
Solar Modulation of Cosmic Nuclei over a Solar Cycle:
Results from the Alpha Magnetic Spectrometer

M. Aguilar,29 B. Alpat,35 G. Ambrosi,35 H. Anderson,10 L. Arruda,27 N. Attig,24 C. Bagwell,10 F. Barao,27 M. Barbanera,35

L. Barrin,14 A. Bartoloni,39 R. Battiston,46,47 A. Bayyari,20 N. Belyaev,10 B. Bertucci,35,36 V. Bindi,20 K. Bollweg,21

J. Bolster,10 M. Borchiellini,17 B. Borgia,39,40 M. J. Boschini,31 M. Bourquin,15 C. Brugnoni,35,36 J. Burger,10 W. J. Burger,46
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31INFN Sezione di Milano–Bicocca, 20126 Milano, Italy
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We report the properties of precision time structures of cosmic nuclei He, Li, Be, B, C, N, and O fluxes
over an 11-year solar cycle from May 2011 to November 2022 in the rigidity range from 1.92 to 60.3 GV.
The nuclei fluxes show similar but not identical time variations with amplitudes decreasing with increasing
rigidity. In particular, below 3.64 GV the Li, Be, and B fluxes, and below 2.15 GV the C, N, and O fluxes,
are significantly less affected by solar modulation than the He flux. We observe that these differences in
solar modulation are linearly correlated with the differences in the spectral indices of the cosmic nuclei
fluxes. This shows, in a model-independent way, that solar modulation of galactic cosmic nuclei depends
on their spectral shape. In addition, solar modulation differences due to nuclei velocity dependence on the
mass-to-charge ratio (A=Z) are not observed.

DOI: 10.1103/PhysRevLett.134.051001

Cosmic rays entering the heliosphere are subject to dif-
fusion, convection, adiabatic energy losses, and magnetic
drift, as described by the Parker equation [1]. The temporal
evolution of these processes leads to cosmic-ray intensity
variations that correlate with solar activity, which has several
cycles [2]. The most significant is the 11-year solar cycle
during which the number of sunspots changes from mini-
mum to maximum and then back to a minimum. Cosmic-ray
transport in the heliosphere is rigidity-dependent. Hence, the
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different nuclei fluxes are expected to have similar time
variations at a given rigidity. However, according to the
Parker equation, the time variation of fluxes of different
cosmic-ray nuclei may differ due to (i) differences in the
spectral shape of cosmic rays entering the heliosphere, and
(ii) differences arising from the velocity dependence of the
solar modulation for cosmic rays with a different mass-to-
charge ratio (A=Z) [3–5].
Previously, AMS observed that nuclei with 2 ≤ Z ≤ 8 in

cosmic rays belong to three groups with distinctly different
rigidity spectra [6–9]: the He, C, and O, which are mostly
primary, that is, produced and accelerated in astrophysical
sources; the secondaries Li, Be, and B, which are produced
from the interaction of primaries with the interstellar
medium; and N, which is a combination of primary and
secondary components.
AMS previously measured the time variations of the

electron, positron, proton, antiproton, and helium fluxes
[10–14]. Significant differences in solar modulation have
beenobserved among these particles. Furthermore, the study
of the time variation of hydrogen and helium isotopes, p,D,
3He, and 4He, revealed a significantly different solar modu-
lation behavior for different isotopes [15,16].
In this Letter we present the time evolution of cosmic-ray

nuclei fluxesHe, Li, Be, B, C,N,O in the rigidity range from
1.92 to 60.3 GV measured for 147 Bartels rotations from
May 2011 to November 2022. The measurements are based
on9.61 × 108 He, 5.3 × 106 Li, 2.6 × 106 Be, 7.8 × 106 B,
26.1 × 106 C, 6.6 × 106 N, and 22.1 × 106 O nuclei.
Detector—The description of the AMS detector is pre-

sented in Ref. [17] and shown in Fig. S1 of the Supplemental
Material (SM) [18]. The key elements used in this meas-
urement are the permanent magnet [19], the silicon tracker
[20], and the four planes of time of flight scintillation
counters [21]. AMS also contains a transition radiation
detector, a ring imaging Čerenkov detector, an electromag-
netic calorimeter, and an array of anticoincidence counters.
Details on the detector, trigger, and Monte Carlo (MC)
simulation are contained in Refs. [6,22–25] and in the
SM [18].
Event selection—AMS collected 2.12 × 1011 cosmic-ray

