
4.02.3

New Analytical Formulas for the
Rank of Farey Fractions and
Estimates of the Local Discrepancy

Rogelio Tomás García

Article

https://doi.org/10.3390/math13010140

https://www.mdpi.com/journal/mathematics
https://www.scopus.com/sourceid/21100830702
https://www.mdpi.com/journal/mathematics/stats
https://www.mdpi.com
https://doi.org/10.3390/math13010140


Academic Editor: Ion Mihai

Received: 7 December 2024

Revised: 30 December 2024

Accepted: 31 December 2024

Published: 2 January 2025

Citation: Tomás García, R. New

Analytical Formulas for the Rank of

Farey Fractions and Estimates of the

Local Discrepancy. Mathematics 2025,

13, 140. https://doi.org/10.3390/

math13010140

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

New Analytical Formulas for the Rank of Farey Fractions and
Estimates of the Local Discrepancy

Rogelio Tomás García

CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland; rogelio.tomas@cern.ch

Abstract: New analytical formulas are derived for the rank and the local discrepancy of

Farey fractions. The new rank formula is applicable to all Farey fractions and involves

sums of a lower order compared to the searched one. This serves to establish a new

unconditional estimate for the local discrepancy of Farey fractions that decrease with the

order of the Farey sequence. This estimate improves the currently known estimates. A new

recursive expression for the local discrepancy of Farey fractions is also given. A second

new unconditional estimate of the local discrepancy of any Farey fraction is derived from a

sum of the Mertens function, again, improving the currently known estimates.

Keywords: Farey sequence; Riemann Hypothesis

MSC: 11B57

1. Introduction and Statement of Main Results

The Farey sequence Fn of order n ∈ N is an ascending sequence of irreducible fractions

between 0 and 1 whose denominators do not exceed n. These fractions are referred to as

Farey fractions. An introduction and thorough reviews of the theory of Farey sequences

can be found in [1–4], along with a few applications in [5,6]. Throughout this paper, we

exclude the fraction 0/1 from Fn. For given n ∈ N and x ∈ ]0, 1], In(x) is defined as the

number of elements in Fn within ]0, x]. We define Fx
n as a subsequence of Fn given by

Fx
n = Fn ∩ ]0, x],

and, therefore,

In(x) = |Fx
n |.

The local discrepancy r̂n(h/k) of the Farey fraction h/k in Fn is defined as [7,8]

r̂n(h/k) =
h

k
|Fn| − In(h/k).

We also introduce the discrepancy r̂
φ
q (h/k), at the level of the Euler Totient function φ(x),

such that the number of Farey fractions in Fq lower than h/k and with denominators equal

to q is given by
h

k
φ(q)− r̂

φ
q

(

h

k

)

,

and, therefore,

r̂n(h/k) =
n

∑
q=1

r̂
φ
q

(

h

k

)

.
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Note that h/k is not necessarily an element of Fn. The absolute discrepancy of the Farey

sequence Fn is generally defined as

Dn = sup
α∈Fn

|r̂n(α)|
|Fn|

.

It is important to recall an equivalent formulation of the Riemann Hypothesis (RH).

The Franel–Landau formulation [9,10] is expressed as

1

|Fn| ∑
h/k∈Fn

|r̂n(h/k)| = O
(

n
1
2+ϵ
)

∀ϵ > 0 ⇔ RH.

This direct connection between local discrepancies and RH shows the importance of pro-

gressing in computing estimates of r̂n(h/k). The unconditional estimate of r̂n(h/k) is not

generally addressed in the literature, while Dn has been evaluated to be O(1/n) in [7] and,

therefore, using |Fn| = O(n2), we can write

r̂n(h/k) = O(n). (1)

The absolute discrepancy of the Farey sequence was derived in [11] and found to be

Dn = 1/n by finding an upper bound of an integral of the Mertens function. This result has

been qualified as “most remarkable” in [12]. Figure 1 shows an illustration of the different

bounds for the local discrepancies versus the corresponding Farey fraction α for different

ranges of n, as derived in [11].
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Figure 1. Illustration of the results in [11], showing the upper bounds of the local discrepancy of

Farey fractions, |r̂n(α)|/|Fn|, versus the Farey fractions α in [0, 1/2] (without respecting the actual

separation ratios in the horizontal axis). Note that the red curve for α ≤ 15/n has been plotted using

expression (2), while in [11] (page 361) tabulated values are given.

