Mec,1,sİmag,1 +Rec,sIec,s

Lec,s
[V] . (13)

Assuming that for a physical phenomenon, the calculated,
equivalent parameter of the loops are rather similar, e.g. that
Rec,a ≈ Rec,s = R ′

ec and Lec,a ≈ Lec,s = L ′
ec, one can insert

equation (9) into equation (13) and obtain:

Vmag,1 = İmag,1Lmag,1 −
1
L ′
ec

(M2
ec,1,a+M2

ec,1,s

)︸ ︷︷ ︸
=(M ′

ec)
2

İmag,1

−R ′
ec (Mec,1,aIec,a+ Iec,sMec,1,s)︸ ︷︷ ︸

=M ′
ecI

′
ec

 [V] , (14)

where we identify the new summed parameters. For the gen-
eral case of n loops with similar equivalent parameters Rec and
Lec, one can approximately lump them together with the new
summed parameters:

R ′
ec =

1
n

n∑
i=1

Rec,i [Ω], (15)

L ′
ec =

1
n

n∑
i=1

Lec,i [H], (16)

M ′
ec =

√√√√ n∑
i=1

M2
ec,i [H], (17)

I ′ec =
1
M ′

ec

n∑
i=1

Mec,iIec,i [A], (18)

where R ′
ec and L ′

ec are the average resistance and inductance
across all summed loops. This summation is possible when, for
example, the parameters R and L only depend on geometrical
parameters, which are equal for the same cable. In other cases,
for example, when magneto-resistivity has to be considered,
the summation is no longer valid.

If the physical phenomena are coupled with each other, it
is also necessary to mutually couple the inductances of the
coupling loops together. This is especially necessary if the
time constants τec of the phenomena are within the same order
of magnitude and if the phenomena occur within the same
volumes. The derivation of the calculation of the mutual coup-
lings between the effects will be explained in more detail in
section 2.7.

The equivalent lumped-element circuit parameter for a
given physical phenomenon can hence be defined solely by
the power loss Pec, induced current Iec and a time constant τec.
In the case of a harmonic excitation in the frequency domain,
one can use the convenient conversion of the time derivatives
to jω with j (−) the imaginary unit and ω (s−1) the circular
frequency. In this case, the real part of the mutual inductance
represents the attenuation (magnitude) and the imaginary part
the retardation (phase shift) of the magnetic field. The deriva-
tions of those three parameters, Pec, Iec and τec for the different
dynamic effects are discussed in the next subsections.

2.1. Inter-strand coupling losses (ISCL)

Superconducting cables consist of a number of strands that are
bundled and twisted together. A time-varying magnetic field
induces currents in the strands, flowing along the strand direc-
tion and eventually closing to a loop by crossing through the
so-called cross-contact resistance Rc [Ω] between the strands.
These currents are called ISCCs [18]. In this work, only ISCC
between crossing strands will be considered. Currents flow-
ing between adjacent strands will be neglected, as the result-
ing losses in accelerator magnets are generally orders of mag-
nitude smaller [18].
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The power loss generated by these ISCCs in one-half of a
turn can be described by [18, 21]:

PISCL = lmagβISCLwBarehBare

(
dB⊥

dt

)2

[W], (19)

βISCL =
1

120
LP

Rc
nS (nS − 1)

wBare

hBare

[m
Ω

]
, (20)

with lmag [m] the magnetic length of the magnets’ turns,
wBare [m] and hBare [m] the width and height of the cable,
respectively, LP [m] the cable-twist pitch, nS [-] the number
of strands within the cable and

(
dB⊥
dt

)
[TA−1] the total field

change, perpendicular to the broad face of the cable.
For a harmonic excitation, one can easily approximate a

relation for the field derivative of a given frequency and utilise
the conversions to the frequency domain:(

dB⊥

dt

)
= ωfH,⊥IMagαISCL

[
Ts−1

]
, (21)

where αISCL [−] is the field attenuation and retardation factor
and fH,⊥ [TA−1] is the perpendicular component of the mag-
netic transfer function fH [TA−1]. This function represents
the generated magnetic flux density per unit of transport cur-
rent in each strand-position of the magnet’s coil. fH can be
calculated by a magneto-static simulation, for example, with
ROXIE [22], and by combining the field in x- and y-directions,
fx [TA−1] and fy [TA−1] respectively:

fH =
√
( f 2x+ f 2y)

[
TA−1

]
. (22)

For ISCL, the average magnetic transfer function of all strands
within the cable is used. Moreover, the field transfer function
in this work was calculated in a two-dimensional model, neg-
lecting end-effects.

In equation (21), we introduced the field attenuation and
retardation factor αISCL [−], describing the relation of the phe-
nomenon’s time constant to the field attenuation. The deriva-
tion of the complex-valuedα is described in detail in Annex B.
Ultimately, αISCL can be expressed as:

αISCL = γISCLωτ + jγ2
ISCL [−], (23)

γISCL =
1√

1+(ωτISCL)
2

[−]. (24)

The equivalent induced current of the ISCCs can be calculated
as [21]:

IISCL = βISCLhBare
dB⊥

dt
[A]. (25)

The time constants of the induced ISCC can vary significantly
throughout the magnets’ coil due to, for example, different
contact pressures and the area between the cables. Moreover,
if cables are stacked, their self-fields affect each other and
impact the resulting ISCC and their time constants. For simpli-
city, we use in this work a global time constant for each cable

type, assuming a uniform Rc between all strands and a stack of
nc = 15 cables. The time constants of these coupling currents
for the stack of cables are defined as [21]:

τISCL = µ0βISCL [s], (26)

with µ0 [Hm−1] the permeability of vacuum. The time con-
stants given by equation (26) are in close agreement with time
constants that were derived for a stack of cables with nc = 15
cables with a more detailed equivalent network model of ISCC
[18, 21].

As described at the beginning of section 2, equations (19),
(25) and (26) are sufficient to calculate the lumped-element
parameters Rec, Lec and Mec of the equivalent coupling loop.

Unlike PCs or IFCCs, ISCCs are also generated if the mag-
net is in the normal conducting state. In this case, the resist-
ance of the strand along the current path of the ISCC must be
considered. However, this resistance changes the current dis-
tribution of the ISCCs significantly. To still account for this
type of coupling currents in the normal state, the cross-contact
resistance RC in equation (20) is rewritten to the contact res-
istance for the normal state RC,N [Ω] and the time constant
of the current loop is adjusted to fit with measurements at dif-
ferent temperatures. This normal state cross-contact resistance
is the sum of the strands normal resistances along one twist-
pitch RStrand [Ω] as well as the increased cross-contact resist-
ance between the strands RC,Warm [Ω], and results in:

RC,N = RC,Warm +RStrand [Ω], (27)

Rstrand = ρCu
lP

AStrand
[Ω], (28)

where ρCu [Ωm] is the resistivity of the strand’s copper, lP [m]
the length of a strand in one twist-pitch and AStrand [m2] the
area of the copper in the strand.

2.2. Eddy currents in the copper sheath

Each strand in a superconducting cable consists of a lar-
ger number of twisted superconducting filaments. These fil-
aments are generally arranged around an inner copper core,
then embedded in a copper matrix and surrounded by an outer
copper sheath. An applied field change will induce eddy cur-
rents in these copper parts. The outermost region of a strand
is generally the copper sheath and, hence, the first region to
be penetrated by an applied field change. Due to the resistiv-
ity of copper at low frequencies, the developed eddy currents
cannot significantly oppose the applied field change, thereby
giving rise to the development of PCs and IFCCs. In the super-
conducting state and for small enough field excitations, there
are no eddy currents in the copper core of the conductor, as
the superconducting filaments and the developed PCs therein
fully shield the field. However, with increasing frequency, the
eddy currents in the outer copper sheath increasingly shield the
field from the inside of the strand, reducing the development
therein.

