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Abstract. The evaluation of the activity of radionuclides in radioactive waste is required for its disposal in final
repositories. Easy-to-measure nuclides, like g-emitters and high-energy X-rays, can be measured via non-
destructive nuclear techniques from outside a waste package. Some radionuclides are difficult-to-measure (DTM)
from outside a package because they are a- or b-emitters. The present article discusses the application of linear
regression, scaling factors (SF) and the so-called “mean activity method” to estimate the activity of DTMnuclides
on metallic waste produced at the European Organization for Nuclear Research (CERN). Various statistical
sampling techniques including simple random sampling, systematic sampling, stratified and authoritative
sampling are described and applied to 2 waste populations of activated copper cables. The bootstrap is introduced
as a tool to estimate average activities and standard errors in waste characterization. The analysis of the DTMNi-
63 is used as an example. Experimental and theoretical values of SFs are calculated and compared. Guidelines for
sampling historical waste using probabilistic and non-probabilistic sampling are finally given.
1 Introduction

The evaluation of the activity of the radionuclides in
radioactive waste is required for its disposal in final
repositories. The characterization of radioactive waste
includes establishing the list of radionuclides, together with
their specific activity, inside each package.

For historical waste, which is defined as waste collected
before the implementation of a traceability system [1], the
radiological characterization process is complex. This is due
to limited or missing information about the radiological
history of the waste. Some of the radionuclides are easy-to-
measure (ETM) from outside the waste package bymeans of
nuclear non-destructive assay, suchasg-spectrometry.Other
radionuclides, such as pure-b, a and low-energy X-rays, are
difficult-to-measure (DTM) or impossible-to-measure (ITM)
by non-destructive techniques. When an experimental
statistical correlation can be established between an ETM
and DTM radionuclides, the scaling factor (SF) method can
be applied to quantify the specific activity of DTMs [2]. The
scaling factor method consists of evaluating the activity of a
radionuclidebyapplying amultiplicative factor (the so-called
“scaling factor”) to the activity of the dominant gamma
emitter. ETM radionuclide statistically correlated to a
DTM is defined the tracer or the key nuclide (KN).
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A statistical correlation can be checked only if the
sampling technique adopted is probabilistic. In the present
article, we introduce various techniques, including simple
random, systematic and stratified sampling, to estimate
average specific activity of Ni-63 on copper shreds from
power and signal cables activated at CERN.

Section 2 describes the SF method, the sampling
techniques tested, the resampling technique called boot-
strap, measurement and calculation tools for activity
quantification. Section 3 presents the waste populations
used to validate and compare statistical methods for
sampling. Section 4 presents the implementation of the
experiments, the calculations performed and the compari-
son of the various techniques. Conclusions are finally given
in the last section.
2 Methods

2.1 Scaling factors, linear regression and mean
activity method

The scaling factor method is described in references [1,2]. Its
applicability can be checked by either studying the
production mechanisms of the radionuclides and by
observing their correlation or by using statistical methods.
For historical waste it is often impossible to check the
activation conditions of materials and, consequently,
mons Attribution License (http://creativecommons.org/licenses/by/4.0),
in any medium, provided the original work is properly cited.

mailto:biagio.zaffora@cern.ch
www.edpsciences.org
http://dx.doi.org/10.1051/epjn/2016031
http://www.epj-n.org
http://creativecommons.org/licenses/by/4.0


2 B. Zaffora et al.: EPJ Nuclear Sci. Technol. 2, 34 (2016)
production mechanisms. Only statistical correlations can
therefore be tested, based on experimental data obtained
from a sample.

When measurements of DTMs and a KN are performed,
the scaling factor SFi for the ith pair DTM/KN is given by:

SFi ¼ aDTM;i

aKN;i
; ð1Þ

where aDTM,i is the specific activity of the DTM in the ith
sample (in Bq/g) and aKN,i is the specific activity of the KN
in the ith sample (in Bq/g). If many samples are collected
from a waste population the distribution of the SFs can be
calculated together with the correlation r of the random
variables aDTM and aKN. Only values of activity above the
detection limit should be used.

Based on the strength of the correlation r, different
methods can be used to evaluate the activity of the DTM
nuclides. For the present study we considered linear
regression, mean and geometric mean of the scaling factors
and the so-called “mean activity method”.

The general equation of the linear model between the
activities of the pair of radionuclides DTM and KN is:

aDTM ¼ b0 þ b1 � aKN; ð2Þ
where b0 and b1 are respectively the intercept and the slope
of the regression line. The hypothesis b0 = 0 is often
considered [2]. In this case b1 represents the scaling factor
that, multiplied by the activity of the KN, allows us to
estimate the activity of the DTM nuclide. The validity of
the linear model can be checked using the p-value for
parameter importance and the F-statistic for appreciation
of the overall model.

A second technique to estimate the scaling factor is
based on the hypothesis that the underlying distribution of
SFs is often log-normal. If scaling factors are log-normally
distributed, the geometric mean SF is a robust central
tendency estimator:

SF ¼ e

Pn

i¼1
lnðSF

i
Þ

n

� �
; ð3Þ

where SFi is given by equation (1) and n is the number of
units in the sample collected.

The geometric standard deviation around the geometric
mean, called dispersion D, can be calculated as follows:

D ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
½lnðSFiÞ�lnðSFÞ�2

n�1

q� �
: ð4Þ

The IAEA technical report in reference [2] suggests
that, for the geometric mean to be applicable, the coefficient
of determination R2 should be above 0.5. If the distribution
of SFs is approximately normal the mean scaling factor
should be used.

