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Abstract
The measurement and correction of optics parameters has been a major con-
cern since the advent of strong focusing synchrotron accelerators. A review
of typical imperfections in accelerator optics together with measurement and
correction algorithms is given with emphasis on numerical implementations.
Python examples are shown using existing libraries when possible.

1 Introduction
Imperfections in accelerator lattices cause beam parameters to deviate from design. An illustration is
shown in Fig. 11, where ideal and perturbed β functions are shown. The perturbation assumed is simply a
10% gradient error in the 8th defocusing quadrupole. This causes large relative deviations in β functions
of up to 500% with respect to the design value. This is usually called β-beating and represented by
∆β/β.

Perturbations from field imperfections and misalignments became a concern along with the con-
ception of the strong focusing theory in 1957 [11]. However, the assumed approach was to specify design
tolerances that would not impact machine performance. For example in [11] it is envisaged that with
1% rms gradient errors any particular machine would be unlikely to have more than 8% peak β-beating.
At that time they did not foresee the great developments in optics that would push β functions to very
large values, e.g., in the vicinity of collision points of collider accelerators. The LHC Interaction Region
(IR) optics is shown in Fig. 22 as an illustration of optics designs reaching β functions of several km.

Modern accelerators have experienced β-beating values above 100% [22–44] in the initial commis-
sioning phases. Figure 33 shows the initial β-beating measured in the LHC commissioning in 2016 with
a peak value of 120%. The optics errors need to be corrected below specified tolerances for safe and
efficient operation. The development of the optics measurement and correction techniques is illustrated
by the evolution of the β-beating over time for many circular accelerators, see Fig. 44.

The techniques to measure and correct optics are described in the following with special empha-
sis on analysis algorithms and computing aspects. Section 22 gives the requirements to run the code
examples below. Section 33 describes the most important imperfections present in accelerator lattices.
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Fig. 1: Design β functions of the CERN Proton Synchrotron Booster featuring a triplet lattice (left) and
the same lattice with a 10% gradient perturbation in the 8th defocusing quadrupole (right).
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Fig. 2: Optics functions in the LHC IR for a β function at the interaction point of 60 cm.
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Fig. 3: β-beating measured in the LHC commissioning in 2016 with a β function at the interaction point
of 40 cm.

Section 44 describes the key particle dynamics used in optics measurements. Section 55 reports on the
most used measurement techniques and data analysis techniques. Section 66 is an interlude devoted to
the Farey sequences and how they can be used to describe the resonance diagram. Section 77 reports on
optics correction techniques.

2 Requirements for code examples
Code examples below require PythonPython. The freely available and open source operative system UbuntuUbuntu has
Python by default. The required plotting and numerical libraries can be installed with, e.g., the following
shell command:
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Fig. 4: Measured or inferred β-beating versus time for many circular accelerators as found in the bibli-
ography of this paper. Three stages are differentiated: (i) during commissioning when magnet powering
mistakes are expected, (ii) after fixing these mistakes but before careful optics corrections and (iii) after
optics corrections. Taken from [55].
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Fig. 5: The dipole magnetic field. The beam is represented in the center with a blue dot traveling
perpendicular to the field.

1 py thon −m p i p i n s t a l l −−u s e r numpy s c i p y m a t p l o t l i b i p y t h o n j u p y t e r pandas sympy
↪→ nose s c i k i t −l e a r n
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Alternatively it is also possible to install AnacondaAnaconda which is a very complete Python free distribution
with the required scientific packages.

3 Accelerator elements and their imperfections
3.1 Dipole
The simplest magnetic element in an accelerator is the dipole, which provides an homogeneous field as
shown in Fig. 55.

The dipole features two main imperfections: a strength error and a tilt of the field around the beam
axis. The tilt error is illustrated in Fig. 66 and can be interpreted as another dipole with a field orthogonal
to the ideal dipole.
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Fig. 6: A tilted dipolar magnetic field is seen as the sum of two orthogonal magnetic fields.
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Fig. 7: Quadrupolar magnetic field (left) and force imparted to a particle traveling perpendicular to the
figure (right).

Therefore dipole errors are seen as unwanted angular deflections in both transverse planes that
distort the reference trajectories into new closed orbits. Assuming θi to be unwanted angular deflections
the closed orbit is given by

CO(s) =

√
β(s)

2 sinπQ

∑

i

√
βiθi cos(πQ− |φ(s)− φi|) , (1)

where s denotes the longitudinal location around the ring, Q is the tune and φ is the betatron phase
advance. The denominator sin(πQ) makes closed orbit to diverge at the integer resonance Q ∈ N. The
effect of longitudinal misalignments is briefly described in Section 3.43.4. Another source of orbit errors is
offset quadrupoles which is described in the following section.

3.2 Quadrupole
Figure 77 shows the magnetic and the force fields inside a quadrupole. An offset quadrupole is seen as the
superposition of a centered quadrupole plus a dipolar field, as shown in Fig. 88, hence introducing orbit
deviations.

If the ith quadrupole in a lattice has a gradient error of ∆ki it introduces horizontal and vertical
tune deviations given by

∆Qx ≈
1

4π
βx∆kiLi, ∆Qy ≈ −

1

4π
βy∆kiLi , (2)

where Li is the length of the quadrupole and βx,y stands for the average βx,y function in the quadrupole.
At the same time the gradient error also introduces β-beating. In presence of many quadrupolar errors
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Fig. 8: An offset quadrupole is seen as a centered quadrupole plus a dipole.

the β-beating can be expressed as

∆β

β
(s) ≈ ±

∑

i

∆kiLiβi
2 sin(2πQ)

cos(2πQ− 2|φ(s)− φi|) , (3)

where the positive sign stands for the horizontal plane, and negative for the vertical. The denominator
sin(2πQ) makes the β-beating diverge at the integer and half integer resonances, 2Q ∈ N. Betatron
phase deviations between two locations in the accelerator, s and s0, can be computed using the funda-
mental relation 1/β = dφ/ds, yielding

∆φ(s0, s) =

∫ s

s0

ds′

β(s′)

(
1

1 + ∆β
β (s′)

− 1

)
. (4)

More explicit first and higher order expansions of the phase beating can be found in [66–88]. Resonance
driving terms, hjklm, appear in the expansion of the Hamiltonian and characterize the strength of reso-
nances, (k− j)Qx+(m− l)Qy = P , with P any integer. hjklm are connected to the generating function
resonance driving terms fjklm via the following relation,

fjklm =
hjklm

1− ei2π[(k−j)Qx+(m−l)Qy ]
, (5)

where the denominator reveals the resonant behaviour. One way to explore higher order perturbations in
the β-beating is via the the generating function resonance driving term f2000 (in the horizontal plane),
that is defined as

f2000(s) =

∑
j ∆kjLjβx,je

2iφx,j

1− e4iπQx
+ O(∆k2) , (6)

where φx,j is cycled so to start from 0 at s. The β-beating can be expressed as function of f2000 via the
following equation [88],

∆β

β
(s) = 2 sinh |f2000|

(
sinh |f2000|+ cosh |f2000| sinφ2000

)
, (7)

where φ2000 is the phase of f2000. Similar equations hold for the vertical plane with f0020.

Figure 99 shows a sketch of the variation of β function along a quadrupole, displaying the the
average β function as β and the β at the edges as β1,2. An approximation of β is given in [99] as

β ≈ 1

3

(
β1 + β2 +

√
β1β2 − L2

)
. (8)
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Fig. 9: Variation of β function along a quadrupole, displaying the the average β function as β.
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Fig. 10: A tilted quadrupole is seen as a normal quadrupole plus another quadrupole tilted by 45◦.
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Fig. 11: Skew quadrupole magnetic field (left) and force (right).