The following approximations are derived in [11] (page 361) for n > 10400,

In(α) w = n
⌊nα⌋
∑
j=1

φ(j)

j
− 1

α
Φ(⌊nα⌋),

|r̂n(α)| w ≤ |Fn|
n

(

nα − π2

3

⌊nα⌋
∑
j=1

φ(j)

j
+

π2

3αn
Φ(⌊nα⌋)

)

, (2)

where Φ(x) is the Totient summatory function and “w =” and “w ≤” are introduced in [11] to

imply that the terms with relative influence below 10−100 are neglected. Neither the validity

range of these approximations for α nor the estimates of the neglected terms are given in [11].
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These approximations are only used for α ≤ 15/n in [11] and, indeed, above this value of α,

the quantity in parenthesis in (2) can take negative values. For example, for α = 33.6/n, we

would have |r̂n(33.6/n)| w ≤ −0.001|Fn|/n, which does not hold.

Knowing the missing terms that complete the above approximations for any n and α

could lead to new bounds or estimates for the local discrepancies of Farey fractions. Partial

developments in this direction are found in [13,14] for unit fractions. In Theorem 1 and

Corollary 1, we develop new general expressions for In(α) and r̂n(α), obtaining, for r̂n(α),

r̂n(α) = |Fn|α − n
⌊nα⌋
∑
j=1

φ(j)

j
+

1

α
Φ(⌊nα⌋) (3)

−r̂⌊nα⌋({1/α}) +
⌊nα⌋
∑
j=1

∑
d|j

µ(d)
{n

d

}

,

where µ(d) is the Möbius funtion and {x} represents the fractional part of x. This identity

unexpectedly connects the discrepancy of α in Fn with the discrepancy of {1/α} in F⌊nα⌋.
Furthermore, the new general identity (3) can be applied iteratively to r̂⌊nα⌋({1/α}) for a

finite number of steps, as {1/α} is always a Farey fraction of a lower order than α. This

identity is used in Theorem 2 to derive a new unconditional estimate of r̂n(α) for any

α ≍ O(n−ϵ), with ϵ ∈]0, 1], given by

r̂n(α) = O
(

nδA(n
1−ϵ)

)

, for α ≍ O(n−ϵ) , ϵ ∈]0, 1],

where the function δA(x) is a monotonic decreasing function defined as

δA(x) = exp

(

−A
log0.6 x

(log log x)0.2

)

, with A > 0.

This new unconditional estimate of r̂n(α) improves the existing one, O(n), from [7,11]

for α values that decrease with n.

In this work, we derive another unconditional estimate of r̂n(h/k). For later conve-

nience, we define the local discrepancy with an offset as

rn(h/k) = r̂n(h/k)− k − 1

2k
.

In Theorem 3, we demonstrate that

n

∑
d=1

r⌊n/d⌋(h/k) =
b

∑
i=1

〈

ih

k

〉

k

, (4)

with b = n mod k and ⟨·⟩k, the fractional part with an offset defined as

⟨x⟩k = {x} − k − 1

2k
.

Note that for h/k being a Farey fraction and for any positive integers a and p, we have

a+pk−1

∑
d=a

〈

dh

k

〉

k

= 0. (5)
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Expression (4) can be used iteratively for an efficient calculation of rn(h/k) as done,

e.g., in [15], to compute In(h/k). Applying the Möbius inversion formula to (4) and making

further developments, the following two identities are also demonstrated in Theorem 3,

rn(h/k) =
n

∑
d=1

µ(d)
b̂

∑
i=1

〈

ih

k

〉

k

(6)

=
n

∑
d=1

M
(n

d

)

〈

dh

k

〉

k

, (7)

with b̂ = ⌊n/d⌋ mod k and M(n) representing the Mertens function defined as M(n) =

∑
n
d=1 µ(d). Expression (6) is new and can be used to demonstrate again that rn(h/k) = O(n)

as the sum over i is bounded by k/8, as it is shown in Lemma 3 given below. Expression (7) is

not new, as it already has been given in similar forms in [3,7,11], but here, it adopts a simpler

form thanks to the introduction of ⟨·⟩k and the local discrepancy with an offset.

