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for larger lattice volumes where higher-order integrators demonstrate greater efficiency. Numeri-
cal results demonstrate the superior efficiency of the proposed integrators compared to commonly
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that the advantages of the Hessian-free framework will become even more pronounced in nested
integration approaches and for smaller fermion masses, where the numerical stability properties
of the integrators become increasingly important.
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1. Introduction

1.1 The Hybrid Monte Carlo algorithm

A commonly employed method for simulating quantum field theories on the lattice is the Hybrid
Monte Carlo (HMC) algorithm [1]. In the molecular dynamics (MD) step of the HMC algorithm, a
separable Hamiltonian system H(𝑝, 𝑞) = T (𝑝) +S(𝑞) must be solved employing a time-reversible
and volume-preserving geometric numerical integration scheme to satisfy the fundamental detailed
balance condition. Considering gauge field simulations in lattice QCD on a four-dimensional lattice
of size 𝑉 = 𝑇 × 𝐿3 with lattice spacing 𝑎, the Hamiltonian is defined as

H([𝑃], [𝑈]) = T ([𝑃]) + S([𝑈]), (1)

where T ([𝑃]) = 1
2
∑

𝑥,𝜇 tr(𝑃2
𝑥,𝜇) represents the kinetic energy and S([𝑈]) denotes the action.

Here, the links 𝑈𝑥,𝜇, connecting the sites 𝑥 and 𝑥 + 𝑎�̂�, are elements of the special unitary group
SU(3), whereas the scaled momenta 𝑖𝑃𝑥,𝜇 are elements of the corresponding Lie algebra su(3)
of traceless and anti-Hermitian matrices. Any element 𝑃 can be expressed as 𝑃 = 𝑝𝑖𝑇𝑖 where 𝑇𝑖

denotes the generators of the Lie algebra. The linear differential operators 𝒆𝑖 act on the Lie group
elements 𝑈 as 𝒆𝑖𝑈 = −𝑇𝑖𝑈. They are gauge-covariant generalizations of the vector fields 𝜕/𝜕𝑞𝑖 .
Consequently, the solution to the Hamiltonian system (1) can be formally expressed through the
𝑡-flow

exp(𝑡 (Â + B̂)), with Â = 𝑝𝑖𝒆𝑖 and B̂ = −𝒆𝑖 (S)
𝜕

𝜕𝑝𝑖
. (2)

1.2 Splitting methods

Thanks to the separability of the Hamiltonian, splitting methods [2, 3] enable the construction
of explicit geometric numerical integration schemes satisfying the detailed balance condition.
Particularly, splitting methods compute a numerical approximation to (2) by composing evaluations
of the flows exp(𝑡Â) and exp(𝑡B̂) that can be computed exactly:

exp(𝑎 𝑗ℎÂ)(𝑃,𝑈) = (𝑃, exp(−𝑎 𝑗ℎ𝑃)𝑈) (link update), (3)
exp(𝑏 𝑗ℎB̂)(𝑃,𝑈) = (𝑃 − 𝑏 𝑗ℎ𝒆𝑖 (S)𝑇 𝑖 ,𝑈) (momentum update). (4)

This leads to numerical integration schemes of the form

Φℎ = e𝑏𝑠ℎB̂e𝑎𝑠ℎÂ · · · e𝑏1ℎB̂e𝑎1ℎÂ . (5)

As the momentum and link updates both define symplectic maps, the overall splitting method is
symplectic (and thus volume-preserving) as a composition of symplectic maps. Moreover, if the
composition is self-adjoint, the method is also time-reversible.

1.3 Force-gradient integrators

Given that the kinetic energy T is only quadratic, force-gradient integrators [4–7] represent
a promising extension of splitting methods by incorporating a specific commutator, known as the
force-gradient term,

Ĉ = [B̂, [Â, B̂]] = 2B̂ÂB̂ = 2𝒆 𝑗 (S)𝒆 𝑗𝒆𝑖 (S)
𝜕

𝜕𝑝𝑖
, (6)

2



Hessian-free force-gradient integrators Kevin Schäfers

into the computational process. The force-gradient term is solely dependent on the links, enabling
its inclusion within the momentum updates (4). This results in a force-gradient step

exp(𝑏 𝑗ℎB̂ + 𝑐 𝑗ℎ
3Ĉ) (𝑃,𝑈) = (𝑃 − 𝑏 𝑗ℎ𝒆𝑖 (S)𝑇 𝑖 + 2𝑐 𝑗ℎ

3𝒆 𝑗 (S)𝒆 𝑗𝒆𝑖 (S)𝑇 𝑖 ,𝑈). (7)