Exact equations for β depend also on the quadrupole strength k as shown in [1010, 1111].

A tilted quadrupole is seen as a normal quadrupole plus another quadrupole tilted by 45◦, which
is called a skew quadrupole, see Fig. 1010. The magnetic and force fields of a skew quadrupole are shown
in Fig. 1111.

As shown in Fig. 1111 particles displaced horizontally in a skew quadrupole receive a vertical force.
This causes the particle motion to couple between the horizontal and vertical planes. While the uncoupled
betatron motion of the particle position at turn N and location s is simply expressed as

x(N, s) =
√
βx(s)εx cos(2πQxN + φx(s) + φx0) , (9)

with εx being the horizontal single particle emittance and φ0 the phase at N = 0 and s = 0, the coupled
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Fig. 12: Approaching tunes in presence of coupling yielding to mode veering.

motion in presence of skew quadrupolar fields can be approximated as [1212, 1313]

x(N, s) ≈
√
βx(s)<

{√
εxe

i(2πQxN+φx(s)+φx0)

−2if1010
√
εye
−i(2πQyN+φy(s)+φy0)

−2if1001
√
εye

i(2πQyN+φy(s)+φy0)
}
,

where <{x} stands for the real part of x, and f1010 and f1001 are the sum and difference generating
function resonance driving terms given by

f 1010
1001

=

∑
j ks,jLj

√
βx,jβy,je

i(φx,j±φy,j)

4(1− e2πi(Qx±Qy))
, (10)

where ks,j represents the jth skew quadrupole gradient in the machine. f1001 drives the difference
resonance Qx−Qy = P and f1010 drives the sum resonance Qx +Qy = N , for any P ∈ Z and N ∈ N.

Another important feature of coupled motion is the appearance of a stopband around the difference
resonance Qx − Qy = P , P ∈ Z. This implies that the fractional tunes cannot get closer than ∆Qmin,
the closest tune approach, given by [1414]

∆Qmin =

∣∣∣∣∣∣
1

2π

∑

j

ks,jLj

√
βxβye

−i(φx−φy)+is(Q̂x−Q̂y)/R

∣∣∣∣∣∣
, (11)

where ks,j represents the skew quadrupolar gradients around the ring, R is the machine radius and Q̂x,y
are the fractional tunes. ∆Qmin can also be computed from f1001 around the ring by [1515, 1616]

∆Qmin =

∣∣∣∣∣
4(Q̂x − Q̂y)

2πR

∮
dsf1001e−i(φx−φy)+is(Q̂x−Q̂y)/R

∣∣∣∣∣ . 4|Q̂x − Q̂y||f1001| , (12)

where |f1001| represents the ring average of |f1001|. As an illustration, a hypothetical large coupling
stopband (in red) would limit the tune space available for the LHC beam-beam tune footprint as shown
in Fig. 1313.
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Fig. 14: Sextupole magnetic field (left) and force (right).

3.3 Sextupole
Figure 1414 shows the field and force fields in a sextupole. The equations describing the horizontal and
vertical forces in a sextupole are given by

Fx =
1

2
K2(x2 − y2) , Fy = −K2xy , (13)

where K2 is the integrated sextupolar gradient. Sextupoles are needed in accelerators to compensate
chromaticity (Q′), that describes the dependence of the tune with the relative energy deviation of the
particle: Q′ = dQ/dδ, with δ = (p−p0)/p0. An offset sextupole is seen as a centered sextupole together
with an offset quadrupole, see Fig. 1515. Horizontal offsets in sextupoles generate normal quadrupole
perturbations while vertical offsets generate skew quadrupolar fields.

3.4 Longitudinal misalignments
Longitudinal misalignments can be approximated as thin perturbations at both ends of the ideal magnet
with opposite signs as shown in Fig. 1616. For a longitudinal misalignment by δ of an element of strength k
the thin perturbations have integrated strengths of ±δk. Tolerances are generally larger for longitudinal
misalignments as there is usually a partial compensation of the perturbations generated at both ends
thanks to the opposite signs.
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Fig. 15: A sextupole horizontally (vertically) displaced is seen as a centered sextupole plus an offset
quadrupole (skew quadrupole).
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Fig. 16: Approximating a longitudinal misalignment of an element (blue) by kicks at the edges of the
unperturbed element (black).

4 Phase-space and turn-by-turn motion
4.1 The transverse phase-space
At any location of the accelerator the turn-by-turn uncoupled motion is represented by the position of the
particle and its angle with respect to the longitudinal direction, i.e. x′ = dx/ds, which are parametrized
as follows

x(N) =
√
εβ cos(2πQN + φ0) ,

x′(N) = −α
√
ε/β cos(2πQN) +

√
ε/β sin(2πQN + φ0) , (14)

where α = −β′/2. The particle trajectory stays within an ellipse in the phase-space (x, x′). This
trajectory is shown in Fig. 1717 along with several relevant parameters of the motion and the ellipse, as
the angle of the principal direction of the ellipse ϕ, the coordinates of the intersections of the ellipse and
the axes, the largest excursions in x and x′, the eccentricity of the ellipse and its focal length F . The
eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. More
formally two conic sections are similar if and only if they have the same eccentricity. One can think of
the eccentricity as a measure of how much a conic section deviates from being circular. In particular the
eccentricity of a circle is zero and the eccentricity of an ellipse is greater than zero and smaller than 1.
Figure 1818 shows the eccentricity of the betatronic ellipse versus α and β. It is interesting to note that the
motion is a circle only for β = 1 and α = 0.
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Fig. 17: Phase-space ellipse x′ versus x.
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Expressing Eqs. (1414) in matrix form illustrates the transformation that takes a circular motion into
the elliptical one as follows,

(
x(N)

x′(N)

)
=

( √
β 0

−α/√β 1/
√
β

) (√
ε cos(2πQN + φ0)√
ε sin(2πQN + φ0)

)
(15)

Floquet Normal Form

The circular motion is preferred in many studies for its simplicity and it is referred to as Normal form or
Floquet Normal form.

4.2 Computing α, β and ε

When performing computer simulations of particles traveling in an accelerator subject to lattice imper-
fections or other electrodynamics interactions we have access to the turn-by-turn coordinates (x, x′) and
we want to study how the different phenomena perturb the phase-space ellipse. Evaluating α, β and ε is
possible by computing the singular value decomposition of the 2 × n matrix composed of the x and x′

coordinates for n turns,
(
x(1) x(2) x(3) . . . x(n)

x′(1) x′(2) x′(3) . . . x′(n)

)

2×n
= U2×2S2×2V

T
2×n , (16)

where U and V are unitary matrices and S is diagonal with non-negative real numbers on the diagonal.
The diagonal entries of S are known as singular values. The columns of U and the columns of V are
called the left-singular vectors and right-singular vectors respectively. The left-singular vectors are a set
of orthonormal vectors and similarly for the right-singular vectors.