We will call these currents copper-sheath coupling currents
(CSCC). As these currents flow through a resistive material,
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they cause a loss, referred to as copper-sheath coupling loss
(CSCL).

The power loss in the strands’ copper can be calculated
by assuming two frequency-dependent regimes. For this, we
introduce the skin depth [23]:

δ =

√
2ρCu

ωµ0
[m], (29)

with ρCu [Ωm] the resistivity of copper in the strands outer
sheath.

The first regime describes the low-frequency loss. In this
regime, the skin depth of the copper is still larger than the
actual thickness of the conductor, and the generated field
change by the eddy currents can be assumed to be a small per-
turbation to the applied field change.

We assume a longitudinally induced current density fol-
lowing a cos(θ) distribution in the low frequency (LF) regime
of [23]:

JCu,LF(r,θ) =
rcos(θ)
2ρCu

dB
dt

if δ ⩾
(
1− 1

e

)
rs,o [Am2],

(30)

with r and θ the polar coordinates and rs,o [m] the outer strand
radius. The induced currents generate a dipole field, opposing
the applied field.

In the second regime, the skin effect within the copper must
be taken into account. From any given point on the round sur-
face of the strand, the magnetic flux decays exponentially with
the skin depth. The current density in the radio frequency (RF)
regime hence takes the form of [23]:

JCu,RF (r,θ) =
rcos(θ)
2ρCu

exp
(
− r
δ

) dB∗
dt

if δ <

(
1− 1

e

)
rs,o

[
Am2

]
. (31)

The induced currents are proportional to the square of the field
change:

dB
dt

= ωfHIMagαCSCL
[
Ts−1

]
, (32)

dB∗

dt
= ωfHIMag

[
Ts−1

]
, (33)

with the field attenuation αCSCL as:

αCSCL = γCSCLωτ + jγ2
CSCL [−], (34)

γCSCL =
1√

1+(ωτCSCL)
2

[−]. (35)

In the second regime, the field attenuation factor is dropped,
as the skin-depth dependence takes this effect into account.

The power loss associatedwith the eddy currents in the cop-
per sheath can then be calculated for one strand by integrating
over the volume of the conductor, and results in [24, 25]:

PCSCL =

d
4
s,o

π
4ρCu

(
dB
dt

)2
if δ ⩾

(
1− 1

e

)
rs,o

δ3
π ds,o
ρCu

(
dB∗

dt

)2
if δ <

(
1− 1

e

)
rs,o

[W],

(36)
where ds,o = 2rs,o = ds [m] describes the outer diameter of the
strand. The total induced current can be calculated by integrat-
ing the induced current density from the outside of the strand
towards the inside and over one-half of the strand. For the sake
of simplicity, we will consider only an applied field in the y-
direction. The integral can then be expressed as:

ICSCL = 2
ˆ π/2

−π/2

ˆ 0

rs,o

JCu (r,θ)drdθ [A], (37)

whereas for other field directions, the integration bounds of
θ must be adjusted. The total induced current in the low-
frequency regime then equals:

ICSCL,LF =
d3s,o
3ρCu

(
dB
dt

)
[A], (38)

ICSCL,RF =
δd2s,o
2ρCu

[
1− exp

(
−ds,o

δ

)]
dB
dt

[A]. (39)

Finally, the time constant of this eddy-current phenomenon
can be calculated as outlined in [23, 24]:

τCSCL =
µ0

8

r2s,o
ρCu

[s]. (40)

If the superconductor in the strand is in normal state, the
applied magnetic field change penetrates into all copper parts
of the strand. The resistivity of the strands’ copper ρCu then
has to be adjusted to become an effective resistivity ρCSCL to
account for the presence of the superconducting filaments in
the matrix. For a round strand comprising a fraction of super-
conductor fSC [-], uniformly distributed across the copper mat-
rix, the effective resistivity can be calculated as follows [21]:

ρCSCL = ρCu
1− fSC
1+ fSC

[Ωm], (41)

with fSC [−] the fraction of the superconductor in the strand.
The aforementioned derivation for the eddy currents in the

copper parts of the strand can only be applied to round con-
ductors with a round outer sheath. The deformation of the
strands is not taken into account.

2.3. Inter-filament coupling losses (IFCLs)

The superconducting strands comprise numerous supercon-
ducting filaments that are twisted together. An applied field
change induces currents in the superconducting filaments,
flowing in the direction of the transport current and eventu-
ally closing through the resistive copper matrix of the strand
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after approximately half a filament twist pitch. These induced
currents are called IFCC and result in the generation of IFCL.

The IFCCs and IFCLs for one strand can be calculated as
[18, 26, 27]:

IIFCL = βIFCLds

(
dB
dt

)
[A], (42)

PIFCL =
π

4
d2s lmagβIFCL

(
dB
dt

)2

[W], (43)

βIFCL =

(
Lf

2π

)2 1
ρeff

[
mΩ−1

]
, (44)

where Lf [m] is the filament twist-pitch, ρeff the effective res-
istivity given by equation (41) and

(
dB
dt

)
describes the total

field change in the strand. The total field change generating
the IFCC results in:

dB
dt

= ωfHIMagαIFCL
[
Ts−1

]
, (45)

where the field attenuation factor αIFCL is:

αIFCL = γIFCLωτ + jγ2
IFCL [−], (46)

γIFCL =
1√

1+(ωτIFCL)
2

[−]. (47)

The characteristic time constant τIFCL of the currents can be
analytically calculated as [18, 26, 27]:

τIFCL =
µ0

2
βIFCL [s]. (48)

In the case of a low field amplitude, for example, during
TFM, the filaments can become perfectly diamagnetic and
fully expel the interior field. In this case, the permeability must
be modified to become an effective permeability [18]:

µ= µeff = µ0 (1− fsc)
[
Hm−1

]
. (49)

2.4. PCs

If a superconductor is subject to a changing magnetic field,
instantaneous supercurrents are developed at the supercon-
ductor’s surface, opposing the applied magnetic field. These
supercurrents are also called PCs, which can remain flowing
until the superconductor transitions back into the normal state.
For larger filament diameters and small enough field excit-
ations, the superconducting filaments can even become fully
diamagnetic [18].

The power loss for the case of PCs is twofold: first, due to
the build-up of the induced currents that persist, some energy is
taken and stored within those currents. We will refer to this as
Pstored [W]. Second, the fluxons within the superconductor are
forced to move due to increasing fields. They hence can cross
through resistive impurities within the superconductor, caus-
ing a loss, here referred to as magnetisation heat and described
as Ploss [W] [28].

It can be shown that the stored power can be described as
[29, 30]:

Pstored =

ˆ
V
H

dB
dt

dV (50)

= µ0

ˆ
V

(
H

dM
dt

+H
dH
dt

)
dV [W], (51)

where H [Am−1] is the magnetic field strength, V [m3] the
volume of the superconductor region andM [Am−1] the mag-
netization of the superconductor. Moreover, in equation (51),
the general constitution for the magnetic flux B = µ0(H+
M) [T] was used.

The dissipated power due to the magnetisation heat can be
calculated as [28, 30]:

Ploss =

ˆ
V
M

dB
dt

dV, (52)

= µ0

ˆ
V
M

(
dH
dt

+
dM
dt

)
dV [W], (53)

where we take, for both cases, a constant permeability across
the conductor volume.