Theorem 4 establishes a second new unconditional estimate of the local discrepancy

for a Farey fraction, h/k, such that k = O(n1−ϵ), with 1 > ϵ > 0, as

rn(h/k) = O
(

n log0.4 n log0.2 log n δA(n
ϵ)
)

, for A > 0.

It is important to note that this estimate includes the general case of h/k being constant.

Again, this unconditional estimate improves the existing one, O(n), from [7,11] for Farey

fractions with denominators that can grow sublinearly with the order of the Farey sequence

and complements the estimate given in Theorem 2.

2. Results

Lemma 1. The number N h/k
n (q) of Farey fractions in Fh/k

n with numerators equal to q for k ≤ n

is given by

N h/k
n (q) = n

φ(q)

q
− k

h
φ(q) + r̂

φ
q ({k/h})− ∑

d|q
µ(d)

{n

d

}

,

Proof. Using Corollary 5 in [14], we determine the number of Farey fractions with numera-

tors equal to q in F
1/⌊k/h⌋
n as

N 1/⌊k/h⌋
n (q) = n

φ(q)

q
− ⌊k/h⌋φ(q)− ∑

d|q
µ(d)

{n

d

}

, if ⌊k/h⌋ < n/q.

To determine N h/k
n (q) from N 1/⌊k/h⌋

n (q), we need to compute the number of Farey fractions

with numerators equal to q in Fn ∩
[

h
k , 1

⌊k/h⌋
]

. To this end, we define F′
n as

F′
n =

{

u

l
∈ Fn ∩

[

1

⌊k/h⌋+ 1
,

1

⌊k/h⌋

]

: u ≤ q

}

,

and a bijective map M̃ between F′
n and Fq as

M̃ : Fq → F′
n,

t

q′
7→ q′

q′(⌊k/h⌋+ 1)− t
,

M̃−1 : F′
n → Fq,

h′

k′
7→ h′(⌊k/h⌋+ 1)− k′

h′
.
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This implies that the number of Farey fractions with numerators equal to q in F′
n is the

same as the number of Farey fractions with denominators equal to q in Fq, that is φ(q).

Furthermore, the image of h/k under M̃−1 is given by

h(⌊k/h⌋+ 1)− k

h
= 1 −

{

k

h

}

= 1 − k mod h

h
,

and the number of Farey fractions in Fq with denominators equal to q and larger than

1 − {k/h} is given by

φ(q)

{

k

h

}

− r̂
φ
q ({k/h}).

Therefore,

N h/k
n (q) = N 1/⌊k/h⌋

n (q)− φ(q)

{

k

h

}

+ r̂
φ
q ({k/h}).

Lemma 2. The largest numerator among the Farey fractions in Fα
n , with α ∈ [0, 1], is equal to or

below ⌊nα⌋.

Proof. This is immediate from the fact that the largest denominator in Fα
n is n and ⌊nα⌋ is

the largest integer that fulfills ⌊nα⌋/n ≤ α.

Theorem 1. The rank In(h/k) of the Farey fraction h/k in Fn is given by

In(h/k) = n
⌊nh/k⌋
∑
j=1

φ(j)

j
− k

h
Φ(⌊nh/k⌋)

+r̂⌊nh/k⌋({k/h})−
⌊nh/k⌋
∑
j=1

∑
d|j

µ(d)
{n

d

}

,

Proof. Per Lemma 2, we obtain In(h/k) by adding N h/k
n (q) for all q ≤ ⌊nh/k⌋,

In(h/k) =
⌊nh/k⌋
∑
q=1

N h/k
n (q).