V2×n represents the turn-by-turn motion in a circle (like a Normal form) in an arbitrary phase
origin. Therefore, there must be a rotation R(θ) than can be inserted in the singular value decomposition
as

USV T = USR(θ)R−1(θ)V T , (17)

such that R−1(θ)V T corresponds to the Floquet Normal Form, which has as main characteristic that the
(1,2) element in the transformation of Eq. (1515) is zero. We have to solve the following equation,

1√
det(S)

USR(θ) =

( √
β 0

−α/√β 1/
√
β

)
, (18)

where θ is determined to make zero the element (1,2) of USR(θ). The normalization factor
√

det(S) is
related to the single particle emittance as follows,

ε =
det(S)

n/2
, (19)

where n is the number of turns. The following Python code implements the function getbeta(x, px) that
computes α, β and ε from turn-by-turn data together with an illustrative example. Figure 1919 shows the
(x, x′) turn-by-turn data used in the code example together with the first two right-singular vectors of V .
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Fig. 19: Illustration of the phase space ellipse with α = 0.2, β = 1. and ε = 2×10−3 used in the Python
code together with the first two right-singular modes of the V matrix of the singular value decomposition
of Eq. (1616).

1 # Computing a l f a , b e t a and e p s i l o n u s i n g SVD
2 i m p o r t numpy as np
3 d e f g e t b e t a ( x , px ) : # F u n c t i o n t o r e t u r n be tx , a l f x , ex
4 U, s , V = np . l i n a l g . svd ( [ x , px ] ) # SVD
5 N = np . d o t (U, np . d i a g ( s ) )
6 t h e t a = np . a r c t a n (−N[ 0 , 1 ] /N[ 0 , 0 ] ) # Angle o f R( t h e t a )
7 co = np . cos ( t h e t a ) ; s i = np . s i n ( t h e t a )
8 R = [ [ co , s i ] , [− s i , co ] ]
9 X = np . d o t (N, R) # F l o q u e t up t o 1 / d e t (USR)

10 b e t x = np . abs (X[ 0 , 0 ] /X[ 1 , 1 ] )
11 a l f x = X[ 1 , 0 ] /X[ 1 , 1 ]
12 ex=s [ 0 ] * s [ 1 ] / ( l e n ( x ) / 2 . ) # emi t = d e t ( S ) / ( n / 2 )
13 r e t u r n be tx , a l f x , ex
14
15 a l p h a = 0 . 2 # Example t o use g e t b e t a ( x , px )
16 b e t a = 1 .
17 ex = 2e−3
18 Q = 0 . 3 1
19 Nt u r ns = 600
20 x = np . s q r t ( b e t a * ex ) *np . cos (2* np . p i *Q*np . a r a n g e ( 0 , N t u r ns ) ) # easy t r a c k i n g
21 px = −a l p h a *x / b e t a + np . s q r t ( ex / b e t a ) *np . s i n (2* np . p i *Q*np . a r a n g e ( 0 , N t u r ns ) )
22 be tx , a l f x , exc = g e t b e t a ( x , px )

A first version of this code was developed in [1717].

4.3 Excitation techniques
In real accelerators Beam Position Monitors (BPMs) measure transverse beam centroid position turn-
by-turn, while the angle of the trajectory x′ is not easily accessible. Betatron motion is usually excited
via applying a single kick or via a resonant excitation The single kick technique has the limitation that
due to non-linearities not all the particles in the bunch oscillate with the same tune the motion eventually
decoheres. The measured turn-by-turn data following a single kick is illustrated in Figure 2020. The
evolution of the decoherence process is illustrated in Figure 2121, where the initial 1σ envelope after the
kick is shown in green and the deformation of this envelope with time emerges from the larger tune values
for particles with larger amplitude (amplitude detuning is typically generated by sextupoles, octupoles or
the beam-beam interaction). The decoherence of the beam limits the number of turns available for data
analysis and therefore limits the accuracy of beam-based optics measurements.
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Fig. 20: Illustration of turn-by-turn centroid data recorded by a BPM undergoing decoherence after a
transverse kick and with a BPM Gaussian noise of 0.2 mm.

To avoid the limitation from decoherence it is possible to drive betatron oscillations with an
AC dipole with a frequency close to the tune. Furthermore this forced oscillation can be ramped up
and down adiabatically without causing emittance growth. The AC dipole cycle is illustrated in Fig. 2222.

The adiabaticity of the ramping process of an AC dipole [1818] can be easily simulated with the
following code, which is used to produce the plot in Fig. 2323 that compares the particle turn-by-turn
motion for two AC dipole ramp-up lengths, 10 and 1000 turns, showing a lack of adiabaticity for the
10 turn ramp. The lack of adiabaticity implies energy transfer to the natural betatron motion with tune
equal 0.31 as shown in the spectral components of particle motion in Fig. 2424 as computed in the following
example code.

1 # S i m u l a t i n g t h e AC d i p o l e
2 from numpy i m p o r t *
3 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
4
5 Q = 0 . 3 1 # Machine t u n e ( f r a c t i o n a l p a r t )
6 Qac = Q + 0 . 0 2 # AC d i p o l e t u n e
7 q = 2* p i *Q
8 R = a r r a y ( [ [ cos ( q ) , −s i n ( q ) ] , [ s i n ( q ) , cos ( q ) ] ] ) #1 t u r n map
9 x = [ [ 0 . , 0 . ] ] # i n i t i a l x , px

10 Nramp = 1000 # Number o f t u r n s t o ramp up AC d i p o l e s t r e n g t h
11 Nturn = 2048 # Number o f t u r n s t o t r a c k
12
13 d e f ramp ( j ) : # d e f i n e t h e AC d i p o l e l i n e a r ramp
14 r e t u r n min ( 1 , j * 1 . 0 / Nramp )
15
16 f o r i i n r a n g e ( Nturn ) : # t r a c k i n g loop R wi th AC d i p o l e k i c k
17 x . append ( d o t (R , x [−1]) + ramp ( i ) * a r r a y ( [ 0 , 0 . 1 * cos ( Qac* i *2* p i ) ] ) )
18 F = f f t . f f t ( a r r a y ( x ) [ Nramp : ] . T [ 0 ] ) # FFT d a t a a f t e r AC ramp

5 Measurement techniques and data analysis
5.1 Cleaning experimental BPM data
The BPM turn-by-turn data is fundamental to measure optics parameters around the accelerator. Betatron
oscillations represent highly correlated signals among BPMs. This feature can be used to reduce the BPM
noise by discarding the signals with low correlation levels. SVD is used for this purpose. Imagine R is

13



Fig. 21: Illustration of the decoherence process.
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Fig. 22: Illustration of the AC dipole cycle including ramp-up, plateau and ramp-down.
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Fig. 23: Simulated turn-by-turn beam data during the AC dipole excitation for two different ramp lengths
of 10 and 1000 turns, showing the relevance of an adiabatic excitation.
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Fig. 24: Spectrum of the simulated turn-by-turn beam data during the AC dipole plateau following two
different ramp lengths of 10 and 1000 turns, showing the appearance of the natural tune for the non-
adiabatic excitation. AC dipole tune is 0.33 and natural tune is 0.31.
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the BPM matrix containing turn-by-turn data for all BPMs and his SVD is given by,

R = U




σ1 0 0
0 σ2 0
0 0 σ3

0 0 0


V T . (20)

If σ3 � σ2 ≤ σ1, then we can neglect σ3 by making σ3 = 0 and reconstruct R loosing a negligible
amount of information. Denoting the reconstructed matrix as Rdenoised, it is given by the following
equation,

Rdenoised = U




σ1 0 0
0 σ2 0
0 0 0
0 0 0


V T . (21)

This technique is illustrated with the following Python code and in Fig. 2525. In the code turn-by-
turn data is simulated with very low tunes to produce pictures that can be easily visualized. Random
Gaussian noise is added to mimic BPM noise with signal-to-noise ratio varying between 1:0.2 and 2:0.2.
The SVD reconstruction is performed by keeping only the two largest singular values. The process is
illustrated in Fig. 2525 showing the 3 matrices in color code. It is impressive that the reconstructed matrix
looks identical to the ideal one before adding the noise. Actually this technique is equally used to denoise
digital pictures.