events from May 2011 to November 2022. Nuclei events
are required to be downward going, to have a reconstructed
track in the inner tracker, and to pass through the first
tracker layer L1. See Fig. S2 of SM [18] for a reconstructed
O event. Details of the event selection and background
subtraction are contained in Refs. [7–9,26] and in the
SM [18].
Data analysis—For a given Bartels rotation, the isotropic

flux Φi
X for a nucleus X in the ith rigidity bin ðRi;Ri þ

ΔRiÞ is given by

Φi
X ¼ Ni

X

Ai
Xϵ

i
XTiΔRi

; ð1Þ

where Ni
X is the number of events corrected for bin-to-bin

migration, Ai
X is the effective acceptance, ϵiX is the trigger

efficiency, and Ti is the collection time. In this Letter,
fluxes were measured in 40 rigidity bins from 1.92 to
60.3 GV. Bin-to-bin rigidity migration of events due to the
finite rigidity resolution was corrected using the unfolding
procedures described in Ref. [6] independently for each
Bartels rotation.
Extensive studies were made of the systematic errors.

These errors include the uncertainties in the background
evaluation, the trigger efficiency, the acceptance calcula-
tion, the absolute rigidity scale, the rigidity resolution
function, and the unfolding procedure.
The overall uncertainty due to background subtraction is

negligible (< 0.5%) for He, C, and O, and is <0.8% for Li,
<1.2% for Be, <1.2% for B, and <1.1% for N over the
entire rigidity range.
The systematic error on the nuclei fluxes associated with

the trigger efficiency measurement is negligible over the
entire rigidity range.
The effective acceptances were calculated using MC

simulation and corrected for small differences between the
data and simulated events related to (a) event reconstruction
and selection, namely in the efficiencies of velocity vector
determination, track finding, charge determination, and
tracker quality cuts, and (b) the details of inelastic inter-
actions of nuclei in the AMS materials. The systematic
error in each flux associated with the reconstruction and
selection between MC simulation and data is < 1% over
the entire rigidity range.
The material traversed by nuclei within AMS is com-

posed primarily of carbon and aluminum. The survival
probabilities of nuclei due to interactions in the materials
were measured using cosmic-ray data collected by AMS as
described in Ref. [27]. The systematic error due to
uncertainties in the evaluation of the inelastic cross sections
leads to a systematic error of < 2% for all the nuclei over
the entire rigidity range.
A time-dependent systematic error due to the variations

of reconstruction efficiencies for each Bartels rotation was
estimated to be < 1% for He, < 0.9% for Be, < 0.6% for
Li, B, and N, and negligible for C and O over the entire
rigidity range.
For all nuclei, the rigidity resolution function has a

pronounced Gaussian core characterized by width σ and
non-Gaussian tails more than 2.5σ away from the center [7–
9]. The systematic error on the fluxes due to the rigidity
resolution function was obtained by repeating the unfolding
procedure while varying the width of the Gaussian core of
the resolution function by 5% and by independently
varying the amplitude of the non-Gaussian tails by 10%
[7–9]. The resulting time-independent systematic error in
the flux is< 1% over the entire rigidity range for all nuclei.
The flux variation per Bartels rotation leads to an additional
uncertainty in the unfolding procedure. The resulting
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time-dependent systematic error is < 1% for all nuclei at
1.92 GV and negligible above 5 GV for all Bartels
rotations.
The systematic error of the unfolding procedure due to

uncertainties in the acceptance in the lowest rigidity bin
was found to be negligible for He, < 2% for Li, Be, B,
< 1.5% for C, < 5% for N and O, and negligible for all
nuclei above 2.4 GV.
There are two contributions to the systematic uncertainty

on the rigidity scale [6]: the first is due to residual tracker
misalignment and the second to the magnetic field map
measurement and its temperature corrections. Both effects
give a negligible systematic error on all fluxes over the
entire rigidity range.
The overall time-independent systematic error is