The desired result is achieved by using Lemma 1 in this relation.

Corollary 1. The local discrepancy of the Farey fraction h/k in Fn is given by

r̂n(h/k) = |Fn|
h

k
− n

⌊nh/k⌋
∑
j=1

φ(j)

j
+

k

h
Φ(⌊nh/k⌋)

−r̂⌊nh/k⌋({k/h}) +
⌊nh/k⌋
∑
j=1

∑
d|j

µ(d)
{n

d

}

.

Proof. This follows from the definition of the local discrepancy and Theorem 1.

Theorem 2. The unconditional estimate of the local discrepancy of the Farey fraction h/k is

given by

r̂n(h/k) =
3

π2

k

h

{

hn

k

}2

+ O

(

nδA

(

n
h

k

))

+ O

(

n
h

k
log

(

n
h

k

))

.
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For h/k ≍ O(n−ϵ), with ϵ ∈]0, 1], the estimate simplifies to the following expression,

r̂n(h/k) = O
(

nδA(n
1−ϵ)

)

, for h/k ≍ O(n−ϵ).

Proof. Recalling Theorem 1,

r̂n(h/k) = |Fn|
h

k
− n

⌊nh/k⌋
∑
j=1

φ(j)

j
+

k

h
Φ(⌊nh/k⌋)

−r̂⌊nh/k⌋({k/h}) +
⌊nh/k⌋
∑
j=1

∑
d|j

µ(d)
{n

d

}

, (8)

we proceed to provide estimates for the different terms in the right hand side of the above

expression, assuming h/k = O(n−ϵ) with ϵ ∈ [0, 1[ and using known estimates from,

e.g., [11,16,17] as follows:

|Fn|
h

k
=

3

π2
n2 h

k
+ E(n)

h

k
,

n
⌊nh/k⌋
∑
j=1

φ(j)

j
=

6

π2
n2 h

k
− 6

π2
n

{

hn

k

}

+ nH(nh/k),

k

h
Φ(⌊nh/k⌋) =

3

π2
n2 h

k
− 6

π2
n

{

hn

k

}

+
3

π2

k

h

{

hn

k

}2

+ E(nh/k)
k

h
,

E(x) = O(x log2/3 x(log log x)4/3),

E(x) = xH(x) + O(xδA(x)),

r̂⌊nh/k⌋({k/h}) = O(nh/k),

with A > 0. Combining the above results we obtain the following relation,

r̂n(h/k) =
3

π2

k

h

{

hn

k

}2

+ E(n)
h

k

+O

(

nδA

(

n
h

k

))

+ O(nh/k) +
⌊nh/k⌋
∑
j=1

∑
d|j

µ(d)
{n

d

}

. (9)

For the sum with the Möbius function we establish the following estimate,

⌊nh/k⌋
∑
j=1

∑
d|j

µ(d)
{n

d

}

=
⌊nh/k⌋
∑
j=1

µ(j)

⌊

nh

kj

⌋{

n

j

}

= O

(

n
h

k
log

(

n
h

k

))

.

Combining the above estimates the desired result is obtained. For the case

h/k = O(n−1), we directly evaluate identity (8), obtaining

r̂n(h/k) = O(n),

which is compatible with the formulation of the theorem and with the main result

in [11].

Lemma 3. For b̂, h, and k integers fulfilling 0 ≤ b̂ ≤ k, gcd(h, k) = 1 and 1 ≤ h ≤ k − 1 we have

∣

∣

∣

∣

∣

b̂

∑
i=1

〈

ih

k

〉

k

∣

∣

∣

∣

∣

≡
∣

∣

∣

∣

∣

b̂

∑
i=1

({

ih

k

}

− k − 1

2k

)

∣

∣

∣

∣

∣

≤ k

8
.
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Proof. Since gcd(h, k) = 1, the fractional part {ih/k} takes different values for all i ∈ [[1, b̂]]

and, therefore, we can establish the following bounds

b̂

∑
i=1

i

k
≤

b̂

∑
i=1

{

ih

k

}

≤
b̂

∑
i=1

k − i

k
,

b̂(b̂ + 1)

2k
≤

b̂

∑
i=1

{

ih

k

}

≤ b̂(2k − b̂ − 1)

2k
.