Finally, if a statistical correlation between DTMs and
KN is not found, the so-called “mean activity method” can
be applied. This technique consists of calculating the
arithmetic mean activity of each DTM nuclide from a
sample, including values which are below the detection
limit DL. The mean value so found is applied to the entire
population. It must be stressed however that the use of the
arithmetic mean can be biased, especially when the activity
distribution is skewed. This is particularly true when more
robust average content estimators (such as median or
geometric mean) are considered. A detailed description of
these methods and practical applications will be given in
the following sections.

2.2 Sampling techniques

2.2.1 Simple random and systematic sampling

In most practical situations census data, which are data of
all the units in a population, are impossible or too expensive
to collect. Simple random (SRS) and systematic sampling
(SYS) are often used to collect samples in order to estimate
the true value of a parameter of a population. A complete
mathematical treatment of these sampling techniques can
be found in references [3,4].

In SRS each member of the population has an equal
probability of being included in the sample. In practice, the
units of the population are numbered from 1 to N. A series
of random numbers between 1 and N is drawn without
replacement. The sampling units associated to the random
numbers drawn are selected for sampling.

SRS can be impractical when sampling radioactive waste
because not all the units of a population are necessarily
accessible during the sampling campaign. SYS is often used
instead.

SYS is a statistical process that allows the analyst to
choose n samples over a population of N units, with samples
spaced by a factor k. If the N units of the population are
numbered between 1 andN and n samples must be collected,
k is calculated as the ratioN/n. A random sample between 1
and k and then every kth unit thereafter are taken. SYSmay
be affected by the order of the sampling units in the
populationfile but is very practical in a continuous industrial
production of packages of radioactive waste.

2.2.2 Multi-stage stratified sampling

In stratified sampling the population of N units is divided
into non-overlapping subpopulations of N1, N2, . . . , NL
units, called strata. A sample is then randomly selected
from each stratum.

If multiple samples can be collected from each sampling
unit (a waste package for instance), we can apply a second
sampling stage that allow us to select secondary samples
from the units of each stratum. This strategy is called 2-
stage stratified sampling and is a special case of the so-called
“multi-stage stratified sampling”.

A common strategy to chose the number of samples nh
to collect per single stratum h is the Neyman allocation [3]:

nh ¼ nwhshPL
h¼1 whsh

; ð5Þ

where n is the total number of samples to collect, wh is
the weight of the stratum h, sh is the standard deviation
of the population parameter to quantify (such as the
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specific activity) in the stratum h and L is the number of
strata. The standard deviation sh on a stratum can be
estimated from previous studies and conservative hypothe-
sis can also be used.

Equation (5) states that more samples must be collected
in strata with a higher weight or a higher dispersion. For
waste characterization this implies that more samples
should be collected in strata where the activity is higher and
the dispersion of data is highly variable.

Once the number of samples to collect per stratum is
calculated, we can use SRS to chose samples into each
stratum. When using 2-stage stratified sampling and the
strata have different sizes, an unbiased estimator of the
average specific activity a of a radionuclide is [4]:

a ¼
PL

h¼1 NhahPL
h¼1 Nh

; ð6Þ

where Nh is the number of primary units in the stratum h
and ah is the average specific activity calculated from
the samples of the stratum h. A detailed mathematical
treatment of stratified sampling can be found in
reference [3].
2.2.3 Authoritative sampling

Authoritative sampling is a non-statistical sampling design
because it does not assign an equal probability of being
sampled to all portions of the population.

Authoritative sampling may be appropriate under the
following circumstances:

–
 preliminary information is needed about the waste or site
to facilitate planning or to gain familiarity with the waste
matrix for analytical purposes;
–
 only a small portion of the population is accessible and
judgement is applied to assess the usefulness of samples
drawn from the small portion;
–
 extremes values are searched for the calculation of the
worst case scenario.

In the present study, we used the so-called judgemental
sampling [5], which is a type of authoritative sampling, to
estimate preliminary standard deviations needed for the
stratified sampling and to estimate extreme values. More
information on the application of authoritative sampling is
given in Sections 3 and 4.
2.3 The bootstrap

The bootstrap is a resampling method that can be used to
estimate the (unknown) distribution of a parameter u of
a population, such as the average specific activity of a
radionuclide in a radioactive waste batch.When a sample of
n units is withdrawn from a population, a high number of
replicates of the sample are generated via sampling with
repetition from the original sample. For each replicate,
also of size n, we calculate the bootstrap parameter
û
�
which is an estimation of the true population parameter

u. The population parameter calculated from the sample
is indicated with û [6,7]. With this technique, instead of
evaluating via a single value the parameter u, we construct
an experimental distribution for the same parameter which
is otherwise unknown.

The bootstrap is commonly used to estimate mean,
median, standard error, confidence intervals and bias.

We applied this computation technique to evaluate
the specific activity of DTM nuclides and to estimate the
standard deviation in stratified sampling.
2.4 Measurements techniques

Techniques for g-ray detection and for activity quantifi-
cation of g-emitters are well known and documented in
many references, such as in [8–10]. In the present study,
two classes of instruments are proposed for the
quantification of the activity of ETMs, namely total-g
counters and g-spectrometry detectors. The first class of
counters is mainly used for the quantification of the
specific activity of waste packages. The second class of
detectors is used for a more precise measurement of the
ETMs specific activity. In particular, the activity
measurements of g-emitters for SF estimation are carried
out using g-ray spectrometers.