1 # D e n o i s i n g BPM s i g n a l
2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
3 from s c i p y i m p o r t misc , ndimage
4 i m p o r t numpy as np
5 from numpy . l i n a l g i m p o r t svd
6
7 # G e n e r a t i n g i d e a l Beam P o s i t i o n d a t a
8 im = np . z e r o s ( ( 5 0 0 , 500) )
9 f o r i i n r a n g e ( 5 0 0 ) :

10 f o r j i n r a n g e ( 5 0 0 ) :
11 a m p l i t u d e j =1+( np . cos ( 0 . 0 0 6 7 8 * j *2* np . p i ) **2
12 im [ i , j ] = a m p l i t u d e j * np . cos ( i *0 .0137*2* np . p i )
13
14 # Adding n o i s e l i k e measurement e r r o r
15 im = im + 0 . 2 * np . random . randn (* im . shape )
16
17 # D e n o i s i n g wi th S i n g u l a r Value Decompos i t i on
18 k=2
19 U, s ,V=svd ( im , f u l l _ m a t r i c e s = F a l s e )
20 r im = np . d o t (U [ : , : k ] , np . d o t ( np . d i a g ( s [ : k ] ) ,V [ : k , : ] ) )

Large BPM systems always present some malfunctioning BPMs that need to be removed before
the analysis. An example of good and bad BPMs is shown in Fig. 2626 from the CERN SPS [1919]. The
plots in the bottom of the figure show how the Fourier spectrum can be used to identify bad BPMs by
looking in regions of the spectra where no beam signal is expected. SVD has also been extensively used
to identify bad BPMs [2020, 2121].

More recently Isolation Forest has been demonstrated to be very effective at finding malfunction-
ing BPMs as outliers within the distribution of selected features of the BPM data [2222, 2323]. Figure 2727
illustrates the concept of the Isolation Forest algorithm, where random cuts are applied to the data for
one randomly selected feature at a time until single data points are isolated. The basic concept is that
anomalies require fewer number of cuts to reach isolation. A decision function is established using this
number averaged over the number of trees.

The following Python code applies the Isolation Forest to simulated turn-by-turn BPM data with
Gaussian noise and five bad BPMs. In this illustration the bad BPMs are chosen to have larger Gaussian
noise and a different tune. The features chosen to compute the decision function are amplitude and
frequency of the main spectral line. The features for all BPMs are shown in Fig. 2828 together with the
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Fig. 25: Ideal beam data versus turn number and versus longitudinal location (top), same data adding
Gaussian noise (middle) and after cleaning the noise with SVD (bottom).
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Fig. 26: Good BPM (left) and bad BPM (right) with corresponding spectra (bottom), from [1919].

Hybrid Isolation Forest - Application to Intrusion Detection 3

We detail the IF algorithm in the second section of this paper, and give some highlights about the occurrence of the
so-called ’blind spots’ by using a synthetic dataset. The third section presents the extension of the IF algorithm that we
propose and shows, on the previous synthetic dataset, how this extension can be used to get rid of blind spots. The
supervised functionality that we add to the IF is also described by the end of this section. The fourth section addresses
an application in the domain of intrusion detection that assesses in a close to real-life situation the benefits brought by
the HIF algorithm. Our results show that the proposed HIF algorithm compares advantageously with the state of the art
baselines in anomaly detection that we have considered, namely one-class and two-classes SVM.

2 ISOLATION FOREST AND ITS ’BLIND SPOT’

The simple idea behind the isolation forest approach, is that it is (in general) much simpler to isolate an ’outlier’ from
the rest of the data than to isolate an ’inlier’ from the rest of the data.

This leads, in the context of a binary tree partitioning algorithm, to expect a shorter path to locate an ’outlier’ and a
longer path to locate an ’inlier’. This is exemplified in Fig.1, which shows that, for a 2D normally distributed dataset,
more separating lines are needed to separate the ’inlier’ xi from the rest of the data comparatively to the number of
separating lines needed to isolate the ’outlier’ x0.

Fig. 1. Principle of the IF algorithm (Figure is from [22]). xi is an ’inlier’, while xo is an ’outlier’ (anomaly).

2.1 The Isolation Forest algorithm

We reproduce hereinafter the description of the isolation forest algorithm as presented in [22].

2.1.1 Building the isolation forest: Let X ⊂ Rd be the set of instances. The IF algorithm is an ensemble based
approach that builds a forest of random binary trees. Given a sample S randomly drawn from X , an isolation tree iT (S)
is recursively built according to the (iTree) algorithm 1:

Manuscript submitted to ACM

Fig. 27: Illustration of the Isolation Forest algorithm applied to a normal data point (left) requiring many
cuts to reach isolation and to an anomaly (right) with fewer cuts.

decision function. The red BPMs are the BPMs identified as bad by assuming a contamination factor
of 1%.

1 # Apply ing I s o l a t i o n F o r e s t t o d e t e c t bad BPMs
2 i m p o r t numpy as np
3 from s k l e a r n . ensemble i m p o r t I s o l a t i o n F o r e s t
4
5 N_TURNS = 500
6 N_BPMS = 500
7 # g e n e r a t e bpm d a t a wi th some bad s i g n a l − d i f f e r e n t tune , a d d i t i o n a l n o i s e
8 bad_bpms_idx = [ 1 , 10 , 20 , 30 , 40]
9 im = np . z e r o s ( ( N_TURNS, N_BPMS) )

10 f o r bpm i n r a n g e (N_BPMS) :
11 e r r = 0 . 0 5 * np . random . randn ( )
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Fig. 28: Isolation Forest applied to BPM data using frequency and amplitude of highest Fourier peak as
features.

12 amp=( np . cos ( 0 . 0 0 6 7 8 * bpm * 2 *np . p i ) ** 2 + 1) # s q r t ( b e t a e )
13 f o r t u r n i n r a n g e (N_TURNS) :
14 i f bpm i n bad_bpms_idx : # A bad BPM wi th d i f f e r e n t t u n e and n o i s e
15 im [ t u r n , bpm]=amp*np . cos ( t u r n * ( 0 . 3 2 + e r r ) *2* np . p i ) +0 .3* np . random . randn ( )
16 e l s e : # Good BPM
17 im [ t u r n , bpm]=amp*np . cos ( t u r n * ( 0 . 3 2 + e r r / 1 0 ) *2* np . p i ) + 0 . 1 * np . random . randn

↪→ ( )
18
19 # e x t r a c t f r e q u e n c y and a m p l i t u d e − f e a t u r e s − from bpm s i g n a l
20 a m p l i t u d e s = [ np . max ( x ) f o r x i n np . abs ( np . f f t . r f f t ( im . T ) ) /N_TURNS]
21 f r e q u e n c i e s = np . a r r a y ( [ np . argmax ( x ) f o r x i n np . abs ( np . f f t . r f f t ( im . T ) ) ] ) * 1 . 0 /N_TURNS
22 f e a t u r e s = np . v s t a c k ( ( f r e q u e n c i e s , a m p l i t u d e s ) ) . T
23
24 # f i t I s o l a t i o n F o r e s t model t o t h e d a t a and d e t e c t a n o m a l i e s ( c o n t a m i n a t i o n i s t h e

↪→ f r a c t i o n o f a n o m a l i e s )
25 i f o r e s t = I s o l a t i o n F o r e s t ( n _ e s t i m a t o r s =10 , c o n t a m i n a t i o n = 0 . 0 1 )
26 o u t l i e r _ d e t e c t i o n = i f o r e s t . f i t ( f e a t u r e s ) . p r e d i c t ( f e a t u r e s ) # Bad BPMs ==−1

5.2 Generic measurement cleaning
Most of the measured quantities are assumed to be normally distributed, however in case of failure
or an artefact in data processing; outlying values may be produced and should be removed from the
data sample. Finite-sized samples of a normal distribution follow a t-student distribution, which is also
parametrised by a number of degrees of freedom.