Subtracting b̂(k − 1)/(2k) we obtain

− (k − 2)2

8k
≤ − b̂(k − b̂ − 2)

2k
≤

b̂

∑
i=1

〈

ih

k

〉

k

≤ b̂(k − b̂)

2k
≤ k

8
.

Theorem 3. For n ∈ N, h/k being a Farey fraction and b defined as b ≡ n mod k, we have

n

∑
d=1

r⌊n/d⌋(h/k) =
b

∑
i=1

〈

ih

k

〉

k

, (10)

and, by Möbius inversion, we also have

rn(h/k) =
n

∑
d=1

µ(d)
b̂

∑
i=1

〈

ih

k

〉

k

, (11)

with b̂ = ⌊n/d⌋ mod k. Furthermore,

rn(h/k) =
n

∑
d=1

M
(n

d

)

〈

dh

k

〉

k

(12)

where M(x) is the Mertens function.

Proof. I⌊n/d⌋(h/k) represents the number of simple fractions of the form p/q and 0 ≤ p ≤
q ≤ n below or equal h/k with gcd(p, q) = d. Therefore the sum over d,

n

∑
d=1

I⌊n/d⌋(h/k) =
n

∑
i=1

⌊

ih

k

⌋

,

gives the total number of fractions below or equal h/k. This argument is commonly used,

see, e.g., [15]. Developing the right hand side of the above expression, using the definition

b ≡ n mod k, we obtain



Mathematics 2025, 13, 140 8 of 12

n

∑
i=1

⌊

ih

k

⌋

=
n

∑
i=1

(

ih

k
−
{

ih

k

})

=
h

2k
(n + 1)n −

n

∑
i=1

{

ih

k

}

=
h

2k
(n + 1)n −

⌊n

k

⌋ k−1

∑
i=1

{

ih

k

}

−
b

∑
i=1

{

ih

k

}

=
h

2k
(n + 1)n −

⌊n

k

⌋ k − 1

2
−

b

∑
i=1

{

ih

k

}

=
h

2k
(n + 1)n − (n − b)

k − 1

2k
−

b

∑
i=1

{

ih

k

}

.

Inserting the following quantity,

n

∑
d=1

|F⌊n/d⌋| =
n

∑
d=1

I⌊n/d⌋(1/1) =
n

∑
i=1

⌊

i · 1

1

⌋

=
1

2
(n + 1)n,

in the above derivation gives

n

∑
d=1

I⌊n/d⌋(h/k) =
h

k

n

∑
d=1

|F⌊n/d⌋| − n
k − 1

2k
+ b

k − 1

2k
−

b

∑
i=1

{

ih

k

}

.

Since rn(h/k) is defined as

rn(h/k) =
h

k
|Fn| − In(h/k)− k − 1

2k
,

we retrieve the desired result as follows:

n

∑
d=1

r⌊n/d⌋(h/k) =
b

∑
i=1

〈

ih

k

〉

k

.

Identity (11) is directly obtained by Möbius inversion and (12) is derived as follows,

rn(h/k) =
n

∑
d=1

µ(d)
b̂

∑
i=1

〈

ih

k

〉

k

=
n

∑
d=1

(

M
(n

d

)

− M

(

n

d + 1

)) d mod k

∑
i=1

〈

ih

k

〉

k

= M(n)

〈

h

k

〉

k

+
n

∑
d=2

M
(n

d

)

〈

dh

k

〉

k

=
n

∑
d=1

M
(n

d

)

〈

dh

k

〉

k

with b̂ = ⌊n/d⌋ mod k. Identity (12) is very similar to Formula (1) of [11] and to its further

derivations within the proof of Lemma 4 in [11].

Corollary 2. For any constant α ∈]0, 1], we have

⌊nα⌋
∑
j=1

∑
d|j

µ(d)
{n

d

}

= O(n log2/3 n(log log n)4/3).