However, the derivation of the PCs follows a different
approach than the other eddy-current phenomena. These cur-
rents develop instantaneously and hence do not exhibit a time
constant. Moreover, the PCs also show hysteretic behaviour,
e.g. they depend on the field history of the conductor. Hence,
altering the presented coupling loops by replacing the lossy
resistance with a current source is necessary [30]. This current
source sets the equivalent current in the loop Iec,PC, depend-
ing on the magnetisation level. The schematic for such a loop,
coupled to one magnet inductance, is shown in figure 3.

The equivalent current, inductance and mutual inductance
for one strand can be calculated as follows [30]:

Iec,PC =M(T,B,Mt−1) · ds [A], (54)

Lec,PC = µ0
π

4
lmag [H], (55)

Mec,PC,1 = µ0
π

4
dslmagfH [H], (56)

with M(T,B,Mt−1) [Am−1] the homogenised, average mag-
netisation within the volume of a strand. The equival-
ent lumped-element parameters’ derivation is described in
Annex A. The derivation assumes a round conductor with a
uniformmagnetisation across all superconducting filaments of
the wire/strand. The maximum magnetisation MP for a fully
saturated strand can be calculated, based on the penetration
field HP, as [31, 32]:

HP =
JC (T,B)df

π

[
Am−1

]
, (57)

MP =−2
3
HPfSC

[
Am−1

]
, (58)
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Figure 3. Equivalent lumped-element coupling loop for the
persistent current effect.

with df [m] the diameter of the superconducting filament and
JC(T,B) [Am2] the critical current density of the supercon-
ductor. To account for the magnetisation for an arbitrary field
transient, it is necessary to derive the magnetisation based on
a modified version of Bean’s model, for example, as presented
in [30].

The magnetisation heat can be considered negligible for
small field changes∆B. Hence, the PCs flow losslessly within
the superconductor. These currents would still cause a voltage
change across the coil and impact the differential induct-
ance of the magnet. The contribution can be calculated from
equation (12) and setting Rec = 0:

LMag,D = LMag −
M2

ec,PC

LPC
(59)

= LMag −µ0
π

4
d2s lmag fH. (60)

The PCs are only present while the conductor remains in the
superconducting state and, hence, are set to zero in the normal
state.

2.5. Eddy currents in the magnets BS

In an acceleratormagnet, the beam region is generally surroun-
ded by the magnets’ BS to protect the superconducting coils
from particle impacts and radiation as well as to intercept the
image current power from the beam. The LHC BS is a stain-
less steel tube with a thin copper coating on the inside with
a thickness tBS [m] [33]. The generated field change during a
transient in the magnet also induces eddy currents in this mag-
net component. The BS of the LHC main dipole is shown in
figure 1.

The eddy currents and loss in the BS can be derived sim-
ilarly to the eddy currents in the copper. We assume a longit-
udinal induced current density following a cos(θ) distribution
for the two different regimes, as presented in equations (30)
and (31).

The power loss resulting from the eddy currents in the BS
can then be calculated by integrating over the volume of the
BS. Contrary to the eddy currents in the strands, this integra-
tion is performed over a hollow cylinder. It results in [23]:

PBS =


lmag

π
4ρCu,BS

(
r4BS − (rBS − tBS)

4
)(

dB
dt

)2
if δ ⩾

(
1− 1

e

)
tBS

lmagδ
3 π rBS
ρCu,BS

(
dB∗

dt

)2

if δ <
(
1− 1

e

)
tBS

[W], (61)

with ρCu,BS [Ωm] the resistivity of the BSs copper layer,
rBS [m] the outer radius of the BS and δ the skin-depth intro-
duced in equation (29). Note that the field change is considered
differently in the two regimes:

dB
dt

= ωfMαBS
[
Ts−1

]
, (62)

dB∗

dt
= ωfM

[
Ts−1

]
, (63)

where fM describes the magnetic transfer function in the BS
region. A uniform magnetic transfer function for the whole
BS can be assumed in the case of a dipole. However, this is
generally not true for other multipole magnets.

The total induced current can be calculated by integrating
the induced current density of one half of the BS from the out-
side towards the inside. For example, for an applied field in the
y-direction, the integral equals:

IBS = 2
ˆ π/2

−π/2

ˆ rBS−tBS

rBS

JBS (r,θ)drdθ [A], (64)

where the integration bounds need to be adjusted for other
field directions. The total induced current in the low-frequency
regime then follows:

IBS = 2
tBS

3ρCu,BS

(
t2BS − 3tCurBS + 3r2BS

)(dB
dt

)
[A],

(65)

and a significantly more complex term for the induced current
in the high-frequency regime can be derived.

The time constant for the eddy currents in the BS can be
calculated as [23]:

τBS = µ0
rBStBS

2ρCu,BS
[s]. (66)

The derivation of the power loss in the BS assumes a round
geometry. This is generally not true for BSs in the LHC.
However, an equivalent radius can be calculated as, for
example, presented in [34].

Moreover, the manufacturing process of the BS causes a
chemical diffusion of stainless steel particles into the copper
and can hence deteriorate the purity of the copper layer [35].
For a more sophisticated model of the eddy currents in the BS
multiple layers need to be taken into account, for example, one

8
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layer for the high-purity inner part, one layer for the deterior-
ated copper and one layer for the eddy currents in the stainless-
steel part of the BS. We will refer to these layers as the BS’s
inner and outer copper layers, respectively. Due to the com-
plexity of the derivation, it is not presented in this work, but a
similar approach can be found, for example, in [25].

2.6. Eddy currents in the W, CB and CPSs

Besides the BS, the magnet also includes other components
made of low-resistivity materials. The CB, made of stainless
steel, separates the inner beam- and vacuum region from the
superconducting coils. In the case of cos-theta-type accelerator
magnets, the different coil blocks are generally separated from
each other by coil W of various shapes and sizes, which can
be made of copper. Moreover, the superconducting coils can
sometimes be covered for manufacturing reasons with CPSs,
which can also be made of a low-resistivity material [36].

Generally, these magnet components have a rather com-
plex geometry, and an analytical derivation becomes quickly
unfeasible. However, in specific frequency regimes, the
developed eddy currents can still majorly impact the magnets’
impedance. A consecutive simulation approach was chosen
to account for the eddy currents in these magnet compon-
ents. First, the electromagnetic effect of the magnet compon-
ents is simulated in 2D utilising FEM, for example, COMSOL
Multiphysics©. In these simulations, the magnet coils carry
a uniform current density, oscillating at a given frequency.
Afterwards, the frequency-dependent eddy currents, power
loss within the resistive magnet components, and time con-
stants are exported to calculate the equivalent parameters for
the coupling loops in the network model.

2.7. Coupling of effects

The described dynamic effects are tightly coupled with each
other and very interdependent. We will distinguish, in general,
two types of coupling: external and internal coupling.

The inductance matrix used in this model is shown in
figure 4 with the loop inductances on the diagonal and the
mutual couplings to all other equivalent loops off-diagonal and
with the different types of coupling indicated in colours. The
mutual inductances are named with the first subscript defining
the cause e.g.MISCC,CSCC describing the effect of the ISCC on
the CSCC.

The inductance matrix is, by definition, symmetric. This
implies that it is sufficient to derive the mutual couplings
between two effects in one direction, e.g. deriving the impact
of one effect on the other. Conveniently, the respective other
direction does not have to be calculated. These couplings
which are not resolved are marked in figure 4 in grey.

2.7.1. Internal coupling. Internal coupling describes the
interdependence between the effects if they are generated

within the same volume. In this case, the effects can be dir-
ectly coupled with their field attenuation factors.

The field attenuation factor for the IFCLαIFCL can hence be
rewritten by combining the effects of the IFCL and the CSCL
in an equivalent time constant [24]:

α∗
IFCL = γIFCLωτ + jγ2

IFCL [−], (67)

γIFCL =
1√

1+(ω (τIFCL + τCSCL))
2

[−]. (68)

Utilising the field attenuation factor α∗
IFCL in equation (45),

one can derive the IFCC and IFCL, including the effect of the
CSCL.