An iterative cleaning procedure (developed in [2424]) removes “tails” which are more populated
than in the same-sized normally distributed quantity. In each iteration, values are tested for a hypothesis
of belonging to a sample of normal distribution given the mean value, standard deviation and sample
size (t-distribution). The algorithm represented by the following code can also operate onto two linearly
dependent sets. In such a case, the fitted dependency on a second dataset is subtracted in every iteration.

1 # I t e r a t i v e c l e a n i n g
2 i m p o r t numpy as np
3 from s c i p y . s t a t s i m p o r t t
4 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
5
6 d e f f i l t e r _ m a s k ( da t a , x _ d a t a =None , l i m i t = 0 . 0 , n i t e r =20) :
7 mask = np . ones ( l e n ( d a t a ) , d t y p e = boo l )
8 ns igmas = t . ppf ( [ 1 − 0 . 5 / l e n ( d a t a ) ] , l e n ( d a t a ) )
9 p r e v l e n = np . sum ( mask ) + 1

10 f o r _ i n r a n g e ( n i t e r ) : # i t e r a t e
11 i f n o t ( ( np . sum ( mask ) < p r e v l e n ) and ( np . sum ( mask ) > 2) ) :
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12 b r e a k
13 p r e v l e n = np . sum ( mask )
14 i f x _ d a t a i s n o t None : # l i n e a r l y d e p e n d e n t d a t a
15 m, b = np . p o l y f i t ( x _ d a t a [ mask ] , d a t a [ mask ] , 1 )
16 y , y _ o r i g = d a t a [ mask ] − b − m * x _ d a t a [ mask ] , d a t a − b − m * x _ d a t a
17 e l s e : # i n d e p e n d e n t d a t a
18 y , y _ o r i g = d a t a [ mask ] , d a t a [ : ]
19 mask = np . abs ( y _ o r i g − np . mean ( y ) ) < np . max ( [ l i m i t , ns igmas * np . s t d ( y ) ] )
20 r e t u r n mask
21
22 x _ d a t a = 100 * np . random . r and ( 1 0 0 0 )
23 y _ d a t a = 0 . 3 5 * x _ d a t a + np . random . randn ( 1 0 0 0 ) # c r e a t e d a t a
24 y _ d a t a [−100:] = y _ d a t a [ 9 9 : : −1 ] # c o r r u p t some of t h e d a t a
25 x _ d a t a [ : 5 0 ] = 38 + np . random . randn ( 5 0 )
26 mask = f i l t e r _ m a s k ( y_da ta , x _ d a t a = x _ d a t a )
27 p l t . p l o t ( x_da ta , y_da ta , ’ ro ’ )
28 p l t . p l o t ( x _ d a t a [ mask ] , y _ d a t a [ mask ] , ’ bo ’ )

5.3 Fourier analysis
The Fast Fourier Transform (FFT) of a turn-by-turn data sample with N turns has the following tune
(Q), amplitude (A) and phase (φ) resolutions, respectively

σQ ≤
1

2N
, σA ≈

√
2

N
σ , σφ ≈

√
2

N

σ

A
, (22)

where σ is the BPM random error, assumed to follow a Gaussian distribution.

Many interpolation techniques have been developed to improve the frequency resolution of the
FFT [2525–2727]. Zero-padding is a very simple approach that can significantly improve the determination
of fundamental frequencies but is computationally expensive. A Python example using zero-padding
follows.

1 #FFT wi th z e r o padd ing
2 i m p o r t numpy as np
3 N = 4096
4 i = 2 * np . p i * np . a r a n g e (N)
5 d a t a = np . cos ( 0 . 1 3 4 * i ) + np . cos ( 0 . 2 4 4 * i ) + 0 . 0 1 * np . random . randn (N)
6 f _ z e r o p a d =np . abs ( np . f f t . f f t ( da t a , n=10*N) / ( N) )

The algorithm NAFF [2525] finds the frequency Q that maximizes |∑x(N)ei2πQN |, where x(N)
is the sample data, and continues to find the next leading frequency after subtracting the found frequency
component from x(n) and iterating. Python and Fortran implementations of NAFF can be found in [2828,
2929]. The following code, first version of Harpy [3030], implements the NAFF algorithm but making a
3 point interpolation (Jacobsen method [3131]) rather than maximizing |∑x(N)ei2πQN |. Figure 2929 shows
the spectrum of the signal in the Python example computed with different approaches around the main
frequency 0.134. The plain FFT gives, as expected, the worst performance in identifying the spectral line.
Interpolating with Jacobsen method [3131] or zero padding give similar results in this example. The later
version of Harpy [3232] implements zero padding and reduces the computational costs by a combination
with SVD. Moreover, the combination with SVD allows to estimate errors in the frequency spectra.

1 # F i r s t v e r s i o n o f Harpy i m p l e m e n t i n g NAFF wi th J a c o b s e n i n t e r p o l a t i o n
2 i m p o r t numpy as np
3 P I 2 I = 2 * np . p i * complex ( 0 , 1 )
4
5 d e f ha rpy ( samples , num_harmonics ) :
6 n = l e n ( samples )
7 i n t _ r a n g e = np . a r a n g e ( n )
8 c o e f f i c i e n t s = [ ]
9 f r e q u e n c i e s = [ ]

10 f o r _ i n r a n g e ( num_harmonics ) :
11 f r e q u e n c y = _ j a c o b s e n ( np . f f t . f f t ( s amples ) , n ) # Find dominan t f r e q .
12 e x p o n e n t s = np . exp(−P I 2 I * f r e q u e n c y * np . a r a n g e ( n ) )
13 c o e f = np . sum ( e x p o n e n t s * sample s ) / n # compute a m p l i t u d e and phase
14 c o e f f i c i e n t s . append ( c o e f )
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Fig. 29: Illustration of different algorithms to find the main spectral frequencies.