Proof. By inspecting estimate (9) for the case with constant h/k = α, we realize that the

largest growing term, the sum with the Möbius function, must have the same asymptotic
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behavior as the second largest term, E(n)α, so that their sum can result in the known

estimate, r̂n(h/k) = O(n), on the left hand side.

Theorem 4. The unconditional estimate of the local discrepancy of the Farey fraction h/k is

given by

rn(h/k) = O
(

n log0.4 n log0.2 log n δA(n
ϵ̂)
)

+ O
(

knϵ̂
)

,

for 1 > ϵ̂ > 0.

For the case k = O(n1−ϵ′), with ϵ′ > ϵ̂, the second O term can be neglected and the estimate

is given by

rn(h/k) = O
(

n log0.4 n log0.2 log n δA(n
ϵ̂)
)

.

Proof. Let us start from the expression (12) of the local discrepancy of the Farey fraction

h/k given in Theorem 3

rn(h/k) = ∑
d≤n

M
(n

d

)

〈

dh

k

〉

k

. (13)

Splitting the sum in (13) in two parts at f (n) = ⌊n1−ϵ̂⌋ for any ϵ̂ such that 1 > ϵ̂ > 0 gives

∑
d≤n

M
(n

d

)

〈

dh

k

〉

k

=
f (n)

∑
d=1

M
(n

d

)

〈

dh

k

〉

k

+
n

∑
d= f (n)+1

M
(n

d

)

〈

dh

k

〉

k

. (14)

For any monotonically increasing function g(x) in the range [n/a, n], with a ≥ 1, we

have
a

∑
d=1

g(n/d) ≤ g(n) +
∫ a

1
g(n/x)dx

for any n > a. Since M(x) = O(xδA(x)) for A > 0, see [17], we establish the following

estimate for the first sum in the right hand side of inequality (14) as

f (n)

∑
d=1

|M(n/d)| = O
(

n log0.4 n log0.2 log n δA(n
ϵ̂)
)

,

where we have used that

∫ f (n)

1

n

x
δA(n/x)dx =

∫ n

n
f (n)

n

u
δA(u)du = O

(

n log0.4 n log0.2 log n δA(n
ϵ̂)
)

as demonstrated in Lemma 4.

The second sum in the r.h.s of (14) can be bounded as

∣

∣

∣

∣

∣

∣

n

∑
d= f (n)+1

M
(n

d

)

〈

dh

k

〉

k

∣

∣

∣

∣

∣

∣

≤ ∑
d∈J

∣

∣

∣

∣

(

M
(n

d

)

− M

(

n

d + αd

))〈

dh

k

〉

k

∣

∣

∣

∣

+
n

∑
d=n−k+1

∣

∣

∣

∣

M
(n

d

)

〈

dh

k

〉

k

∣

∣

∣

∣

(15)

where we have used the fact that for every d < n − k + 1 there exists one αd < k such that

〈

dh

k

〉

k

= −
〈

(d + αd)h

k

〉

k

.
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The set J is a subset of [[ f (n) + 1, n − k]] such that the map A

A : J → [[ f (n) + 1, n − k]]− J, d 7→ d + αd

is bijective. The second sum in the r.h.s of Expression (15) includes the elements that cannot

be paired when d + αd > n and accepts the following bound,

n

∑
d=n−k+1

∣

∣

∣

∣

M
(n

d

)

〈

dh

k

〉

k

∣

∣

∣

∣

≤ kn

2(n − k + 1)
,

where we have used that |M(x)| ≤ x, for all x.

To derive a bound for the first sum in the r.h.s of Expression (15) we use the fact that

∣

∣

∣

∣

M
(n

d

)

− M

(

n

d + αd

)∣

∣

∣

∣

≤ αdn

d2
≤ kn

d2
,

where we have used that |M(x)− M(y)| ≤ |x − y|. Furthermore,

∑
d∈J

kn

d2

∣

∣

∣

∣

〈

dh

k

〉

k

∣

∣

∣

∣

≤ 1

2

n−k+1

∑
d= f (n)+1

kn

d2
≤ kn

2( f (n) + 1)
− kn

2(n − k + 1)
.