As the force-gradient step can be considered a common momentum update applied to a modified
Hamiltonian system with perturbed action, it still defines a symplectic map. A comprehensive
classification of force-gradient integrators, as well as non-gradient schemes (splitting methods),
with up to eleven stages has been presented in [4], highlighting the efficiency of the force-gradient
approach. However, the force-gradient approach entails certain drawbacks. Firstly, evaluating the
force-gradient term (6) is computationally more expensive than evaluating the force −𝒆𝑖 (S)𝑇 𝑖 .
Secondly, it requires the implementation of second-order derivatives contracted with first-order
ones, which becomes non-trivial to implement, making the force-gradient approach impractical.

2. Hessian-free force-gradient integrators

One can overcome the aforementioned drawbacks of the force-gradient approach by approx-
imating the force-gradient step (7), as proposed in [8] for enhancing the Strang splitting [9], and
initially applied in the context of lattice QCD for a particular force-gradient integrator in [10]. For
a general force-gradient integrator, the approximation to the force-gradient step (7) reads [11]

exp
(
𝑏 𝑗ℎB̂ + 𝑐 𝑗ℎ

3Ĉ
)
= exp

(
−𝑏 𝑗ℎ𝒆𝑖 (S)

𝜕

𝜕𝑝𝑖
+ 2𝑐 𝑗ℎ

3𝒆 𝑗 (S)𝒆 𝑗𝒆𝑖 (S)
𝜕

𝜕𝑝𝑖

)
,

= exp

(
−𝑏 𝑗ℎ

(
Id −

2𝑐 𝑗ℎ
2

𝑏 𝑗

𝒆 𝑗 (S)𝒆 𝑗

)
𝒆𝑖 (S)

𝜕

𝜕𝑝𝑖

)
,

= exp

(
−𝑏 𝑗ℎ exp

(
−

2𝑐 𝑗ℎ
2

𝑏 𝑗

𝐹 𝑗𝒆 𝑗

)
𝒆𝑖 (S)

𝜕

𝜕𝑝𝑖

)
+ O(ℎ5),

(8)

where 𝐹 𝑗𝒆 𝑗 = 𝒆 𝑗 (S)(𝑈)𝒆 𝑗 is regarded as a frozen vector field, i.e., 𝒆 𝑗 acting on 𝐹 𝑗 is defined to be
zero. Since

exp
(
− 2𝑐 𝑗ℎ

2

𝑏 𝑗
𝐹 𝑗𝒆 𝑗

)
𝒆𝑖 (S)(𝑈) = 𝒆𝑖 (S)

(
exp

(
−2𝑐 𝑗ℎ

2

𝑏 𝑗
𝐹 𝑗𝑇𝑗

)
𝑈

)
,

this approximated force-gradient step can be computed via the two-step procedure:

1. Compute a temporary link update via 𝑈′ = exp
(
− 2𝑐 𝑗ℎ

2

𝑏 𝑗
𝐹 𝑗𝑇𝑗

)
𝑈;

2. Compute a momentum update 𝑃 − 𝑏 𝑗ℎ𝒆𝑖 (S)(𝑈′)𝑇 𝑖 .

Consequently, the approximation replaces the force-gradient term with a second force evaluation,
thereby reducing computational cost and rendering the framework accessible to existing software
packages. By replacing the force-gradient steps (7) with the approximation (8) that we denote by

exp(𝑏 𝑗ℎD̂(ℎ, 𝑏 𝑗 , 𝑐 𝑗)), (9)

we obtain a new class of Hessian-free force-gradient integrators [11] that can be expressed as

Φℎ = e𝑏𝑠ℎD̂ (ℎ,𝑏𝑠 ,𝑐𝑠 )e𝑎𝑠ℎÂ · · · e𝑏1ℎD̂ (ℎ,𝑏1,𝑐1 )e𝑎1ℎÂ . (10)

In summary, Hessian-free force-gradient integrators utilize the force-gradient approach to enhance
the computational efficiency without necessitating the Hessian 𝒆 𝑗𝒆𝑖 (S) of the action.
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2.1 Order conditions

Similar to conventional splitting methods and force-gradient integrators, the order conditions
are derived using the Baker–Campbell–Hausdorff (BCH) formula. Due to the approximation of
the force-gradient step, additional order conditions are obtained. Since the approximation to the
force-gradient step introduces an error of order O(ℎ5), the order conditions of Hessian-free and
exact force-gradient integrators up to order 𝑝 = 4 are identical (for the order conditions, see [4]). In
addition to the four order-6 conditions 𝛾𝑖 = 0 (𝑖 = 1, 2, 3, 4) stated in [4], we obtain a fifth condition
𝛾5 = 0 stated in [11]. For order 𝑝 = 8, the ten conditions 𝜁𝑖 = 0 (𝑖 = 1, . . . , 10) of force-gradient
integrators [4] are extended by three additional conditions 𝜁𝑖 = 0 (𝑖 = 11, 12, 13) [11].