15 f r e q u e n c i e s . append ( f r e q u e n c y )
16 n e w _ s i g n a l = c o e f * np . exp ( P I 2 I * f r e q u e n c y * i n t _ r a n g e )
17 sample s = sample s − n e w _ s i g n a l # Remove dominant f r e q .
18 c o e f f i c i e n t s , f r e q u e n c i e s = z i p (* s o r t e d ( z i p ( c o e f f i c i e n t s , f r e q u e n c i e s ) ,
19 key=lambda t u p l e : np . abs ( t u p l e [ 0 ] ) , r e v e r s e =True ) )
20 r e t u r n f r e q u e n c i e s , c o e f f i c i e n t s
21
22 d e f _ j a c o b s e n ( d f t , n ) : # I n t e r p o l a t e t o f i n d dominan t f r e q .
23 k = np . argmax ( np . abs ( d f t ) )
24 d e l t a = np . t a n ( np . p i / n ) / ( np . p i / n )
25 kp = ( k + 1) % n
26 km = ( k − 1) % n
27 d e l t a = d e l t a * np . r e a l ( ( d f t [km]− d f t [ kp ] ) / ( 2 * d f t [ k ] − d f t [km] − d f t [ kp ] ) )
28 r e t u r n ( k + d e l t a ) / n
29
30 N=4096
31 i = 2 * np . p i * np . a r a n g e (N)
32 d a t a = np . cos ( 0 . 1 3 4 * i ) + np . cos ( 0 . 2 4 4 * i ) + 0 . 0 1 * np . random . randn ( 4 0 9 6 )
33 f r e q s , c o e f f s = ha rpy ( da t a , 300)

5.3.1 Phase measurement
The phase advance between 2 BPMs φij = φj − φi is a fundamental optics observable, it is model and
BPM calibration independent. Care with averaging several measurements is needed due to periodicity,
i.e. circular mean has to be used. For n measurements of certain angle or phase, αi, the circular mean is
defined as

α = atan2

(
1

n

n∑

i

sinαi ,
1

n

n∑

i

cosαi

)
, (23)

and in Python it is simply computed using an existing function as shown in the following example code
by computing the circular mean between 0 and 2π, which is not π but 0.

1 # Computing t h e c i r c u l a r mean of 0 and 2 p i
2 from s c i p y . s t a t s i m p o r t c i r c m e a n
3 i m p o r t numpy as np
4 c i r c m e a n ( [ 0 . , 2* np . p i ] )
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Fig. 30: Relative deviation of the average β function in presence of random errors versus the correspond-
ing β-beating together with the prediction from Eq. (2424).

5.4 β from amplitude
The average of the β function around the ring in presence of random errors is related to the rms β-beating
via the following expression [3333], 〈

∆β

β

〉
= rms2

(
∆β

β

)
(24)

Figure 3030 shows the ring average β function versus its rms value for many realizations of the LHC
with random errors. In average random errors increase the beta-functions around the ring implying that
random errors are defocusing.

As shown in Eq. (99) the amplitude of betatron oscillation at the location s is
√
β(s)ε. Having

enough BPMs around the ring allows to compute the average and rms of βε from the square of the FFT
amplitude of the tune line. ε can be computed with

ε ≈ 〈βε〉
〈βmodel〉

(
1− rms2

(
∆β

β

))
, (25)

where the numerator comes from measurement, the denominator is the average model β function and
the parenthesis corrects for the possible average β-beating. Biggest limitation of this technique is BPM
calibration errors. After computing ε it is possible to extract the β function at every BPM using the
amplitude of the tune line. The main limitation of this method is relying on a good gain calibration of
BPMs.

5.5 β from phase
It is possible to compute the β function at one BPM by using the phase advances between that BPM and
another 2 BPMs as follows [3434],

The Twiss parameters βi and αi at the positions si can be
obtained with Eqs. (1), (2) where ϕi;j ¼ ϕj − ϕi is the
phase advance andMmnði;jÞ are the transfer matrix elements
from si to sj, cf. Fig. 1. ϵijk is the Levi-Civita symbol which
allows for a compact notation of the three cases of deriving
the Twiss parameters at the different BPMs. No summation
over equal indices is implied.

βi ¼
ϵijk cotðϕi;jÞ þ ϵikj cotðϕi;kÞ

ϵijk
M11ði;jÞ
M12ði;jÞ

þ ϵikj
M11ði;kÞ
M12ði;kÞ

ð1Þ

αi ¼
ϵijk

M11ði;kÞ
M12ði;kÞ

cotðϕi;jÞ þ ϵikj
M11ði;jÞ
M12ði;jÞ

cotðϕi;kÞ
ϵijk

M11ði;jÞ
M12ði;jÞ

þ ϵikj
M11ði;kÞ
M12ði;kÞ

: ð2Þ

The accuracy of this method depends not only on the
knowledge of the optics model and the precision of the
measured phase but also on the value of the phase advances
between the BPMs. From Eq. (1) it can be seen that, for
example, a phase advance between two BPMs should not
be close to a multiple of π as the cotangent becomes infinite
at those points. Figure 2 shows the propagated error of the

β-function, depending on the phase advances between the
three BPMs. From Eq. (1) one can derive two conditions for
the optimal phase advances. The phase advance from the
probed BPM (i) to the other two ðj; kÞ should be

ϕi;j ¼ π
4
þ n1 π

2
;

ϕi;k ¼ π
4
þ ð2n2 þ 1 − n1Þ π2 ;

n1; n2 ∈ Z: ð3Þ

The method that has been used so far takes three
neighboring BPMs for the calculation of the β-functions
at these three BPM positions. In the arcs, where in general
the phase advance between consecutive BPMs is about
π=4, this method is already close to the optimum phase
advances, when probing the middle BPM. However in the
case that the probed BPM is not in the middle of the other
two BPMs, the optimum would be to skip the farther BPM
and use instead the next following BPM, cf. Fig. 3.
In the interaction regions (IRs), the phase advances can

be very different as the optics do not follow the regular
focussing-drift-defocussing-drift structure of the arcs in
order to fulfill other constraints, e.g., collision point
focusing. For example in the ATLAS and CMS IRs, where
the β-function reaches very high values, the phase advances
between consecutive BPMs close to the interaction points
(IPs) may only be a few degrees. If in this case only
neighboring BPMs are used, this results in large uncer-
tainties. This prevented β� measurements at the IPs in
2012 [3].
An improved algorithm is developed here, which allows

us to use more BPM combinations from a larger range of
BPMs. This makes it possible to include BPM combina-
tions with better phase advances and also increases the
amount of information that is used in the measurement of
the β-function. A range of N BPMs is chosen centered at
the probed BPM. To find the best estimate of the measured
β-function from m combinations of three BPMs out of the
N BPMs, a least squares minimization is performed of the
function

SðβÞ ¼
Xm
i¼1

Xm
j¼1

ðβi − βÞV−1
ij ðβj − βÞ; ð4Þ

where βi are the β-functions inferred from different BPM
combinations at the given probed BPM and Vij are the
elements of the covariance matrix for the different βi.

FIG. 1. Illustration of the β-function measurement from phase.
The phase advances ϕi;j in between three positions si are needed
to derive the β-functions at those positions.

FIG. 2. Expected error of a measured β-function at position s1,
depending on the phase advances to the other two BPMs. The six
used phase advances (three BPM combinations each for hori-
zontal and vertical plane) for a BPM position in IR4 from the
neighboring BPM method are indicated by triangles. When an
increased range of 7 BPM is used (N-BPM method), 15 different
combinations of phase advances are possible per plane, including
the ones that are indicated by triangles. Another six better suited
combinations of phase advances from the range of 7-BPMs are
indicated by circles.

FIG. 3. In the arcs the phase advance between two consecutive
BPMs is about π=4. If the blue BPM is probed, it is better to skip
the grey BPM and use the two red BPMs. The resulting phase
advances are approximately ϕ1;2 ¼ π=4 and ϕ1;3 ¼ 3π=4, which
is the optimum according to Eq. (3).
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meas
1,3

cot ∆φ
mod
1,2 −cot ∆φ

mod
1,3

.

22



This is known as the 3 BPM method, which was later extended to N BPMs in [3535] relying on Montecarlo
simulations and made fully analytical in [3636] with a considerable improvement in speed.