However, as the PCs exhibit no time constant, the coup-
lings between PC and IFCL/CSCL must be derived analytic-
ally. The mutual coupling between the two respective coupling
loops can be calculated similarly, as shown in Annex A, by
deriving the equivalent network power and comparing it to the
equations for the physical power loss. The analytical formula
results in [30]:

MIFCL,PC =MCSCL,PC = µ0
π

8
lmag [H]. (69)

2.7.2. External coupling. External coupling describes the
interdependence between the effects if these are not generated
within the same volume. The eddy currents of the effects create
a field change on their own in their vicinity, which can affect
the eddy currents in another volume.

To take the effect of the inter-strand coupling currents onto
PC, IFCL and CSCL into account, one has to calculate the
field generated by the ISCC BISCL, attenuating the applied field
inside the cable. For the case of a Rutherford cable, as shown
in figure 5, this generated return field is approximated in this
work by assuming the ISCC as current lines on each side of
the cable’s broad face and calculated with Biot–Savart’s law:

BISCL = µ0
IISCL

4π
1
r

[T], (70)

where r [m] describes the distance between each strand and
the respective current lines. The total field generated in a single
strand by the ISCC is, therefore, the sum of the fields generated
by the two current lines. The return field of the ISCC opposes
the perpendicular applied field on the cables and causes an
attenuation of the field seen by all strands inside the cable.
Decomposing BISCL into its x- and y- components provides the
newmagnetic transfer function coefficient fH ∗ [TA−1]. Using
f∗H in the derivation of the power-loss and induced currents
hence includes the effect of the ISCL. The effect of the gener-
ated field of the ISCC on the ISCC in neighbouring cables is
not considered. However, such coupling could be included by
implementing a more detailed field calculation.

For themutual coupling of themagnets components and the
conductor losses, FEM is used. The magnetic transfer function
in each strand position is calculated for all frequencies and
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Figure 4. Inductance matrix of the equivalent effect loops in the coupled lumped-element network, with the respective loop inductance ( )
on the diagonal and the couplings to all other loops off-diagonal. The colours indicate the type of coupling: internal coupling ( ), external
coupling based fully on analytical equations ( ), external coupling based on a field factor calculated in FEM and included in analytical
equations ( ) and external coupling based on fully FEM ( ). Couplings which are not resolved due to symmetry are indicated with ( ).

Figure 5. The return effect of the ISCL on the applied field change
Ḃa is modelled with current lines in the centre of the cable’s broad
face sides, carrying the calculated, equivalent IISCL and generating
the field change ḂISCL, opposing, therefore, the applied field change.

then used for the calculation of the respective power loss and
induced current, instead of themagnetic transfer function from
the magneto-static simulation.

Mutual coupling between the magnet components is also
calculated utilising FEM. For these simulations, one compon-
ent is excited with an oscillating current, and by extracting the
induced current and power loss within the other component,
the mutual coupling between these components can be calcu-
lated as defined in equation (6).

2.7.3. Derivation of mutual coupling. To calculate the
mutual coupling between two loops, one can calculate the ana-
lytically derived parameters of the loop for the coupled case
as described above in sections 2.7.1 and 2.7.2 and compare
them to the ones in the physically uncoupled case (as derived
in sections 2.1–2.6). The voltage across the magnet induct-
ance for the first case and for the second case, in which an
equivalent coupling between the loops is inserted, have to be
equal.

Referring to figure 2 and assuming that there is no coupling
element between the two coupling loops, the magnet voltage
is defined as in equation (13). Inserting a mutual coupling

between loops a and s, we obtain a voltage across the mag-
net inductance of:

Vmag,1 =İmag,1Lmag,1

−M∗
ec,1,a

M∗
ec,1,aİmag,1 + I∗ec,aRec,a+İ

∗
ec,sMec,a,s

Lec,a

−M∗
ec,1,s

M∗
ec,1,sİmag,1 +Rec,sI∗ec,s+İ

∗
ec,aMec,a,s

Lec,s
[V] ,

(71)

whereM∗
ec,1,a,M

∗
ec,1,s and I

∗
ec,s,I

∗
ec,a represent the derived equi-

valent mutual coupling and induced currents for the physically
uncoupled case, respectively. It can be shown that the other
two equivalent parameters Rec and Lec are independent of the
coupling, as those purely depend on geometric and material
parameters.

As the voltage for the uncoupled case, including the phys-
ical coupling in the derived parameters, and the voltage for
the coupled case, with derived parameters assuming no coup-
ling, are supposed to be the same, we can set equations (13)
and (71) equal. One can derive the desired mutual inductance
between the loops by comparing the second term, representing
the effect of one of the two loops on the magnets’ voltage:

Mec,1,a
Mec,1,aİmag,1 +Mec,1,aIec,aRec,a

Lec,a

=M∗
ec,1,a

M∗
ec,1,aİmag,1 +M∗

ec,1,aI
∗
ec,aRec,a+İ

∗
ec,sMec,a,s

Lec,a
[V],

(72)

and the mutual inductance between the two coupling loops can
be calculated as:

Mec,a,s =
1

İec,sM∗
ec,1,a

[̇
Imag,1

(
(Mec,1,a)

2 −
(
M∗

ec,1,a

)2)
+Rec,a

(
Mec,1,aIec,a−M∗

ec,1,aI
∗
ec,a

)]
[H]. (73)
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3. Model validation

To simulate and model the impact of non-conformities, such
as short circuits, it is crucial to trust the model and to explore
to which extent the model assumptions hold. Therefore, an
extensive validation of the model was conducted on a wide
range of available measurement data for the case of the LHC
main dipole magnet. Section 3.1 describes the LHC main
dipole, followed by the validation of its equivalent network
in the frequency domain by measurements in section 3.2.
Afterward, in section 3.3, the LHC main dipole circuit and the
validation in the time domain are presented.

All simulations are performed with the SPICE solver
XYCE [37], utilizing the lumped-element network described
in section 2 and exemplary shown in figure 2. In the model val-
idation, we focus on the impedance magnitude, as it is easier
to interpret and visualize.

3.1. The LHC main dipole magnet

The LHC superconductingmain dipole magnet consists of two
apertures electrically connected in series with a total nom-
inal inductance of Lnom = 98mH, operating at a temperat-
ure of TOp = 1.9K and with a nominal operating current of
Inom = 11.85 kA, generating a nominal magnetic flux density
of about Bnom = 8.33 T. The magnet has a magnetic length of
lmag = 14.3m, and the coils are wound in two layers (referred
to as inner and outer layer), each with a different Nb–Ti
Rutherford cable. The Nb–Ti cable shows zero loss while car-
rying a DC current at a temperature below the current-sharing
temperature. The main conductor parameters used in this work
are shown in table 1.

All LHC main dipoles were assembled by three different
manufacturers. The coil blocks are separated from each other
with 14.3m long copper coil W. The coil protection sheets for
the main dipole are made of different materials, depending on
the manufacturer. The cold bore is a stainless steel tube with
an outer radius of 2.7 cm and a thickness of 1.5mm [36]. A
cross-section of the main dipole with all considered magnet
components is shown in figure 1 [17].], whereas refer to table 2
for the main parameters of these magnet components. Eddy
currents in other magnet components, such as in the collars
or in the iron yoke, are neglected, as these elements are lam-
inated and hence do not give rise to large loops of induced
currents. Hysteresis in the iron yoke of the magnet is also
neglected in this work. The power loss due to hysteresis is
proportional to the area spanned by the hysteresis curve. For
small field amplitudes and hence asymmetric loops, this area
is negligible [41]. FEM simulations, utilising a modified Jiles-
Atherton model [42] in COMSOL Multiphysics©, showed
that the hysteresis power loss at all frequencies remains mul-
tiple orders of magnitude smaller than in other components.
Figure 6 shows the magnetic flux density generated in the coils
and magnet components for an excitation current of 1A.