2.2 Geometric properties

One disadvantage of the Hessian-free variants is their loss of symplecticity as the approximated
force-gradient steps are no longer symplectic [11, 12]. Since the approximated force-gradient steps
(9) are shears, and a composition of shears is volume-preserving, Hessian-free force-gradient inte-
grators remain volume-preserving. Consequently, they still satisfy the detailed balance condition,
provided that the composition of the flows is self-adjoint.

Good energy conservation is crucial to ensure a high acceptance probability in the HMC
algorithm. The preservation of a nearby shadow Hamiltonian [13] guarantees good energy con-
servation. However, due to the absence of symplecticity, Hessian-free force-gradient integrators
no longer preserve a nearby shadow Hamiltonian. Through a backward error analysis, it has been
shown that a Hessian-free force-gradient integrator of order 𝑝 preserves the shadow Hamiltonian
that is preserved by the underlying force-gradient integrator, along with a (in general linear) energy
drift of size O(𝜏ℎmax{4, 𝑝}) using the step size ℎ over a trajectory of length 𝜏 [11]. This energy drift
may pose a challenge for exponentially long-time simulations. In the HMC algorithm, however, 𝜏
is typically small, making the energy drift negligible and not observable in numerical tests.

3. Derivation of efficient integrators

Given a particular decomposition algorithm with a fixed number of stages, one can determine
the maximum possible convergence order 𝑝. For many variants, this results in a family of solutions
where certain integrator coefficients remain as degrees of freedom. A crucial aspect of deriving
efficient numerical integration schemes involves appropriately selecting the degrees of freedom.

3.1 Minimum-error methods

One potential approach to minimize the principal error term is to set all brackets equal to
one, assuming that all error terms in the leading error term contribute equally. Subsequently, the
norm of the leading error coefficients is minimized [4, 14]. An approach that also addresses the
computational cost is provided by the efficiency measure [4]

Eff (𝑝) =
1

(𝑛 𝑓 + 𝑐 · 𝑛𝑔) 𝑝 · Err𝑝+1
. (11)

Here, 𝑛 𝑓 and 𝑛𝑔 denote the number of force and force-gradient evaluations per time step, respectively,
and 𝑐 a constant that mirrors the factor in computational cost of a force-gradient evaluation compared
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to a force evaluation. Moreover, 𝑝 denotes the convergence order of the method and Err𝑝+1 some
norm of the leading error terms. For the investigations of force-gradient integrators [4], it was
assumed that a force-gradient evaluation is twice as expensive as a force evaluation (𝑐 = 2) and
for Err𝑝+1, the usual Euclidean norm of the leading error coefficients has been employed. In the
Hessian-free framework, force-gradient evaluations are replaced by another force evaluation (𝑐 = 1)
and the norm has been extended by the additional error terms. For further details, see [11].

The efficiency measure emerges as a valuable heuristic in identifying promising integrators
within the family of decomposition algorithms. However, in practical computations, it is observed
that the integrator with the highest efficiency measure may not necessarily be the most efficient in-
tegrator. This observation can be attributed to two primary reasons: Firstly, the norm of the leading
error coefficients Err𝑝+1 assumes that all error terms are equally significant. Secondly, decomposi-
tion algorithms are only conditionally stable. In the region of interest where 0.01 ≤ 𝜎2(Δ𝐻) ≤ 1,
the integrators frequently approach the boundary of their stability domain. A highly accurate inte-
grator may become impractical in practice if its stability domain is too small, especially for smaller
fermion masses. Therefore, an investigation of the numerical stability is paramount in evaluating
the performance of the integrators.