obtained by adding in quadrature the individual indepen-
dent contributions of the background subtraction, due to
uncertainties in the evaluation of the inelastic cross sections
and trigger, reconstruction, and selection efficiencies.
The overall time-dependent systematic error is obtained,

for each Bartels rotation, by adding in quadrature the indi-
vidual independent contributions of unfolding and the time
dependence of the reconstruction and selection efficiencies.
Most important, several independent analyses were per-

formed on the same data sample by different study groups.
The results of those analyses are consistent with this Letter.
Results—The measured He flux including statistical and

systematic errors is tabulated in Tables S1–S147 in the SM
[18,28] for Bartels rotations 2426 to 2581, as a function of
the rigidity at the top of the AMS detector. Previously,
AMS has made extensive studies of the time variation of the
He flux [14]. The current measurements cover an extended
time range and are in agreement with our previous
measurements in the overlapping time period. The mea-
sured Li, Be, B, C, N, and O fluxes including statistical and
systematic errors are tabulated in Tables S148–S1029 in the
SM [18,28] for Bartels rotations 2426 to 2581, as a function
of the rigidity at the top of the AMS detector. To compare
with the He flux variations we also tabulate the Li=He,
Be=He, B=He, C=He, N=He, and O=He flux ratios
as a function of rigidity in Tables S148–S1029 in the
SM [18,28].
Figure 1 shows the AMS Li, Be, B, C, N, and O fluxes as

a function of time for the lowest rigidity interval from 1.92
to 2.15 GV together with the He flux. As seen, the nuclei
fluxes exhibit similar short- and long-term temporal struc-
tures with respect to the He flux.
Figures S3 to S8 of the SM [18] show the six nuclei

fluxes as a function of time for four characteristic rigidity
bins up to 60.3 GV. As seen, the amplitude of the time
structures decreases with increasing rigidity.
To determine the rigidity range in which the time

variations of the nuclei fluxes are observable, in each of
the 40 rigidity bins we fitted the time variation of 147
Bartels rotations with the average value of the 147 Bartels

rotations and we tested the χ2. We found that at a 3σ level
the time structures can be observed up to 48.5 GV for He,
14.1 GV for Li, 13.0 GV for Be, 15.3 GV for B, 21.1 GV
for C, 16.6 GV for N, and 24.7 GV for O.
Figure 2 shows the ratio of each nuclei flux to the He flux

as a function of rigidity. The bands show the time variation
range of the flux ratios due to solar modulation. To compare
in detail the time variation of nuclei fluxes with that of the
He flux, we fit a linear relation between the relative
variation of the flux ratio of the nucleus X and the He
flux ΦX=ΦHe, as a function of the relative variation of the
He flux ΦHe for each ith rigidity bin,

Φi
X=Φi

He − hΦi
X=Φi

Hei
hΦi

X=Φi
Hei

¼ Ki
X=He

Φi
He − hΦi

Hei
hΦi

Hei
; ð2Þ

where Ki
X=He is the slope of theΦX=ΦHe linear dependence,

and hΦi
X=Φi

Hei and hΦi
Hei are respectively the averaged flux
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FIG. 1. The He, Li, Be, B, C, N, and O fluxes measured by
AMS with rigidities between 1.92 and 2.15 GV in 147 Bartels
rotations from May 2011 to Nov 2022 as a function of time. The
He flux (green curves) has been scaled in each panel to the
average of the displayed flux. As seen, all fluxes show similar but
not identical time behavior.
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ratio and the averaged He flux over the entire period of
11.5 yr, similar to Ref. [16]. Ki

X=He ≠ 0 signifies a differ-
ence in solar modulation between the nucleus X and He
fluxes. Figure 3 shows the measured Ki

X=He as a function of
rigidity. As seen, KLi=He, KBe=He, and KB=He are signifi-
cantly below zero for rigidities from 1.92 to 3.64 GV
showing that Li, Be, and B fluxes are less modulated than
the He flux. The relatively large variations of KBe=He above
3.64 GV with respect to other KX=He (see panel 2 of Fig. 3)
are due to the much lower statistics of Be nuclei. KC=He,
KN=He, and KO=He are significantly below zero in the
rigidity bin from 1.92 to 2.15 GV showing that C, N,
and O fluxes are also less modulated than the He flux in this
rigidity range.
To determine the difference in the solar modulation of

nuclei flux due to differences in their spectral shape, in a
model-independent way, the spectral indices ΔX=He of the
flux ratios have been calculated as a function of rigidity
using