Combining the above bounds and recalling that f (n) = ⌊n1−ϵ̂⌋, we conclude that

∣

∣

∣

∣

∣

∣

n

∑
d= f (n)+1

M
(n

d

)

〈

dh

k

〉

k

∣

∣

∣

∣

∣

∣

≤ knϵ̂

2
= O(knϵ̂).

Inserting the above estimates into inequality (14), we obtain the wanted result.

Lemma 4. For any a > x, we have

∫ a

x

δA(u)

u
du = O

(

log0.4 x log0.2 log x δA(x)
)

.

Proof. This is demonstrated using the following derivative,

d

dx





5

3A

log0.4 x log0.2 log x
(

1 − 1
3 log log x

) δA(x)



 =

δA(x)

x

(

−1 +
log0.2 log x

A log0.6 x

(6 log2 log x + log log x − 6)

(3 log log x − 1)2

)

=

δA(x)

x

(

−1 + O

(

log0.2 log x

log0.6 x

))

,

and therefore,
∫ a

x

δA(u)

u
du = O





log0.4 u log0.2 log u
(

1 − 1
3 log log u

) δA(u)

∣

∣

∣

∣

∣

∣

u=x

u=a



.

The factor in the denominator inside the O term can be neglected for large x.

3. Discussion

We have developed new exact formulas for the rank and discrepancy of Farey fractions

using an interesting technique based on a bijection between Farey subsequences. These

formulas complete an approximation presented in the classical paper [11]. It is remarkable
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that this formula, see Corollary 1, connects the local discrepancy of two different Farey

fractions, namely α and {1/α}. As a curiosity, the largest solution of the equation α = {1/α}
is the fractional part of the Golden ratio,

(√
5 − 1

)

/2, which is not a Farey fraction. These

new formulas are used to compute a new estimate of the local discrepancy in Theorem 2

that improves the currently known estimates.

The new notation introduced in this work, namely the discrepancy with an offset

rn(h/k) = r̂n(h/k)− (k − 1)/(2k) and the fractional part with the same offset ⟨·⟩k, simpli-

fies the known formula and has helped in the development of the new formulas for rn(h/k)

in Theorem 3. These are the basis for the development of the second new estimate of

rn(h/k) in Theorem 4. The new and previous estimates of rn(h/k), or equivalently r̂n(h/k),

are put together in the following expression:

r̂n(h/k) =















O
(

nδA(n
1−ϵ)

)

, for h/k ≍ O(n−ϵ) , Theorem 2

O
(

n log0.4 n log0.2 log n δA(n
ϵ̂)
)

, for k = O(n1−ϵ̂) , Theorem 4

O(n), otherwise,

with ϵ ∈]0, 1], ϵ̂ ∈]0, 1[, and A > 0. The cases where k ≍ O(n) or h/k = O(n−1) remain with

the known estimate r̂n(h/k) = O(n) from [7]. For the cases h/k ≍ O(n−ϵ) or k = O(n1−ϵ̂),

the new unconditional estimates of r̂n(h/k) are sublinear in n. Theorem 4 applies to h/k

being constant.

The Fanel–Landau formulation of the Riemann Hypothesis is expressed as

1

|Fn| ∑
h/k∈Fn

|r̂n(h/k)| = O
(

n
1
2+ϵ
)

∀ϵ > 0 ⇔ RH.

The known estimate r̂n(h/k) = O(n), for all h/k in Fn, implies that

1

|Fn| ∑
h/k∈Fn

|r̂n(h/k)| = O(n) ,

which is far from O
(

n
1
2+ϵ
)

. For the RH to be true, r̂n(h/k) would need to be r̂n(h/k) =

O
(

n
1
2+ϵ
)

for most of the Farey fractions in Fn. The new sublinear estimates of r̂n(h/k) in

Theorems 2 and 4 go in the direction of the RH, but further developments would be needed

for a significant improvement.
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