At CERN, two total-g counters are currently in use:
the first counter consists of 6 detectors in a 4p geometry
with internal volume 0.44 m3 and 50 mm of lead shielding
and the second counter consists of an array of 24
detectors in a 4p geometry with internal volume 1.82 m3

and 70 mm of lead shielding. For both instruments the
counting time is very short (generally below 5 min) and
the measurable g-activities can reach ∼10�4 Bq/g. For
the present study a fingerprint 100% Co-60 was used,
which means that each photon collected by the counter
was considered as emitted by a Co-60 nucleus. Detailed
information on the calibration of total-g counters can be
found in [11].

The second class of instruments, based on Germanium
technology, is used to perform g-ray spectrometry either
for low background or in-situ measurements. Several g
spectrometers, cooled either electrically orby liquidnitrogen,
are presently used at CERN. Their relative efficiency for the
Co-60 at 1.33MeV ranges from 30% up to 60%.

The specific activity of pure b-emitters is evaluated
via radiochemical analysis performed on samples. The
b-emitters are defined DTM [1] because their quantification
requires complex multi-stage techniques involving acid
digestion, separation, filtration trough resins or columns
and measurement. A complete description of the chemical
treatment of samples can be found in [12]. The description
of the liquid scintillation technique, used for the measure-
ment of the activity of DTMs is given in [10].

Common values of the detection limits for the DTMs
considered in thepresent studyare in the range 0.1–0.5 Bq/g.
2.5 Simulation codes

Actiwiz is a software developed at CERN to build a
radiological hazard assessment for an arbitrary material
exposed to the radiological environment of the accelerator
complex [13,14]. The application was developed to give



Table 1. Summary statistics of the specific activity of the
key nuclide Co-60 for campaign 1.

Number of drums 87
Mean weight per drum (kg) 98
Total weight (kg) 8522
Mean aCo-60 in Bq/g 0.044
SE of aCo-60 at k= 1 in Bq/g 0.004
Median aCo-60 in Bq/g 0.039
I.Q. range in Bq/g 0.026
Minimum aCo-60 in Bq/g 0.0046
Maximum aCo-60 in Bq/g 0.31

Table 2. Summary statistics of the specific activity of the
key nuclide Co-60 for campaign 2.

Number of drums 229
Mean weight per drum (kg) 97
Total weight (kg) 21,487.7
Mean aCo-60 in Bq/g 0.095
SE of aCo-60 at k= 1 in Bq/g 0.007
Median aCo-60 in Bq/g 0.059
I.Q. range in Bq/g 0.12
Minimum aCo-60 in Bq/g 0.0002
Maximum aCo-60 in Bq/g 0.58
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quick answers to general questions about radiological
hazards without the need for the user to implement complex
input files with a Monte Carlo code such as FLUKA [15,16].

The developers have run thousands of FLUKA
simulations [15,16] of nuclide inventories on different
materials for 42 typical hadronic spectra and for various
positions inside the accelerators’ tunnels. The results of
these simulations are stored as a database in Actiwiz [13,14]
and the user can run calculations on predefined simulated
scenarios.

The radiological environments available for calculations
represent all the accelerators in CERN’s complex and
include the Linac4 (160MeV), the PS Booster (1.4 GeV),
the PS (14 GeV/c), the SPS (450 GeV/c) and the LHC
(7 TeV).

Amongst the information obtained by running
Actiwiz [13,14], the interest for the present study lies
mainly in the establishment of expected radionuclide
inventories and calculation of theoretical scaling factors.
The radionuclide inventory is defined as the complete list
of radionuclides, together with their activity, produced by
activation of a given material.

For the present study, extensive Actiwiz [13,14] calcu-
lations were carried out using the chemical composition of
copper CuOFE from CERN’s material catalogue [17]. This
composition was exposed to typical CERN irradiation
scenarios. The traces present as weight fraction in copper
CuOFE are bismuth (0.1%), cadmium (0.01%), lead
(0.1%), mercury (0.01%), oxygen (0.05%), sulfur (0.18%)
and zinc (0.01%). The balance is copper. The results of the
calculations performed with these tools are presented in
Section 4.1.
3 Waste populations

We identified 2 populations of low-level radioactive copper
to test the methods introduced in Section 2. These
populations consist of copper cables dismantled from
CERN’s different installations. The cables’ core was
shredded and separated from the insulating layers with
the purpose of diminishing their heterogeneity. In the
following sections the 2 waste populations are indicated
as campaign 1 and campaign 2.
3.1 Campaign 1

A summary of the main information describing the waste
population of campaign 1 is given in Table 1. The shredded
copper is collected in drums which represent the primary
sampling units. Each drum was measured via total-g
counting and the summary statistics of the specific activity
of the key nuclide Co-60 are given. In the following sections
we use SE to indicate the standard error of the mean (which
is the ratio of the standard deviation and the square root of
the sample size) and I.Q. for the interquartile range
(difference between the 75th and 25th percentiles).

Thewaste population of campaign 1 consists of 87 drums.
Each secondary sample taken from a drum is considered
representative of the entire drum. This hypothesis can be
made because multiple samples were collected from each
drum, mixed and composited into a final representative
sample.

As further discussed in Section 4, we use the population
of campaign 1 to compare the specific activity of the DTM
Ni-63 from census data with estimations obtained applying
SRS, SYS and the bootstrap. The comparison is performed
on both specific and total activity of Ni-63.