5.6 Momentum reconstruction and resonance driving terms
BPMs only measure the centroid position. The angle of the trajectory can be computed from two BPMs
separated by a drift, but there are usually very few BPMs placed in such configuration in an accelerator.
Normalizing the turn-by-turn BPM signal by the amplitude of the tune line we define the normalized
coordinate x̂ , which for two nearby BPMs can be parametrized as follows,

x̂1(N) = cos(2πQxN + φ1) ,

x̂2(N) = cos(2πQxN + φ2) .

We can reconstruct the normalized px at the first BPM as

p̂x1(N) = sin(2πQxN + φ1) =
x̂2(N)

cos δ
+ x̂1(N) tan δ , (26)

with δ = φ2 − φ1 − π/2. Note that when the phase advance between the 2 BPMs is π/2 then p̂x1(N) =
x̂2(N), and when the phase advance is π the equation diverges. x̂1 and p̂x1 can be used to plot the particle
trajectory in the phase space up to a constant. Non-linearities deform this trajectories from ellipses to
possibly very complex shapes. Using Normal Form the turn-by-turn motion can be described in terms of
the generating function terms fjklm as [1212]

x̂1 − ip̂x1 = ei2πQxN −
2i
∑

jfjklmε
j+k−2

2
x ε

l+m
2

y ei2πN [(1−j+k)Qx+(m−l)Qy ]+iϕ .

This equation allows characterizing the non-linear beam dynamics experimentally by measuring the
terms fjklm from the complex Fourier analysis of x̂1 − ip̂x1 as done in [1313, 1919, 3737, 3838].

6 Farey sequences
The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which,
when in lowest terms, have denominators less than or equal to N , which corresponds to the resonances
of order N or lower (in one plane). The Farey sequence of order 5 is given by

F5 =
{0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

}
(27)

Farey sequences have useful properties. The distance between neighbors in Fn (aka two consecutive
resonances) a/b and c/d is equal to 1/(bd). The next leading resonance in between two consecutive
resonances a/b and c/d is given by the mediant operation between these two fractions,

a+ c

b+ d
.

The number of 1D resonances of order N or lower tends asymptotically to 3N2/π2. The Farey sequence
is efficiently computed in Python as follows,

1 # The Farey s e q u e n c e o f o r d e r n
2 d e f Fa rey ( n ) :
3 " " " R e t u r n t h e n t h Fa rey sequence , a s c e n d i n g . " " "
4 seq = [ [ 0 , 1 ] ]
5 a , b , c , d = 0 , 1 , 1 , n
6 w h i l e c <= n :
7 k = i n t ( ( n + b ) / d )
8 a , b , c , d = c , d , k* c − a , k*d − b
9 seq . append ( [ a , b ] )

10 r e t u r n seq
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Fig. 31: Resonance diagram of order 5.

The 2D tune resonance diagram is defined by all solutions of the following equation,

aQx + bQy = p ,

with a and b and p integer numbers. These resonance lines are to be avoided in normal operation as
some resonance driving terms diverge when approaching them. Figure 3131 shows the resonance diagram
of order 5. The resonance diagram is also connected to the Farey sequence. The lines going trough
Qx = h

k , Qy = 0 relate to the elements in FN between 0 and 1
k [3939]. The number of resonance lines in

the 2D diagram is [4040]
2N3

3ζ(3)
+O

(
N3

logN

)
, (28)

where ζ(3) ≈ 1.20205 is the Riemann zeta function evaluated at 3. The relation between the 2D reso-
nance lines and the Farey sequence is most easily explained in the following code example to plot the
resonance diagram.

1 # P l o t t i n g t h e 2D r e s o n a n c e d iagram wi th Fa rey s e q u e n c e s
2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
3 i m p o r t numpy as np
4 f i g = p l t . f i g u r e ( )
5 ax = p l t . axes ( )
6 p l t . y l im ( ( 0 , 1 ) )
7 p l t . x l im ( ( 0 , 1 ) )
8 x = np . l i n s p a c e ( 0 , 1 , 1000)
9 FN = Farey ( 5 ) # Fa rey f u n c t i o n d e f i n e d i n t h e p r e v i o u s code example

10 f o r f i n FN :
11 h , k = f # Node h / k on t h e axes
12 f o r s f i n FN :
13 p , q = s f
14 c= f l o a t ( p*h )
15 a= f l o a t ( k*p ) # Resonance l i n e a Qx + b Qy = c l i n k e d t o p / q
16 b= f l o a t ( q−k*p )
17 i f a >0:
18 p l t . p l o t ( x , c / a − x*b / a , c o l o r = ’ b l u e ’ )
19 p l t . p l o t ( x , c / a + x*b / a , c o l o r = ’ b l u e ’ )
20 p l t . p l o t ( c / a − x*b / a , x , c o l o r = ’ b l u e ’ )
21 p l t . p l o t ( c / a + x*b / a , x , c o l o r = ’ b l u e ’ )
22 p l t . p l o t ( c / a − x*b / a , 1−x , c o l o r = ’ b l u e ’ )
23 p l t . p l o t ( c / a + x*b / a , 1−x , c o l o r = ’ b l u e ’ )
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Fig. 32: Lower half of the resonance diagram and the Apollonian gasket (0,0,1,1).

24 i f q==k and p ==1: # FN e l e m e n t s below 1 / k
25 b r e a k
26 p l t . show ( )

The resonance diagram has also intriguing connections to the Apollonian gasket (0,0,1,1) as shown
in Fig. 3232.

7 Corrections
The goal of corrections is to bring machine optics parameters as close as possible to the design values
to ensure machine safety and performance. Corrections are classified as local and global as discussed
below.

7.1 Local correction
Local corrections are restricted within a predefined segment of the machine. They ensure that the pertur-
bations from the errors within the segment are confined in the segment without significant leakage to the
rest of the machine.

The most effective local correction is identifying the source and fixing it. However this can only
be applied exceptionally.

In hadron colliders, it is fundamental to perform local corrections in the interaction regions. Two
techniques have successfully demonstrated these local corrections: action and phase jump [4141, 4242] and
segment-by-segment [33, 4444].

7.2 Global corrections
Global corrections use distributed magnets around the ring to minimize deviations of optics parameters
from design values. The simplest global corrections use a predefined set of magnets to control a single
optics parameters without affecting the others. The set of magnets together with their strength variation
is named as knob and it is computed using the ideal optics design. Precomputed knobs are primarily used
to control orbit, tune and coupling deviations.
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The most general correction approach is based on a response matrix between the available cor-
rectors and the optics parameters to correct. For efficient use, the measured values are weighted by
their errors as well as by quantity-based weights [4545]. Phase beating, β-beating, dispersion deviations
and tune errors can be put in a vector connected to the normal quadrupole gradient changes ~k via the
matrix Ptheo. In [4343] it is shown that using the normalized dispersion (Dx/

√
βx) in the calculation of

corrections improves the correction performance. Coupling resonance driving terms and vertical disper-
sion connect to skew quadrupole changes ~ks via the matrix Ttheo. These two relations are given in the
following equations,




∆~φx
∆~φy
~∆βx
βx
~∆βy
βy

∆ ~Dx

∆ ~Q




meas

= Ptheo∆~k ,




~f1001
~f1010
~Dy




meas

= Ttheo∆~ks .