The measurement set-up for the TFM is shown in figure 7
[17]. The magnet is excited with a voltage of VAC = 10 V. The

Table 1. Assumed main conductor parameters of the LHC main
dipole [36, 38–40].

Parameter Unit Inner layer Outer layer

Cable
cross-section

mm2 31.2 24.8

Number of strands — 28 36
Copper/Nb-Ti — 1.65 1.95
Strand diameter mm 1.065 0.825
Diameter filament
region

mm 0.88 0.66

Strand twist pitch mm 115 100
Cross-contact
resistance

µΩ 50

Filament twist
pitch

mm 18 15

Filament diameter
df

µm 7 6

RRR of copper — 190

Table 2. Main parameters of the magnets components [36, 38].

Component
Cross-section
[m2] Material

Assumed
ρ at 1.9K
[nΩm]

Cold-bore 2.38 · 10−4 316 LN Steel 650
Copper wedges 1.15 · 10−3 OF copper

C106
0.54

CPS 1 2.59 · 10−4 CuSn3Zn9 60
CPS 2 CuSn9P 107
CPS 3 Cu61Ni18Zn20 220
CPS 4 YUS 130S

Steel
640

impedance is calculated from the measured current in the ref-
erence resistor RRef = 25Ω and the voltage across the magnet,
and reads

Z=
VDUT

VRef
·RRef [Ω]. (74)

The size of reference resistor was chosen to ensure a good
signal-to-noise ratio and to limit the current to ensure safe
operation via the sensitive voltage taps. In the LHC, each
dipole has a parallel resistor RPar = 100 Ω. Such a resistor can
be included in stand-alone measurements to recreate the con-
ditions in the LHC. All simulations use the network model
shown in figure 7 in which the magnet part is replaced with
the model shown in figure 2.

The stray capacitance to ground used in the simulation was
adapted to the measured value of both apertures of CGND ≈
300 nF.

3.2. Validation of frequency measurements

3.2.1. Stand-alone main dipole in CERN magnet test facil-
ity. A stand-alone LHC main dipole was recently cooled
down in the CERN magnet test facility, and an extensive
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Figure 6. Magnetic field Ba within the coil and magnet components
of the main dipole magnet for an excitation of 1A, simulated with

COMSOL Multiphysics© and [20].

Figure 7. Schematic showing the measurement set-up. The
impedances are measured across various voltage taps (here shown
for aperture 1). Figure taken from [17].

TFM campaign was performed [17]. The impedance of the
magnet without a transport current in the frequency range
of 1Hz to 100 kHz was measured at different temperatures
and magnetisation states. A BS was not present during these
measurements. The measurement campaign and set-up are
described in more detail in [17] as well as the validation up
to a few kHz.

The full TFM, in comparison to the simulation results from
the equivalent network model, is shown in figure 8 for the
case with and without a parallel resistor RPar. One can observe
a good agreement between the simulation and the measure-
ment throughout the frequency range up to 20 kHz with an
average error between 4.3% and 4.5%. The maximum error
between the simulation and themeasurement up to a frequency
of 20 kHz is 7% and 12% for the case without and with the par-
allel resistor, respectively. Compared to an ideal inductor and

Figure 8. Measured complex impedance of one aperture of the
LHC main dipole magnet versus the simulated impedance of the
equivalent network model for the full measurement range at 1.9K.
The measurements with and without a parallel resistor RPar = 100Ω
are compared to the respective simulations of the model and
simulations, assuming an ideal inductance and capacitance.

Figure 9. Measured impedance phase of one aperture of the LHC
main dipole magnet versus the simulated phase of the equivalent
network model for the full measurement range at 1.9K. The
measurements with and without a parallel resistor RPar = 100Ω are
compared to the respective simulations of the model and
simulations, assuming an ideal inductance and capacitance.

capacitance to ground, the simulations show an average error
of more than 150% and a maximum error far beyond 500%.
Figure 9 shows the comparison of the measured and simulated
phase for the two cases and the ideal LC network. At lower
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Figure 10. Impact of the different effects on the differential
inductance Lmag,D of one aperture of the LHC main dipole as a
function of the frequency. In this illustration, the coupling between
the different effects is only considered for the curve, including all
effects.

frequencies, the simulated and measured phases show good
agreement. Around the resonance peak, the measured phase
seems to drop later, leading to a more significant absolute
error. The general shape of the phase over the frequency range
is, however, captured in good agreement. Except for the BS,
the simulations include all described non-linear, frequency-
dependent effects. One must note that the parameters shown
in tables 1 and 2, were not specifically fitted to the measure-
ments. Further optimisation of those parameters could poten-
tially reduce the error even further. However, fitting the model
parameters to one specific magnet is not within the scope of
this work.

The contributions of the different effects on the impedance
and the magnets’ differential inductance can be seen for one
aperture in figure 10. One has to note that only the differen-
tial inductance, including all effects, shown in figure 10, does
account for the coupling between the different effects. The PCs
in the superconductor develop immediately and alter the dif-
ferential inductance of the magnet throughout the entire fre-
quency range. The other effects start to reduce the differen-
tial inductance at specific frequencies, which roughly corres-
pond to the inverse of their time constants, as will be shown
later. Moreover, figure 10 also shows in which frequency
regimes which effect has the most significant contributions to
the differential inductance. While the effects in the conductor
volume mainly affect the differential inductance at lower fre-
quencies, the effects in the magnet components are dominant
at higher frequencies.

The dissipated power due to the different effects, assum-
ing the measurement set-up used for the TFM is shown in
figure 11. The root mean square power loss shown in figure 11
is based on the complex voltage and current in the equivalent
loop of the network model and calculated as:

P=
1
2
ℜ
{
UR · ILoop

}
[W], (75)

Figure 11. RMS power loss due to the different, coupled effects in
one aperture of the LHC main dipole, assuming a sinusoidal
excitation of VEx = 10V across the magnet and a reference resistor
RRef = 25Ω.

where UR [V] is the voltage across the resistance in the
equivalent loop and ILoop [A] is the complex conjugate of
the current flowing in the loop. These losses also consider
the individual coupling between the different effects. One
can observe the frequency regimes in which specific effects
dominate. In the LF range up to about ≈100Hz the power
is mostly dissipated in the conductor. At higher frequency
regimes, the eddy current losses in the magnet components
become dominant. However, due to the coupling between the
effects, the rise of eddy currents and their loss in one compon-
ent can cause a decrease in another component. This can be
observed, for example, when the power in the cold bore sud-
denly decreases once the power loss in the strongly coupled BS
decreases.

To highlight the importance of themutual coupling between
the different effects, figure 12 compares measured impedance
and simulated impedance, with and without considering coup-
ling between the effects in the lumped element network.

One can observe that by not including the coupling, the
error with respect to the measurement becomes significantly
larger, up to a factor of three. The impedance simulated
without the coupling generally gives a smaller impedance at
lower frequencies, as it overestimates the effect of the con-
ductor losses. On the contrary, at higher frequencies, it gives a
larger impedance, as the field change generated by some com-
ponents can increase the generation of currents. In the LHC
main dipole, this is especially the case for the interdependence
of the eddy currents in the W and ISCC. The currents in the W
tilt the field so that the perpendicular field component to the
cables’ broad face increases.