3.2 Campaign 2

The preliminary information available for campaign 2 is
given in Table 2. As for campaign 1, each drum of campaign
2 was measured via total-g counting and a statistical
summary of the activity of Co-60 is given.

We applied multi-stage stratified sampling to select
samples for the estimation of Ni-63 content. As discussed in
Section 2.2.2, when this technique is used, we need a
preliminary estimation of the standard deviation to
calculate the number of samples per stratum, as in
equation (5). Within this frame, we used 13 authoritative
samples on activated high-dose copper cables andmeasured
the content of Ni-63 via radiochemical analysis. A summary
of the results is presented in Table 3.

Campaign 2 consists of 229 drums of shredded copper.
Each drum is a sampling unit from which we can
withdraw secondary samples. Multi-stage stratified sam-
pling techniques allows us to take into account the



Table 3. Summary statistics of Ni-63 via analysis of 13
authoritative samples.

Mean aNi-63 in Bq/g 1.28
SE of aNi-63 at k= 1 in Bq/g 0.71
Median aNi�63 in Bq/g 0.1
I.Q. range in Bq/g 0.44
Minimum aNi-63 in Bq/g <0.1
Maximum aNi-63 in Bq/g 8.82

Table 4. List of potential key nuclides for low-level
radioactive copper, type CuOFE [17].

Key nuclide Half-life (y) Main g-emitters

Na-22 2.603 1275 keV
Ti-44 58.9 1157 keV (from Sc-44)
Co-60 5.2711 1173 keV, 1332 keV
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potential variations of the activity of Ni-63 (within a
sampling unit) when no prior information is available on
the heterogeneity of a drum.
4 Simulations and experimental results

In this section, we present the results from Actiwiz
calculations and from themeasurements of Ni-63 performed
on the collected samples.

4.1 Activation studies

To consider a comprehensive amount of activation scenarios
we simulated the irradiation of copper CuOFE [17] on all
the scenarios available in Actiwiz, using 17 irradiation times
(from 0.25 up to 30 years) and 16 decay times (from 1 up to
30 years). The total number of scenarios studied is 11,424.

We used these calculations to establish the radionuclide
inventory for the 2 waste populations considered, to
identify potential key nuclides and to calculate preliminary,
theoretical scaling factors.

A non-comprehensive list of radionuclides obtained
from Actiwiz simulations includes H-3, C-14, Na-22, Ca-41,
Ti-44, Mn-54, Fe-55, Co-57, Co-60, Ni-63 and Zn-65.
Amongst these radionuclides, only a limited number respect
the criteria for being selected as a key nuclide, following
the indications of [18]. Some properties of the potential KNs
for the characterization of shredded copper cables are given
in Table 4.

Ti-44, whose main g lines (68 keV and 78 keV) are
difficult to use to estimate its activity (mainly due to
multiple interferences with naturally occurring radio-
nuclides) is quantified via measurement of its daughter’s
g-line, the Sc-44 (Eg= 1157 keV).

For the present study, we chose Co-60 as a key nuclide
when carrying out the calculations. This choice is justified
by the systematic detection of Co-60 in each single drum
and samples from both campaigns.
With respect to DTM nuclides, the present study
focuses on Ni-63. Measurements of H-3 and Fe-55 were also
performed but the value of their activity was often below
the detection limit and could not be used to evaluate scaling
factors.We illustrate the estimation of Ni-63 as an example.
The specific activity of other DTM nuclides can be
estimated either by the mean activity method or by
calculation.

Figure 1 shows the distributions of the logarithm of Ni-
63 and Co-60 activities and the distribution of the
logarithm of their ratios (theoretical scaling factors). The
histograms summarize the results obtained from the 11,424
irradiation scenarios considered.

As can be seen in Figure 1, the log-transformed activity
of both Ni-63 and Co-60 shows a normal distribution.
Moreover Ni-63 and Co-60, respectively DTM and KN,
have similar production mechanisms when activating
copper at hadron accelerators. In particular, nuclear
reactions of the type (n, p) or (g, pn) are responsible for
the production of Ni-63 from naturally occurring isotopes of
copper, such as Cu-63 and Cu-65. Similar reactions are
responsible for the production of Co-60 from copper via the
intermediate production of nickel isotopes. Spallation
mechanisms can also be involved.

The summary statistics of the theoretical SFs obtained
by calculation are given in Table 5. The dispersion (see
Eq. (4)) is a multiplicative term and therefore dimensionless.
4.2 Sampling and analysis of campaign 1

4.2.1 Sampling and results

The sampling strategy of the waste of campaign 1 repre-
sents the uncommon case of census because a sample per
drum was collected. Furthermore each sample is considered
as being representative of the entire drum because it was
collected by compositing multiple sub-samples, from
different layers of a given sampling unit, into the final
sample. We measured the specific activity of Ni-63 on
87 units and compared the results from census with the
results from SRS, SYS and bootstrap estimation (Boot).

Of the 87 samples collected, 23 have Ni-63 specific
activity below the detection limit. The calculations for the
average amount of Ni-63 were performed twice, with and
without values below the DLs. The relative error e
associated to each technique is calculated as follows:

e ¼ a � acensus
acensus

; ð7Þ

where a is the average specific activity of the Ni-63
calculated by SRS, SYS or Boot and acensus is the average
specific activity of Ni-63 from census data.