ΔX=He ¼
d loghΦX=ΦHei

d logR
; ð3Þ

in consecutive ranges of three rigidity bins. Figure S9 of the
SM [18] shows the spectral index as a function of rigidity.
As seen, below 3.64 GV, the spectral indices of Li=He,
Be=He, and B=He flux ratios and, below 2.15 GV, the
spectral indices of C=He, N=He, and O=He flux ratios are
greater than zero, showing that He flux rigidity dependence
is steeper (i.e., decreasing more quickly) than that of Li, Be,
B, C, N, and O fluxes in these rigidity ranges.
The obtained relative solar modulation magnitude KX=He

as a function of ΔX=He has been studied as a function of
rigidity (see Fig. S10 of SM [18]), and a significant
correlation is observed between the two variables up to
3.64 GV. To obtain the relation between the two variables
we fit a linear dependence KX=He ¼ ξΔX=He. Table I shows
the values of ξ for the six lowest rigidity bins. Remarkably,

2 3 4 5 6 7 8 910 20 30 40 50

Rigidity [GV]0.02

0.03

O/He

0.006

0.008

N/He

0.02

0.03

C/He

0.006

0.008

B/He

0.002

0.003

Be/He

0.004

0.006

Li/He

F
lu

x 
R

at
io

FIG. 2. The AMS time-averaged Li=He, Be=He, B=He, C=He,
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60.3 GV. The shaded bands show the observed time variation
range.
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FIG. 3. The relative solar modulation magnitude KX=He as a
function of rigidity derived from fits to Eq. (2). As seen up to
3.64 GV, Li, Be, and B are significantly less modulated than He
(KX=He < 0), and, up to 2.15 GV, C, N, and O are significantly
less modulated than He.
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all ξ are consistent with a rigidity-independent average
value of −0.175� 0.010. A negative ξ means fluxes are
more modulated for nuclei with steeper spectra.
Because of the different isotopic composition, for the

same rigidity, Li, Be, B, C, N, and O have lower average
velocities than He, traveling for more time in the helio-
sphere and therefore should exhibit more modulation than
He due to the velocity effect.
To estimate the magnitude of the velocity effect in a

model-independent way, we compared the time variations
of Be, C, and O fluxes with that of the 4He flux from

Ref. [15] in the lowest rigidity bin 1.92 to 2.15 GV, with
10 yr of data and with four Bartels rotation time window
using Eq. (2), where He was replaced with 4He. As all four
nuclei have the same velocity for the same rigidity [29],
the solar modulation velocity effect is negligible. As seen
in Fig. 4 the obtained KBe=4He, KC=4He, and KO=4He are
compatible respectively with KBe=He, KC=He, and KO=He,
showing that the velocity effect is small. Most importantly,
fitting the linear relation KX=4He ¼ ξ0ΔX=4He we obtained
ξ0 ¼ −0.16� 0.04, again compatible with the correspond-
ing ξ value of −0.18� 0.02 (see Table I in the first
rigidity bin).
In conclusion, the He, Li, Be, B, C, N, and O fluxes and

the Li=He, Be=He, B=He, C=He, N=He, and O=He flux
ratios have been precisely measured in 147 Bartels rota-
tions from May 2011 to November 2022 in the rigidity
range from 1.92 to 60.3 GV with the Alpha Magnetic
Spectrometer. The nuclei fluxes show similar but not
identical time variations with amplitudes decreasing with
increasing rigidity. In particular, below 3.64 GV, the Li, Be,
and B fluxes, and, below 2.15 GV, the C, N, and O fluxes,
are significantly less affected by solar modulation than
the He flux. We observe that these differences in solar
modulation are linearly correlated with the differences in
the spectral indices of the nuclei fluxes. This shows, in a
model-independent way, that solar modulation of galactic
cosmic nuclei depends on their spectral shape. In addition,
solar modulation differences due to nuclei velocity depend-
ence on the mass-to-charge ratio (A=Z) are not observed.
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