The complex impedance of the main dipole was also mon-
itored during the warm-up from 1.9K to room temperature.
The measured complex impedance of the stand-alone dipole
for a few selected temperatures is shown in figure 13 and
the assumed material resistivites in the considered compon-
ents at these temperatures are shown in table 3. The com-
plex impedance showsmultiple temperature-dependent effects
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Figure 12. Measured complex impedance of one aperture of the
LHC main dipole magnet versus the simulated impedance of the
equivalent network model with and without considering coupling
between the different equivalent coupling loops.

Figure 13. Measured complex impedance of one aperture of the
LHC main dipole versus the simulated impedance of the equivalent
network model for a few selected temperatures during the warm-up
in CERN’s magnet test facility.

accurately captured in themodel. First, one can observe a jump
in impedance at low frequencies between the measurements at
the superconducting state at 1.9K and the normal state at 22K.
The measured inductance and capacitance as a function of
temperature can be seen in [17]. A sudden jump of the differ-
ential inductance was observed around ≈9.2 K, which can be
accurately reproduced by the simulations, including the effects
of the PCs. Beyond 9.2K, the conductors of the main dipole
are not superconducting anymore and, hence, do not show any

Table 3. Assumed material resistivities at different temperatures.

Resistivities (nΩm) ρ22K ρ70K ρ180K ρ290K

316 LN Steel (CB) 505 530 600 680
YUS 130S Steel (CPS) 640 680 820 930
Copper, RRR = 15 (Wedge) 1 3 10 18

persistent or IFCCs. However, ISCL and eddy currents in the
strands’ copper still alter the magnet’s differential inductance.

In the normal state, the magnet’s resistive behaviour
becomes more dominant with a rising temperature. One can
see that the warm resistances of the cables, assuming the men-
tioned RRR, are accurately reproduced. However, the induct-
ive behaviour becomes dominant at frequencies above roughly
20Hz. Up to about 300Hz, one can observe little differences
between the different temperatures as the non-linear effects
present in the normal state only have a small impact on the dif-
ferential inductance. At frequencies above 300Hz, the effects
of ISCL and CSCL become visible and are in good agreement
with the measurements.

The time constants of the effects are presented in table 4
and shown in figure 14 as a function of the temperature.

The time constants in the superconducting state are
inversely related to the differential inductance drops due to
the effects, shown in figure 10, and can also be observed in
figure 11. Once the conductors transition into the normal state,
the time constant of the ISCL drops significantly as these cur-
rents flow now within the copper matrix of the strands along
the direction of the transport current. On the contrary, the time
constant of the eddy currents in the copper matrix increases
after the transition, as in the normal state, no PCs develop,
which shields the field change from the inner copper core of
the superconducting strand. Both phenomena, as well as the
eddy currents in the BS and the copper W, depend on the
resistivity of the copper and hence are monotonously decreas-
ing with the temperature. The time constants of the magnet
components, made of materials other than copper, have a very
small RRR, and hence, their time constants are not signific-
antly changing with temperature.

3.2.2. Measurements of main dipole magnets installed in the
LHC. Contrary to the presented stand-alone magnet in the
test facility, the magnets installed in the LHC do contain a
BS in the centre of each aperture, which has a significant
impact on the magnet’s impedance (see figure 10). Moreover,
the dipole magnets in the LHC were manufactured by differ-
ent companies that used four different materials for the CPSs
(see table 2). All these features are included in the equival-
ent network model. Figure 15 compares the impedance meas-
urement of one magnet chosen from each group of CPSs
and the respective simulations. The different materials used
for the CPS cause a significant difference in the impedance
that can reach even up to a factor of 5 at frequencies above
roughly 300Hz. Moreover, these effects also govern the fre-
quency at which the impedance peaks. These can vary between
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Table 4. Time constants of the considered effects at 1.9K.

τPC τ ISCL τ IFCL τBS τW τCSCL τCPS τCB

(ms) — 269 (outer)
144 (inner)

23 (outer)
33 (inner)

5.8 4.5 0.34 (outer)
0.56 (inner)

0.07 0.046

Figure 14. Calculated time constants of the equivalent
lumped-element loops, representing the lossy eddy-current effects,
as a function of the temperature. Time constants are assumed not to
be frequency-dependent.

Figure 15. Comparison of complex impedance measurements of
one aperture of four different LHC main dipoles installed in the
LHC and the simulation results, utilising the equivalent network
model. The groups refer to the used CPS materials in table 2.

about 5.5 kHz (Group 4) to 10.5 kHz (Group 1). The agree-
ment between the measurements and the simulated imped-
ance is very good across all groups and the entire frequency
range. The average error between simulation andmeasurement
ranges between about 1% (Group 3) and 4.5% (Group 1), with
the largest deviation in Group 1 of about 17%. The model also
accurately captures the effect of the BS, the different materials

Figure 16. Comparison of complex impedance measurements of
one aperture of one LHC main dipole at different temperatures of
the beam-screen and the simulation results.

of the CPSs, and the interdependence of these magnet com-
ponents with the conductor effects.

Additional measurements were performed to validate the
model further and, specifically, the effect of the BS on themag-
net’s impedance. During these measurements, a set of magnets
installed in the LHC was kept at their operational temperature
of 1.9K, while their BSs were heated up from the nominal
temperature of 20K to 35K and to 50K. The complex imped-
ance was measured at these three temperatures. The results
of these measurements for one chosen magnet are shown in
figure 16. The BS model includes three different layers. The
inner layer is assumed to be high-purity copper, which was
not polluted by the annealing with steel. The outer layer is in
between the high-purity copper layer and the steel layer and is
characterised by being polluted by the annealing, hence show-
ing a low RRR [35]. The third layer is the outermost steel layer
of the BS [33]. The simulations in figure 16 assumed for the
inner layer a RRR = 100 and a thickness of 70µm, for the
outer layer a RRR = 10 and a thickness of 18µm and a thick-
ness of the steel layer of 1mm. The model accurately captures
the temperature dependence of the BS and its layers, with a
very good agreement between the simulations and the meas-
urements. The BS significantly affects the magnets’ imped-
ance in the frequency range between 20Hz and about 300Hz.
Moreover, in figures 17 and 18, the simulated impedances at
35Hz are shown by varying the RRR and thickness of the inner
copper layer, as well as the RRR of the inner and outer copper
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Figure 17. Simulated impedance of one LHC main dipole aperture
versus thicknesses and purities of the inner copper layer of the beam
screen at a frequency of 35Hz.

Figure 18. Simulated impedance of one LHC main dipole aperture
versus purities of the beam screen’s inner and outer copper layer at a
frequency of 35Hz.

layer of the BS. One can observe that the impedance is mostly
affected by the purity and thickness of the inner layer while
the effect of the outer layer is not negligible. Figures 17 and 18
show the simulated impedances at a small field amplitude as in
TFMs. However, at larger field amplitudes, the resistivities are
differently affected by the magnetoresistive effect, and hence,
the impact of the outer layer becomes more significant. The
choice of 35Hz for the impedances will be motivated in the
next section.

3.3. Validation of time-domain measurements

3.3.1. The LHCmain dipole circuit. The LHC contains eight
superconducting main dipole circuits, each comprising 154
magnets in series. The circuits are split into two branches,
each containing 77 magnets. The circuit schematic is shown
in figure 19. The energy extraction (EE) systems are placed
between the branches, and on one side is the power converter.
Each dipole has a cold diode (CD) and a resistance RPar =
100 Ω in parallel. The diode is used for protection reasons to
bypass the current in the case of a quench. The power converter
contains an output filter with a characteristic frequency of
about fFilter ≈ 32Hz [10, 43]. The differential voltage between

the two apertures is used as a quench detection voltage. This
differential voltage is referred to as UQS,0 = U1 −U2 [V] and
triggers quench protection if it exceeds 100mV for more than
an evaluation time of 10ms.