Table 6 summarizes the results obtained using the
different statistical sampling techniques. The first column
represents the sampling strategy used. For example, the
first line after census indicates that SRS was used and that
5% of the units were selected for sampling. This means that
4 samples were selected from the population that includes
values below the DL (5%, n= 4) and 3 samples were
selected from the population that does not include values
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Fig. 1. Distributions of the logarithms of Ni-63 and Co-60 specific activities and distribution of the logarithm of their ratio obtained by
simulating the irradiation of copper CuOFE [17] for commonCERN scenarios. The average content statistics geometric mean, mean and
median are represented together with the normal curve. The x-axes are in log-scale and the distributions are approximately log-normal.

Table 5. Summary statistics of the calculated, theoretical
scaling factors of Ni-63 and Co-60 for copper CuOFE.

Mean 4.57
SE (k= 1) 0.056
Median 2.2
I.Q. range 5.15
Geometric mean 2.22
Dispersion (k= 1) 3.49
Minimum 0.11
Maximum 74.03
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below the DL (5%, n= 3). For the bootstrap, n and N
represent respectively the number of values that are
considered for each sampling and the total number of
times that a resampling occurs.

For the population waste of campaign 1, correlation
between the activities of Ni-63 and Co-60 cannot be
established (the correlation coefficient is 0.27). The
estimation of the concentration of Ni-63 is performed using
the mean activity method (see Sect. 2.1). For SRS and SYS
methods, the specific activity of Ni-63 is calculated as the
average of samples measurements extracted from census
data. The total amount is calculated as the product of the
specific activity and the total weight of the batch. For the
bootstrap, the average activity of Ni-63 is estimated as the
average of the N sampling extractions (with repetition)
from census data, using n samples. The test is repeated for
n= 5, 10 and 20 and N= 250, 500 and 1000.

4.2.2 Analysis and discussion

The content of Ni-63 from census data is compared to the
average content estimated using SRS, SYS and bootstrap.

When SRS is considered, more than 25% of the
population must be sampled to achieve a relative error
below 10%. The maximum relative error found was 47%
(SRS of 10% of the population with values below DL). A
large sample is needed to obtain a content of Ni-63 close to
the true value.

SYS performed was efficient in predicting Ni-63 content.
The relative error for 9 out of 10 scenarios considered is below
14%. In 5 scenarios the relative error is below 5%.

For the present study, we considered 18 bootstrap
scenarios. We found that when the number of repetitions is
N= 250, only the case of n= 20 has a relative error below
6.5%. For resampling number N=500, the relative error is
systematically below 25%. In 10 out of 18 scenarios
considered, the relative error is below 10% and 3 of these
scenarios (obtainedusingN= 1000)have anull relative error.

The bootstrap technique can be considered as a
complementary way of calculating average content esti-
mators of the activity for DTM nuclides. The bootstrap
performs better when a robust sampling technique is used.

From Table 6 it seems that SYS performs better than
SRS. The relative errors are nevertheless obtained from a
specific random process and repeating the experiment with
different random numbers could generate different results.
The difference between the 2 sampling techniques dimin-
ishes when the number of samples increases. SYS is however
easier to implement in practice, especially when similar
sampling units must be sampled. This is the case for
example for drums with the same weight containing
particulate waste with similar chemical and physical
properties. For a limited-size batch of waste, with low-
heterogeneous characteristics, differences between SRS and
SYS sampling should not be expected.

The bootstrap predicts very well the true activity of Ni-
63, especially when data without values below DL is used.
Increasing the number of repetitions is also useful to lower
the relative error. This technique can be used to increase the
confidence of calculated average content estimators (such
as the mean and the median specific activity) for data
samples of medium or low size. We recall here that the
standard error of the bootstrapmean is simply the standard
deviation of the distribution of the bootstrap mean.



Table 6. Average and total content of Ni-63 calculated for the population of 87 drums using simple random sampling
(SRS), systematic sampling (SYS) and bootstrap (Boot). The relative error e is calculated twice, with and without values
below DL.

Sampling techniques
Population with DL Population without DL e

aNi-63
(Bq/g)

SE
(Bq/g)

Tot. Ni-63
(MBq)

aNi-63
(Bq/g)

SE
(Bq/g)

Tot. Ni-63
(MBq)