3.2 Linear stability analysis

For splitting methods, a linear stability analysis is already available [15] that considers the
harmonic oscillator ¥𝑦 = −𝜔2𝑦, 𝜔 > 0, as a test problem. Decomposition algorithms typically
will be unstable for |ℎ𝜔| > 𝑧∗, where the parameter 𝑧∗ denotes the stability threshold of the
integrator. Relying on the hypothesis for interacting field theories [16, 17], the high frequency
modes of an asymptotically free field theory can be considered as a collection of weakly coupled
oscillator modes. Consequently, the instability described in the harmonic oscillator will also be
present for interacting field theories. Particularly, the onset of instability will be caused by the
mode with highest frequency 𝜔max. This motivates the extension of the linear stability analysis to
(Hessian-free) force-gradient integrators. As the harmonic oscillator is a linear ODE system, force-
gradient integrators and their Hessian-free variants are equivalent, i.e., their linear stability analysis
coincides. By extending the linear stability analysis from [15] to force-gradient integrators, one is
able to compute the stability threshold 𝑧∗ for any force-gradient integrator so that the integrator is
stable in the stability interval (−𝑧∗, 𝑧∗). To incorporate the computational cost of the integrators, it
is worth considering the relative stability threshold 𝑧∗/(𝑛 𝑓 +𝑐 ·𝑛𝑔) rather than the stability threshold
itself. Details on determining 𝑧∗ can be found in [15] for splitting methods and are currently under
preparation for (Hessian-free) force-gradient integrators [18].

4. Selection of promising integrators

In general, maximizing the efficiency measure and maximizing the stability threshold will
result in different integrator coefficients. Initial observations emphasize that the efficiency measure
Eff (𝑝) is way more sensitive to changes in the integrator coefficients than the stability threshold 𝑧∗.
As an example, Fig. 1 shows results for the Hessian-free force-gradient integrator ABADABA

Φℎ = e𝑎1ℎÂe𝑏1ℎB̂e(0.5−𝑎1 )ℎÂe(1−2𝑏1 )ℎD̂ (ℎ,1−2𝑏1,𝑐2 )e(0.5−𝑎1 )ℎÂe𝑏1ℎB̂e𝑎1ℎÂ

5
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with integrator coefficients

𝑎1 =
1
2
± 1
√

24𝑏1
, 𝑐2 =

1
12

(
1 ±

√︁
6𝑏1(1 − 𝑏1)

)
,

which is of convergence order 𝑝 = 4 with one degree of freedom 𝑏1 > 0. The results suggest that
preference should be given to the negative sign in the formulas for 𝑎1 and 𝑐2. When maximizing
the efficiency measure, one still obtains 67% of the maximum possible value for 𝑧∗/(𝑛 𝑓 + 𝑛𝑔). In
contrast, maximizing 𝑧∗/(𝑛 𝑓 + 𝑛𝑔) yields only 3.9% of the maximum possible value for Eff (𝑝) .
Instead, it is more promising to choose 𝑏1 = 1/6 resulting in the integrator BADAB that demands
one force evaluation less per time step, as can be seen by the peak in Fig. 1. We observe similar
results for other variants of decomposition algorithms. Hence we propose to keep maximizing the
efficiency measure and then selecting those variants that have a reasonably large stability domain.
In Table 1, we summarize Hessian-free force-gradient integrators and non-gradient algorithms of
order 𝑝 = 4 that are not dominated1 by other variants.
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Figure 1: Analysis of the Hessian-free force-gradient integrator ABADABA in terms of the efficiency
measure Eff (𝑝) and the relative stability threshold 𝑧∗/(𝑛 𝑓 + 𝑛𝑔).

ID 𝑛 𝑓 𝑛𝑔 𝑧∗ 𝑧∗/(𝑛 𝑓 + 𝑛𝑔) Err𝑝+1 Eff (𝑝)

BADAB 2 1 3.4641 1.1547 0.000728 17.0
ABADABA 3 1 3.1377 0.7844 0.0000149 26.2
BABABABABAB 5 0 3.1421 0.6284 0.0000270 59.3
BADABADAB 4 2 3.1457 0.5243 0.0000105 73.5
ABADABADABA 5 2 3.1239 0.4463 0.00000445 93.6

Table 1: Self-adjoint Hessian-free force-gradient integrators and non-gradient schemes (with maximized
efficiency measure) of order 𝑝 = 4 and with up to eleven stages that are not dominated by other variants. For
the definitions and integrator coefficients of the respective schemes, see [11].