In the case of a FPA, the power converter is switched off,
and the current bypasses the power converter through a crow-
bar (CB) consisting of three parallel thyristor branches. The
EE resistances are switched into the current path to dissipate
the energy stored in the circuit. Each of these switch open-
ings/closings introduces voltage waves across the switches
and at the output stage of the power converter filter. While
the voltage wave after the disconnection of the power con-
verter has the characteristic frequency fFilter of the power con-
verter filter, the voltage waves after switching in the EEs have
a natural frequency of the circuit. The propagation time of
the voltage wave through one aperture can be approximated
with [10, 43]:

tAp ≈
√
LAp ·CGnd ≈ 85 µs, (76)

where we assumed the nominal inductance of one aperture
Lap = 49mH and a capacitance to ground of one aperture of
CGnd = 150 nF. The natural circuit frequency is then:

fCircuit ≈
1

154 · 2 · tAp
≈ 38 Hz. (77)

These voltage waves then travel with the characteristic fre-
quency along the chain of magnets, whereas each dipole intro-
duces another phase shift to the waves.

3.3.2. Validation of time domain simulations. The equi-
valent network model is very computationally inexpensive
and can also be used to simulate specific transients in the
time domain. These transients need to show the characterist-
ics of one specific frequency to use the magnets’ respective
impedance.

After the described FPA event, the voltage waves travel
through the chain of magnets with the characteristic fre-
quencies described before. An example of the voltage across
one dipole magnet, compared to measurements, is shown in
figure 20. One can observe the three prominent times at which
the voltage wave propagates through the chain of magnets. At
the moment the power converter is switched off, the voltage
across each magnet drops from the ramping voltage for a
ramp-rate of 10 A s−1 of

UMag =İMagL≈ 0.98 V

to zero, while at each of the openings of the EE switches, the
voltage drops correspond to

UMag =−REE · ICircuit

154
[V] , (78)

where REE = 73mΩ is the resistance of the EE and ICircuit [A]
the current through the circuit. For a circuit current of
ICircuit = 11.85 kA, we get UMag ≈ 5 V. One can observe
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Figure 19. Simplified circuit scheme of one LHC main dipole circuit. The circuit comprises 154 magnets in series, split into two branches
(odd and even branches). Each dipole has a parallel resistor RPar and a cold diode (CD) in parallel. During a fast power abort (FPA), the
power converter (PC) is switched off at tPC and the current is then bypassed through the crowbar (CB). The two energy extraction (EE)
resistances are switched into the circuit at tEE,2 and tEE,1.

Figure 20. Measured voltage across one magnet (electrical position 25) after the switch-off of the power converter at tPC and the two energy
extraction switch openings tEE,1 and tEE,2 for a fast power abort at Iend =11 kA while ramping with dI/dt=10A s−1.

that the voltage wave can be accurately reproduced in the
simulations.

However, due to manufacturing inaccuracies, the BSs of
the magnets show significant differences in their effect on the
impedance. Compared to figure 17 or 18, one can observe that
at the characteristic frequency of the wave, the impedance can
vary significantly, up to 30%, based on the purities and thick-
nesses of the respective layers. If the apertures of one dipole
magnet have a significantly different impedance, the voltage
wave propagates at a different speed through them. As the sig-
nal UQS,0 is the difference of voltages across the apertures of
each dipole, the signal picks up those differences between the
apertures of the magnet at the moment the wave propagates
through the magnet. This was previously modelled with equi-
valent parallel resistances, and good agreement was achieved
[10]. However, this model did not provide any interpretability

and cannot explicitly incorporate the differences in the BSs.
With the equivalent network model, it becomes possible to
indicate outliers whose voltage wave amplitudes can not be
explained by the BS parameters.

Figure 21 compares the measurement of one UQS,0 signal
and the simulation, incorporating the material differences in
the BSs of the two apertures. The magnet current was ramped
at 10A s−1 to 2 kA during the shown event. The power con-
verter was switched off at tPC =0 s, while the two EEs at the
end and in the middle of the chain of magnets were switched
in at around tEE,2 =0.1 s and tEE,1 =0.6 s. In the case shown
in figure 21, the measured UQS,0 signal reaches the threshold
level of 100mV after the disconnection of the power converter.
The simulation can accurately reproduce the signal during all
events: the power converter switch-off and the two switch
openings.
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Figure 21. Measured and simulated voltage differences between the
two apertures of one LHC main dipole (electrical position 25) after
the switch-off of the power converter at tPC and the two energy
extraction switch openings tEE,1 and tEE,2 for a fast power abort at
Iend =2 kA while ramping with dI/dt=10A s−1.

Figure 22. Comparison of simulated and measured voltage
differences between the apertures in a time windowd of 0 to 50ms
after disconnecting the power converter at 2 kA with a ramp rate of
10A s−1 for all 154 LHC main dipoles in one circuit.

In figure 22, the measured voltage amplitudes of the UQS,0

signal for all 154 magnets in one circuit at the switch-off of
the power converter for the same event are shown. By util-
ising the equivalent network model and the different BS para-
meters, a good accuracy of simulated and measured aperture
voltage difference can be achieved for all 154 main dipoles
in the chain, with an average error of about 15%. The model,
hence, can be used to evaluate if the observed voltage spikes
can be explained by thosemanufacturing inaccuracies or if dif-
ferent reasons must be considered.

4. Discussion

The impedance analysis provides some valuable insights into
the electrodynamic behaviour of a superconducting magnet,
which is useful for future prototypes of accelerator magnets to
minimise energy losses and optimise operational efficiency.
Eddy currents or other non-linear coupling effects within a
magnet could cause unexpected voltage behaviour or losses.

The presented fast transients in the main dipole circuits serve
as an example, during which spurious triggering of the quench
detection systems due to impedance differences between the
magnets’ apertures present a problem.

When considering coupling effects within an accelerator
magnet, there are generally two governing parameters that
mostly affect the impedance of a magnet. The first one is the
time constant of the eddy currents. The larger the time con-
stant, the smaller the frequencies at which those eddy currents
occur. Generally, the time constant is inversely proportional
to the material’s resistivity in which the currents are induced.
Naturally, superconductors with infinite conductivity hence
cause PCs to flow at low frequencies. Similarly, coupling cur-
rents, such as IFCC or ISCC, flow through the supercon-
ductor and only shortly cross through low-resistivity mater-
ial. Considerations to avoid or reduce the resulting losses are
already well-known in the literature. However, other mater-
ials often used in accelerator magnets, such as copper, alu-
minium, or bronze alloys, also have significant conductivity
and could hence cause significant losses in certain frequency
regimes. Moreover, defining tighter as well as upper- and
lower-bounded manufacturing requirements for these com-
ponents could avoid different impedances between apertures
or a series of magnets. These differences could cause unexpec-
ted voltage behaviour and, for example, cause spurious trig-
gering of protection systems. Special attention should be paid
to whether magnet components should be made with these
materials.

The second governing parameter is the loop size that the
induced currents will form. The larger these loops, the lar-
ger the equivalent inductance and coupling of the effect with
the magnet would be and, hence, the more significant the
impact on the magnets’ impedance. The loop size scales
with the longitudinal length of the component to consider,
as well as with its volume and especially its thickness in the
cross-section. However, in some cases, the currents also close
through other components or materials and, hence, combine
multiple volumes with each other. For example, one can con-
sider the effect of the presented coil protection sheets in the
case of the LHC main dipole. Even though these sheets are
thinner than 1mm, they impact the magnets’ impedance sig-
nificantly. The sheets are over the full length of the magnet
and placed on both sides of an aperture. As these sheets are
not insulated from each other, the currents are induced longit-
udinally along the sheets and then close through the metallic
collars, creating a significantly bigger loop. Such eddy cur-
rents can be avoided or reduced by either considering a suffi-
cient lamination of the component or insulation between the
respective volumes.