With
DL

Without
DL

Census 0.53 0.04 ∼4.52 0.65 0.05 ∼5.54 – –

SRS (5%, n= 4), (5%, n= 3) 0.705 0.07 ∼6 0.53 0.13 ∼5.37 33.02% �18.46%
SRS (10%, n= 9), (10%, n= 6) 0.28 0.05 ∼2.39 0.58 0.07 ∼5.28 �47.17% �10.77%
SRS (25%, n= 22), (25%, n= 16) 0.52 0.11 ∼4.43 0.69 0.12 ∼5.37 �1.9% 6.15%
SRS (50%, n= 44), (50%, n= 32) 0.5 0.04 ∼4.26 0.68 0.05 ∼5.88 �5.7% 4.61%
SYS (5%, n= 4), (5%, n= 3) 0.65 0.22 ∼5.54 0.66 0.13 ∼5.6 22.64% 1.54%
SYS (10%, n= 9), (10%, n= 6) 0.48 0.06 ∼4.09 0.65 0.08 ∼5.54 �9.43% 0
SYS (25%, n= 22), (25%, n= 16) 0.46 0.06 ∼3.92 0.57 0.04 ∼4.86 �13.21% �12.31%
SYS (50%, n= 44), (50%, n= 32) 0.56 0.07 ∼4.77 0.71 0.08 ∼6.05 5.66% 9.23%
Boot (n= 5, N= 250) 0.33 0.08 ∼2.81 0.51 0.07 ∼4.36 �37.74% �21.23%
Boot (n= 10, N= 250) 0.75 0.21 ∼6.39 0.6 0.05 ∼5.11 41.51% �7.69%
Boot (n= 20, N= 250) 0.54 0.08 ∼4.6 0.61 0.05 ∼5.2 1.89% �6.15%
Boot (n= 5, N= 500) 0.415 0.11 ∼3.54 0.56 0.22 ∼4.77 �21.7% �13.84%
Boot (n= 10, N= 500) 0.665 0.11 ∼5.67 0.64 0.04 ∼5.45 25.47% �1.54%
Boot (n= 20, N= 500) 0.52 0.06 ∼4.43 0.6 0.07 ∼5.11 �1.89% �7.69%
Boot (n= 5, N= 1000) 0.63 0.2 ∼5.39 0.65 0.13 ∼5.54 19.24% 0
Boot (n= 10, N= 1000) 0.4 0.04 ∼3.41 0.65 0.11 ∼5.54 �24.53% 0
Boot (n= 20, N= 1000) 0.53 0.07 ∼4.52 0.68 0.09 ∼5.79 0 4.61%
Min 0.28 – 2.39 0.51 – 4.36 0 0
Max 0.75 – 6.39 0.71 – 6.05 �47.17% �21.23%

Table 7. Stratification of the waste population for campaign 1 based on the total-g activity of Co-60. Nh represents the
number of drums in the stratum h.

aCo-60 in Bq/g Stratum Nh Weight (kg) Weight (%) Tot. activity (kBq) Tot. activity (%)

aCo-60� 0.01 1 49 4743.8 22.08 27.3 1.37
0.01< aCo-60� 0.1 2 99 9289 43.23 425.2 21.38
0.1< aCo-60� 0.3 3 68 6259.6 29.13 1036 52.09
aCo-60> 0.3 4 13 1195.3 5.56 500.4 25.16
Total – 229 21,487.7 100 1988.9 100

B. Zaffora et al.: EPJ Nuclear Sci. Technol. 2, 34 (2016) 7
4.3 Sampling and analysis of campaign 2

4.3.1 Sampling and results

For the waste population of campaign 2 we used 2-stage
stratified sampling in order to concentrate the sampling
effort on the strata of the population having higher total
g-activity. This means that the number of samples to collect
in a stratum h is calculated using as weight wh the total
g-activity in the stratum h (see Sect. 2.2.2). The details of the
stratified population are given in Table 7. The total number
of samples to collect (40) was fixed by project constraints.

An extra 24 samples were further collected and the
robustness of stratified sampling was tested.
As previously discussed in Sections 2.2.2 and 3.2, we
estimated the standarddeviation sh ofNi-63 in the stratum h,
via the results from13 authoritative samples.The 13 samples
were split into 4 strata, following their g-activity, and each sh
was calculated from the variance of Ni-63 activities in the
stratum h. We also estimated the standard deviation via the
bootstrap technique obtaining comparable values.

Using equation (5) we calculated the number of samples
nh to collect in each stratum h. The results are presented in
Table 8. Nh is the number of drums in the stratum h.

Once nh was calculated, we randomly identified the
drums from which to collect the samples. Due to the very
low total-g activity of stratum 1, no samples were collected



Table 8. Strata and number of samples per stratum
chosen for the characterization of the population of
campaign 2.

aCo-60 in Bq/g Stratum Nh nh

aCo-60� 0.01 1 49 –

0.01< aCo-60� 0.1 2 99 2
0.1< aCo-60� 0.3 3 68 4
aCo-60> 0.3 4 13 34

0.1 0.2 0.3 0.4 0.5 0.6

0
2

4
6

8

a(Co−60) in Bq/g

a(
N

i−
63

) 
in

 B
q/

g

a(Ni−63) = 10.3 × a(Co − 60) with R2 = 0.88

a(Ni−63) = −0.56 + 11.5 × a(Co − 60) with R2 = 0.59

Fig. 2. Scatterplot of Ni-63 vs. Co-60. The regression lines with
and without intercept are represented in black and red.

Table 9. Summary statistics of the ratio Ni-63/Co-60.

Mean 9.96
SE (k= 1) 0.7
Median 11
I.Q. range 5.86
Geom. mean 8.76
Dispersion (k= 1) 1.75
Minimum 2.85
Maximum 19.16
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in that sub-population (according to Eq. (5)). In strata 2
and 3, we collected 2 and 4 samples respectively. For
stratum 4 the number of samples nh is above the number of
sampling units Nh. For this stratum we collected multiple
samples from each drum. The samples were chosen
randomly according to the rules of 2-stage sampling. In
particular, we recall here that the copper waste is in the
format of particulate material and that from a single drum
we can identify up to 5000 different secondary samples (the
mass of a sample for the radiochemical determination of Ni-
63 is in the range 20–70 g).

Using equation (6) we calculated the stratified average
specific activity astrNi�63 ¼ 0:98Bq/g (the standard error for
k= 1 is 0.095 Bq/g) and derived the total activity of Ni-63.
Table 10. Summary of average content of Ni-63 obtained
confidence interval for a standard error at k= 1.