Ptheo and Ttheo can be computed by varying one gradient strength at a time and computing the new
optics parameters or by collecting large statistics to train the linear regression model [4646]. Ptheo and
Ttheo are pseudo-inverted to compute corrections from the measured optics deviations.

7.3 The best N corrector problem
The best N corrector problem consists in finding the bestN correctors among the full set ofM correctors,
with M > N . This is very useful when the correction has some cost which increases with the number
of correctors or when we aim to localize the error. It is likely that the best 1 corrector is near the error
source, although there is no guarantee. The time required to find the exact solution to this problem scales
rapidly with M and N as

t ∝ M !

(M −N)!
,

as all possibilities have to be explored and compared. An approximation algorithm to solve this problem
is known as Micado [4747] by iteratively finding a new best corrector in each step, starting by finding the
best 1 corrector, then finding the second best corrector keeping the first one and so on. This problem
is also considered in signal theory as a way to decompose signals into a weighted sum of finitely many
functions. The algorithm to solve it is very similar to Micado and it is known as matching pursuit or
orthogonal matching pursuit (OMP) [4848].

The following Python code implements the exact solution of the best N corrector problem with
7 available correctors and for all values of N below 7. The orbit generated by the ith corrector is
approximated by sin(|x−xi|) and the target orbit to match is defined in themeasured_orbit(x) function.

1 # Exac t s o l u t i o n s o f t h e b e s t N c o r r e c t o r problem
2 i m p o r t numpy as np
3 from s c i p y . o p t i m i z e i m p o r t l e a s t _ s q u a r e s
4 from i t e r t o o l s i m p o r t p r o d u c t
5 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
6
7 N_cor r s =7
8 s=np . l i n s p a c e ( 0 , N_corrs , 1000) # 1000 o b s e r v a t i o n p o i n t s
9

10 d e f c o r r s ( x , i ) : # Assume c o r r e c t o r s a t i = i n t e g e r < N_cor r s
11 r e t u r n np . s i n ( np . abs ( x−i ) )
12
13 d e f model ( x , c ) : # O r b i t a t x from c o r r e c t o r s t r e n g t h s as c
14 i f l e n ( x ) ==1:
15 r e t u r n sum ( c * c o r r s ( x , np . a r a n g e ( N_cor r s ) ) )
16 r e t u r n [ model ( [ y ] , c ) f o r y i n x ]
17
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Fig. 33: Measured orbit versus longitudinal location (blue) together with resulting orbit using the best 1
corrector (green) and best 2 correctors (red). Location of best correctors is shown with the corresponding
color. The best 1 corrector is not within the best two correctors.

18 d e f m e a s u r e d _ o r b i t ( x ) : # T a r g e t O r b i t
19 r e t u r n np . s i n ( np . abs ( x−0.1) ) + np . s i n ( np . abs ( x−1.9) ) − np . s i n ( np . abs ( x−4.1) ) −

↪→ np . s i n ( np . abs ( x−5.9) )
20
21 d e f f ( c ) : # F i g u r e o f m e r i t f o r g i v e n c o r r e c t o r c h o i c e encoded i n mask
22 r e t u r n model ( s , c *mask ) − m e a s u r e d _ o r b i t ( s )
23
24 b e s t =1 e16 *np . ones ( N_cor r s +1) ; bes tmask =np . z e r o s ( [ N_cor r s +1 , N_cor r s ] )
25 f o r mask i n p r o d u c t ( [ 0 , 1 ] , r e p e a t = N_cor r s ) : # Try a l l c o r r e c t o r c o m b i n a t i o n s
26 r e s = l e a s t _ s q u a r e s ( f , x0=np . ones ( N_cor r s ) ) # O r b i t c o r r e c t i o n
27 i f r e s . c o s t < b e s t [ sum ( mask ) ] :
28 bes tmask [ sum ( mask ) ]= mask* r e s . x ; b e s t [ sum ( mask ) ]= r e s . c o s t
29
30 p l t . p l o t ( s , m e a s u r e d _ o r b i t ( s ) )
31 p l t . p l o t ( s , model ( s , bes tmask [ 1 ] ) ) # P l o t b e s t 1 c o r r e c t o r
32 p l t . p l o t ( s , model ( s , bes tmask [ 2 ] ) ) # P l o t b e s t 2 c o r r e c t o r s

Figure 3333 shows the measured orbit together with the orbit generated by the best 1 and 2 correctors. The
problem has been chosen to show that in the exact solution the best 1 corrector is not necessarily within
the 2 best correctors.

The following Python code solves the same problem as above by implementing the OMP algorithm
using existing Python libraries. The OMP results are shown in Fig. 3434, to be compared to the previous
exact solution in Fig. 3333. Now the best 1 corrector is included in the best 2 correctors, as this solution is
only an approximation.

1 # Bes t N c o r r e c t o r problem wi th O r t h o g o n a l Matching P u r s u i t
2 from s k l e a r n . l i n e a r _ m o d e l i m p o r t O r t h o g o n a l M a t c h i n g P u r s u i t
3 i m p o r t numpy as np
4 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
5
6 N_cor r s =7
7 N_BPMs=1000
8 s=np . l i n s p a c e ( 0 , N_corrs , N_BPMs) # 1000 BPMs
9

10 d e f c o r r s ( x , i ) :
11 r e t u r n np . s i n ( np . abs ( x−i ) )
12
13 d e f m e a s u r e d _ o r b i t ( x ) :
14 r e t u r n np . s i n ( np . abs ( x−0.1) ) + np . s i n ( np . abs ( x−1.9) ) − np . s i n ( np . abs ( x−4.1) ) −

↪→ np . s i n ( np . abs ( x−5.9) )
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15
16 # ############### New p a r t f o r OMP ###############
17
18 X= [ ]
19 f o r i i n r a n g e (N_BPMs) : # P r e p a r e r e s p o n s e m a t r i x f o r OPM
20 X. append ( c o r r s ( s [ i ] , np . a r a n g e ( N_cor r s ) ) )
21 y= m e a s u r e d _ o r b i t ( s )
22 r e g = O r t h o g o n a l M a t c h i n g P u r s u i t ( n _ n o n z e r o _ c o e f s =1) . f i t (X, y ) #Run OMP f o r b e s t 1

↪→ c o r r
23 p r i n t r e g . c o e f _ # c o e f f i c i e n t o f b e s t 1 c o r r
24 p l t . p l o t ( s , r e g . p r e d i c t (X) )
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Fig. 34: Measured orbit versus longitudinal location (blue) together with resulting orbit after using the
best 1 corrector (green) and best 2 correctors (red) using Orthogonal Matching Pursuit. Location of best
correctors is shown with the corresponding color. The best 1 corrector is within the best two correctors
as this is the main approximation of the algorithm.
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10.1.1.348.5735.

31


	1 Introduction
	2 Requirements for code examples
	3 Accelerator elements and their imperfections
	3.1 Dipole
	3.2 Quadrupole
	3.3 Sextupole
	3.4 Longitudinal misalignments

	4 Phase-space and turn-by-turn motion
	4.1 The transverse phase-space
	4.2 Computing alpha, beta and epsilon from turn-by-turn data
	4.3 Excitation techniques

	5 Measurement techniques and data analysis
	5.1 Cleaning experimental BPM data
	5.2 Generic measurement cleaning
	5.3 Fourier analysis
	5.4 Beta from amplitude
	5.5 Beta from phase
	5.6 Momentum reconstruction and resonance driving terms

	6 Farey sequences
	7 Corrections
	7.1 Local correction
	7.2 Global corrections
	7.3 The best N corrector problem