5. Conclusion and outlook

This contribution proposes an equivalent lumped-element
model incorporating various coupled, non-linear, interdepend-
ent physical coupling and magnetisation effects. These effects
are included in the network model as loops, consisting of an
inductance and resistance, that can be calculated by analytical
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equations or derived from finite-element simulations. The
derivation of the included effects was described. Even though
the presented model is applied to a specific type of acceler-
ator magnet and comes with assumptions, the general mod-
elling principle can be applied to other types of magnets
straightforwardly.

Themodel was validated on awide range of availablemeas-
urement data in the frequency- and time-domain. First, the
simulation results were compared to the measured complex
impedance of a stand-alone LHC main dipole in the CERN
magnet test facility. The simulation and the measurement
show a very good agreement with a general error of around
5%. Moreover, a very good agreement was achieved for com-
paring the complex impedance of the LHC main dipole and
the simulations at various temperatures between cryogenic and
room temperature.

The model was further validated with measurements from
the main dipoles, that are installed in the LHC. The model
can accurately reproduce the effects of different materials and
purities used in the CPSs and BSs on the magnet’s differen-
tial inductance and their interdependence with the conductor
coupling effects. The general error is below 5%.

As such, the equivalent network model is very com-
putationally inexpensive and, hence, can simulate the
electromagnetic behaviour of a full LHC main dipole cir-
cuit consisting of 154 main dipoles in series. FPA events were
simulated using the equivalent network model, including spe-
cific material parameters for the different LHC main dipoles.
These cause impedance differences between the magnets and
as well between their apertures, causing voltage differences.
These voltage differences are successfully reproduced by the
model and are in agreement with the measurements.

It was shown that the equivalent network model can accur-
ately reproduce a wide range of scenarios in the time- and
frequency-domain. Moreover, the model preserves a very high
level of interpretability, as it incorporates individual paramet-
ers and features of specific effects, such as different materi-
als or purities, and it can provide valuable insight into each
effect’s impact on the overall electromagnetic behaviour. As
such, the model can be used to investigate further if observed
outliers in measurements can be correctly classified as out-
liers or if these could be caused by manufacturing tolerances.
Moreover, the network model can also be used to explore the
effects of failures, such as inter-turn shorts, on the electromag-
netic behaviour.
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Appendix A. Derivation of equivalent lumped-
element parameter for PCs in superconductors

To calculate the equivalent parameter for the proposed equi-
valent coupling loop, one has to compare the power definitions
of the electrical equivalent network and physically derived for-
mulas for the PCs.

The transferred power PPC,Ph due to the PCs consists of the
stored and lost power and can be described as, starting from
equations (53) and (51):

PPC,Ph = PStored +PLoss (79)
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, (80)

with VS [m3] the strand volume and where we used the follow-
ing assumptions and relations:

B= µ0 (M+H) [T], (81)

H=
fH
µ0
IMag

[
Am−1

]
, (82)

LMag =

ˆ
V

1
µ0
f 2HdV [H], (83)

M=
IPC
ds

[
Am−1

]
. (84)

The third relation describes the relation between the magnetic
transfer function and the magnet’s self-inductance. Moreover,
it can be shown that a cos(θ) current distribution on the out-
side of a round conductor generates a uniform magnetisation
and that the total induced current needed to generate this mag-
netisation follows equation (84) [21, 30].
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The total power in the equivalent loop of the network
model, as presented in figure 3, PPC,El can be described by:

PPC,El = IMagVMag + IPCVPC

= IMag

(
LMag

dIMag

dt
+Mec,PC

dIPC
dt

)
+ IPC

(
LPC

dIPC
dt

+Mec,PC
dIMag

dt

)
=Mec,PCIMag

dIPC
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= Term 1

+LMagIMag
dIMag
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= Term 2

+Mec,PCIPC
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dt︸ ︷︷ ︸
= Term 3

+LPCIPC
dIPC
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= Term 4

. (85)

By comparing the highlighted terms in equations (80) and (85),
one can immediately find the definition for the inductance and
mutual coupling of the equivalent loop for a single strand:

Lec,PC =
Vs

d2s
µ0 = µ0

π

4
lmag [H],

Mec,PC,1 =
Vs

ds
fH =

π

4
dslmag fH [H].

Appendix B. Derivation of the field attenuation
factor α

One starts by considering a conductive, non-magnetic domain
Γ with a constant permeability under the impact of an extern-
ally applied, harmonic magnetic vector potential Aa [Tm] of
the form:

Aa = Azsin(ωt) . (86)

This appliedmagnetic vector potential generates eddy currents
Ji [Am2] in the conductive domain, which in turn generates
an additional magnetic vector potential Ai. We will use the
definition:

B=∇×A, (87)

∇·A= 0. (88)

We start by considering the parabolic magnetic diffusion
equation for the magneto-quasistatic case in a dimensionless
form [23]:

∇2B= τ
d
dt
B, (89)

with τ =
µl20
ρ [s] themagnetic diffusion time constant and l0 [m]

the conductor dimension. The magnetic flux density consists
of the applied Ba and induced field Bi:

B= Bi+Ba. (90)

We notice the relation:

∇2B= (∇·∇)B︸ ︷︷ ︸
=0

−∇×∇×B

where the first term on the right-hand side equals zero as
defined by the Gauss–Faraday law. Moreover, as the applied
field is generated externally, beyond the region of interest, we
assume it has zero curl:

∇×Ba = 0

Inserting equation (90) into (89), and using the relations above
we obtain:

∇2 (Ba+Bi) = τ
d
dt
B (91)

∇×∇× (Ba+Bi) =−τ
d
dt
B (92)

∇×∇×Ba︸ ︷︷ ︸
=0

+∇×∇×Bi =−τ
d
dt
B (93)

∇×Ai =−τ
d
dt
∇×A (94)

∇×Ai =−τ∇× d
dt
A (95)

Ai =−τ
d
dt
A. (96)

We notice the form of a first-order linear time-invariant system
for the magnetic vector potential.

Now, we assume a solution for the induced field inside the
conducting domain of the form [11]:

Ai =−Azcos(ωt− tn)sin(tn) , (97)

with the substitution:

tn = tan−1 (ωτ) . (98)

The new vector potential, including the induced term, then res-
ults in the following:

ATot = Aa+Ai (99)

= Azsin(ωt)−Azcos(ωt− tn)sin(tn) (100)

= Azsin(ωt− tn)cos(tn) . (101)

One can observe that the exciting magnetic field potential
inside this conductive domain is being retarded by a time tn

ω
and the magnitude is being attenuated by a factor cos(tn),
which are both an increasing function of τ . We can rewrite
this attenuation and introduce the new field attenuation factor:

γ = cos(tn) =
1√

1+(ωτ)
2

[−]. (102)

One can observe the following limits for γ:

lim
ω→0

γ = 1 (103)

lim
ω→∞

γ = 0. (104)

Equation (101) then can be rewritten into the expanded trigo-
nometric form of:

ATot = Azγ (ωτcos(ωt)+ γsin(ωt)) . (105)
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One can now identify the shape of a complex number with the
real and imaginary part:

ℜ(ATot) = Azγωτ, (106)

ℑ(ATot) = Azγ
2, (107)

where we can conclude with the field attenuation factor:

α=
(
γωτ + j · γ2

)
. (108)
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