Method Authoritative Stratified

Mean aNi-63 in Bq/g 1.28 0.98
SE (k= 1) in Bq/g 0.71 0.095
Total Ni-63 in MBq ∼27.5 ∼21.1
C.I. total Ni-63 in MBq [12.3, 42.8] [19.0, 23.
Once the samples were collected, we tested the
applicability of both the linear model and the scaling
factor to the relationship of Ni-63 and Co-60 activities
(see Sect. 2.1).

The bivariate dispersion diagram of the pair Ni-63/Co-
60 is shown in Figure 2. Two linear models were tested. In
black is the regression line without intercept (b0 = 0 in
Eq. (2)). In red the regression line obtained with intercept.
The amount of explained variance is 88% and 59% for the
models with and without intercept respectively.

The estimation of the average and total activity of Ni-63
was also performed calculating the scaling factors as the
mean and the geometric mean (see Eq. (3)) of the scaling
factors for each pair Ni-63/Co-60, according to
equation (1). Summary statistics of the scaling factor are
given in Table 9. Table 10 shows the comparison of Ni-63
activities calculated using the different methods.

4.3.2 Analysis and discussion

Table 10 compares the values of specific and total activity of
Ni-63 using 5 different methods. These methods can be
separated into 2 classes:

–

a

1]
Authoritative and stratified sampling allow us to
estimate an average content of Ni-63, which is identical
for each single package of the batch.
–
 Geometric SF, mean SF and linear model allow us to
estimate the specific activity of Ni-63 in each package,
scaled by the activity of Co-60.

Authoritative and stratified sampling (as applied in the
present study) are conservative methods because they tend
to overestimate the concentration of Ni-63 either via
measurements of high-dose judgemental samples (authori-
tative case) or sampling in the strata with higher Co-60
total-activity (stratified sampling).
pplying different estimation techniques. C.I. stands for

Geom. mean
SF (8.76)

Mean
SF (9.96)

Linear model
(b0 = 0)

0.83 0.94 0.97
0.063 0.072 0.06
∼17.4 ∼19.8 ∼20.5
[16.5, 19.2] [18.7, 21.8] [19.3, 21.7]



Table 11. Summary statistics of Ni-63 activity in 24
random samples from the left-over copper population.

With DL Without DL

Mean aNi-63 in Bq/g 0.57 0.75
SE (k= 1) in Bq/g 0.11 1.95
Median activity in Bq/g 0.32 0.54
I.Q. range in Bq/g 0.73 0.79
Minimum in Bq/g <0.082 0.19
Maximum in Bq/g 1.95 1.95
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The use of the geometric SF, the mean SF or the linear
model depends on the distribution of the ratios of Ni-63/Co-
60 activity. As a general rule, geometric SF should be
preferred for right-skewed distributions and mean SF for
approximately normal distributions.

With the exception of authoritative sampling, the
methods suggested to estimate the activity of Ni-63 give a
concentration which is within 1 standard deviation from the
mean calculated over the 5 estimations. The concentration
obtained from authoritative sampling lies within 2 standard
deviations of the mean. A similar conclusion is reached
using medians and inter-quartile ranges. The maximum
relative error of Ni-63 concentration is found between the
estimations from authoritative sampling and geometric
SF (35%). Excluding authoritative sampling, the relative
errors calculated between the considered methods is below
16% and, if the standard error is calculated at k= 2, the
confidence intervals include all the central tendency
estimators of Ni-63.

Due to the variability of the authoritative samples the
SE is very high in this last case. The confidence interval of
the total activity of Ni-63 from authoritative sampling
includes the confidence intervals obtained by applying any
other of the methods considered here.

Judgemental sampling is a powerful method for DTM
estimation when statistical sampling cannot be performed.
Sampling with a non-probabilistic approach can be fast,
cheap and a good indicator of extreme values. In the present
study, the Ni-63 concentration estimated by authoritative
sampling can be used as a conservative content estimator.
If conservative values (such as the one obtained when
sampling high dose rate samples) are available, it is possible
to compare them with limits from regulations for waste
elimination. A common practice in waste characterization
consists of comparing extreme values with limits fromwaste
management authorities. If extreme values respect these
limits, it can be inferred that the entire population respects
the limits.

The results obtained from stratified sampling show that
the content of Ni-63 is very close to the concentrations
obtained applying scaling factors and regression. The
present study suggests that, when only a limited number of
samples can be withdrawn from a population, it is possible
to concentrate the sampling effort on the strata of the
population with higher variability and activity. This
technique also allows the selection of samples that can be
used for scaling factor calculations.

Finally, to test the validity of the methods discussed, 24
complementary random samples of copper were collected
on the left-over population. Summary statistics of Ni-63
activity from quality assurance samples are given in
Table 11. The statistics of interest are calculated twice,
with and without values below detection limits.

Amongst the 24 samples collected, 7 have a specific
activity of Ni-63 below the detection limit (∼0.2 Bq/g). The
average concentrations of Ni-63 from test samples are below
the activity of Ni-63 estimated by using both probabilistic
and non-probabilistic techniques. This result was expected
because the left-over population is characterized by a low g
activity.
Stratification and sampling in the strata of high activity
are robust techniques to estimate mean activity values of
DTMs and to avoid the collection of samples which have an
activity below the detection limit. We recall here that 2.5%
of the stratified samples were below DL and that ∼30% of
the samples withdrawn from the left-over population were
below the DL.