1An integrator is dominated, if another variant has a higher value for both the efficiency measure and the relative
stability threshold.
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5. Numerical Results

As an initial test of Hessian-free force-gradient integrators in lattice QCD simulations, we
consider an ensemble used in [19] generated with two dynamical non-perturbatively O(𝑎) improved
Wilson quarks at a mass equal to half of the physical charm quark. The fermion part is decomposed
using even-odd reduction in combination with one Hasenbusch mass preconditioning term [20] with
shift parameter 𝜇. For a more detailed discussion, we refer to [21]. On a lattice of size 48×243 with
gauge coupling 𝛽 = 5.3, hopping parameter 𝜅 = 0.1327, we performed numerical simulations using
an extended version of openQCD v2.42 by putting all forces on a single time scale of integration.
Particularly, it turns out that at these lattice parameters, the use of nested integration techniques [22]
employing a smaller step size to the gauge part does not result in significant improvements in the
acceptance probability. Starting from a thermalized configuration, we computed 100 trajectories
of length 𝜏 = 2 for varying step sizes ℎ = 𝜏/𝑁 (𝑁 ∈ N) for all integrators from Tab. 1. The
results are depicted in Fig. 2, demonstrating that the integrator ABADABA allows for the most
efficient computational process, despite its lower value for the efficiency measure. This highlights
the importance of the relative stability threshold already for larger fermion masses.
In a second simulation with smaller trajectory length 𝜏 = 0.1, resulting in smaller time steps
ℎ = 𝜏/𝑁 , the integrators are no longer affected by numerical instabilities, as depicted in Fig. 3. In
this "scaling phase", the performance of the integrators perfectly matches the efficiency measure.
For the best-performing Hessian-free force-gradient integrator ABADABA and the best-performing
non-gradient scheme BABABABABAB, we tuned the step size to achieve an acceptance rate of
𝑃acc ≥ 90%, resulting in ℎ = 0.2 for both integrators, and computed 2000 trajectories of length
𝜏 = 2. The results for both setups are summarized in Tab. 2, including the cost measure cost =

(𝑛 𝑓 +𝑛𝑔) ·𝑁/(𝑃acc ·𝜏). On the one hand, we obtain similar estimates of the integrated autocorrelation
times of the topological charge 𝑄0 measured at Wilson flow time 𝑡0 [23], and the Wilson flow
reference scale 𝑡0/𝑎2, despite the lower acceptance rate of ABADABA. On the other hand, the cost
measure indicates that the Hessian-free force-gradient integrator only demands approximately 84%
of the computational cost compared to the best-performing non-gradient scheme.
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BABABABABAB
BADABADAB
ABADABADABA

Figure 2: Variance of Δ𝐻 vs. number of force evaluations per trajectory 𝑛 𝑓 ·𝑁 for all integrators from Tab. 1.
Here, the simulations have been performed with trajectory length 𝜏 = 2.

2https://github.com/KevinSchaefers/openQCD_force-gradient, based on openQCD v2.4.
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Figure 3: Variance of Δ𝐻 vs. number of force evaluations per trajectory 𝑛 𝑓 ·𝑁 for all integrators from Tab. 1.
Here, the simulations have been performed with trajectory length 𝜏 = 0.1.

ID (𝑛 𝑓 + 𝑛𝑔) · 𝑁 𝑃acc 𝜏int(𝑡0) [MDU] 𝜏int(𝑄0) [MDU] cost

BABABABABAB 50 97.5% 37.40(12.66) 22.91(6.52) 25.64
ABADABA 40 92.3% 28.15(9.24) 22.05(6.31) 21.67

Table 2: Comparison of two tuned setups based on 2000 trajectories of length 𝜏 = 2. Both setups use 10 time
steps per trajectory (ℎ = 0.2). The results contain the number of force evaluations per trajectory (𝑛 𝑓 +𝑛𝑔) ·𝑁 ,
the acceptance rate 𝑃acc, estimates for the integrated autocorrelation times 𝜏int (𝑡0) and 𝜏int (𝑄0) in molecular
dynamics units (MDUs), and an evaluation of the cost measure.

6. Conclusion

Hessian-free force-gradient integrators constitute a promising choice as integrators for perform-
ing lattice QCD simulations. They utilize the force-gradient approach to enhance the computational
efficiency without necessitating the Hessian of the action that is part of the force-gradient term.
As volume-preserving and time-reversible integrators, these integrators satisfy the detailed balance
condition. The approximation of the force-gradient step results in additional order conditions and
the loss of symplecticity. Numerical results demonstrate that neither the additional error terms nor
the lack of symplecticity have a significant impact on the energy conservation of the integrator.
As a conclusion, the Hessian-free framework provides more efficient integrators and can be easily
integrated into existing software packages.
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