4.4 Comparison of calculations and experiments

The summary statistics of the theoretical scaling factors
obtained by Actiwiz calculation are shown in Table 5. The
calculations can be compared with the experimental SFs
from campaign 2. The estimated values from calculations
are below the experimental scaling factors. This is mainly
due to the large number of scenarios considered for the
calculations. These scenarios include decay times from 1 up
to 30 years.

When the decay time increases the ratio of the Ni-63/
Co-60 activities also increases. This is a consequence of the
long half-life of Ni-63 (∼100 years) compared to the half-life
of Co-60. For instance, after a 10 year decay time ∼25%
activity of Co-60 is left whilst ∼93% activity of Ni-63 is still
present. This is equivalent to a scaling factor ∼3.6 times
bigger.

Calculating mean scaling factors for decay times equal
or above 10 and 20 years we obtain respectively
SFTc ≥ 10 y ¼ 6:33 and SFTc ≥ 20 y ¼ 9:61. The result obtained
for decay times above or equal to 20 years are in very good
agreement with the experimental results from campaign 2.
All other factors being equal, it is possible to use simulations
to identify potential decay time for historical waste by
comparing theoretical and experimental scaling factors.

Theoretical studies, such as the ones proposed in the
present study, can be used to predict the order of magnitude
of the confidence interval of scaling factors and to quantify
average statistics of theoretical scaling factors.
5 Conclusion

In the present study, we tested and compared different
techniques to sample historical waste. These methods were
used to estimate the concentration of Ni-63 in copper after
studying the correlation between a key nuclide and the
DTM nuclide of interest. To estimate the specific activity of
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Ni-63 we used linear regression, the scaling factor method
and the so-called “mean activity method”. Among the
statistical techniques available to sample materials, we
discussed simple randomand systematic sampling, census, 2-
stage stratified and authoritative sampling and we intro-
duced the use of the bootstrap for DTM activity estimation.

We used as an example 2 waste populations of copper
from cables activated at CERN. The waste populations are
respectively called campaign 1 and campaign 2.

For campaign 1, we chose simple random and
systematic sampling when selecting samples. The boot-
strap, which is a resampling technique with repetition, is
used to estimate distributions of the concentration of Ni-63
around an average value. The Ni-63 activities obtained
were compared with census data.

The present study results suggest that the bootstrap is a
robust tool to estimate average activity of DTM nuclides
from samples and that this estimation is more precise when
the number of repetition and samples increases. It is also
found that the estimation of the activity of Ni-63 is more
precise when values below the detection limit are excluded.
The results of the simulations performed are in very good
agreement with results from census data. When the number
of resampling is above 500, the relative error of Ni-63
concentration from bootstrap with respect to census data is
below 25%.

Systematic sampling performs better when estimating
Ni-63 with respect to random sampling. However this result
cannot be generalized since it is due to a specific set of
random numbers and the use of different seeds can generate
a different score. The bootstrap can be used as a
complement to these strategies since it can easily evaluate
the distribution of statistics instead of simple statistics such
as the mean or the median. In practice, we can collect
samples using random or systematic sampling and process
the results using the bootstrap.

For practical reasons we suggest the use of systematic
sampling because it is easy to implement in an industrial
process in which waste packages are routinely produced.
Care must be taken however because systematic sampling
depends on the file order and can be affected by a periodic or
repetitive structure of the waste flow.

A correlation between the activities of Ni-63 and Co-60
was not found for campaign 1. The mean activity method
was applied to estimate the content of Ni-63 in the batch.
This method consists of calculating the average activity
from all the samples collected – including values below
detection limits – and attributing the average value of the
DTM to each single package of the batch.

For the population of campaign 2 samples are taken
using 2-stage stratified sampling. This sampling method
allows us to concentrate the sampling effort on the strata
were the g-activity is higher. We used authoritative
sampling to estimate preliminary standard deviations of
the activities on the strata and the Neyman allocation to
identify primary units for sampling. A 2-stage sampling was
chosen due to the unknown heterogeneity of the activity on
shredded copper.

For campaign 2, the activities of Ni-63 and Co-60 are
correlated. We applied linear regression and the scaling
factor method to estimate the content of Ni-63 in each drum
of the population. The relative error affecting the average
specific activity of Ni-63, calculated via stratified sampling,
linear regression and the scaling factor method – either
geometric or mean scaling factor – is below 16%.

The choice among mean and geometric mean scaling
factor depends on the experimental distribution of the SF.
For symmetric unimodal distributions a large difference
from the 2 calculations is not expected.

We also calculated the average specific activity of Ni-63
from authoritative, high-dose, samples. As expected, the
activity so calculated is biased towards higher values since
the samples were chosen to be conservative in terms of g
activity. Carefully chosen, judgemental samples can be
used to estimate higher bounds of activities for a batch of
waste.

Finally, we compared the results from theoretical with
experimental scaling factors. The results obtained with
both methods are within one order of magnitude and can be
improved if we consider realistic decay times for a given
campaign. We showed that, for the waste family of
campaign 2, decay times of 20 years or more explain the
difference between simulations and experiments.

The present study shows how various existing sampling
methods can be applied to sample historical waste produced
at CERN. Each technique should be adapted to the needs of
the waste producer. The sampling techniques introduced,
combined with linear regression, scaling factors and mean
activity methods are a robust set of tools that can be used to
characterize historical waste in research centres and nuclear
installations.

The authors wish to thank Bertrand Cellerier, Nick Walter and
Thijs Wijnands for the sample collection and the CERN HSE-RP
Group for its support.
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