Recent Electroweak Measurements with ATLAS

On behalf of the ATLAS Collaboration

XXXI Cracow Epiphany Conference on the recent LHC Results 13-17 January 2025

Brigitte Vachon McGill University

The Electroweak Theory

 Rich phenomenology arises from the non-Abelian gauge group structure and spontaneous EW symmetry breaking in the Standard Model

 $SU(2)_{\rm I} \times U(1)_{\rm Y}$ —

from: g, g', v, λ

 $\rho = \frac{m_W^2}{m_7^2 cos^2 \theta_W}$

- Four input parameters: e.g. α_{OED} , G_F , m_Z , m_H
- LHC offers unique environment to test EW theory!

$$\rightarrow W^+, W^-, Z^0, \gamma$$

Mass of electroweak gauge bosons and interactions strength predicted precisely

Electroweak Tests at LHC

Precision Frontier

Radiation corrections modify propagators and decay vertices

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} (1 + \Delta r)$$

 Sensitivity to a wide range of physics through quantum loops

Measurements of SM parameters

Energy Frontier

from Nucl. Phys. B525 (1998) 27-50

- Delicate gauge cancellations at high energy
- Enhanced sensitivity to non-SM contributions

Investigation of EW gauge structure

W Boson Mass and Width

Eur. Phys. J. C 84 (2024) 1309, arXiv:2403.15085

- Re-analysis of 2011 data
 - Favourable experimental environment for m_W measurement
 - Consolidate earlier ATLAS results, in the perspective of the latest measurement by CDF.
- Fit p_T^{ℓ} and m_T^W distributions in $W \to \ell \nu$ decays
 - Improved statistic based on the profile likelihood
 - Updated to more modern PDF sets
- Measurement requires exquisite precision in lepton energy/momentum calibration $(O(10^{-4}))$ and recoil response (~ few %).

- Total uncertainty reduced by ~ 15%
- measurements.

• First measurement at LHC Most precise single-experiment

Simultaneous extraction of m_W and Γ_W

Exclusive W Boson hadronic decays

Phys. Rev. Lett. 133 (2024) 161804, arXiv:2309.15887

- Test bench for the QCD factorization framework
- Could enable W boson mass measurement with a fully reconstructed at future colliders

	95% CL upper limits		
Branching fraction	Expected $\times 10^{-6}$	Observed $\times 10^{-6}$	
$\mathcal{B}(W^{\pm} \to \pi^{\pm} \gamma)$	$1.2^{+0.5}_{-0.3}$	1.9 x4 in	
$\mathcal{B}(W^{\pm} \to K^{\pm} \gamma)$	$1.1_{-0.3}^{+0.4}$	1.7	
$\mathcal{B}(W^{\pm} \to \rho^{\pm} \gamma)$	$6.0^{+2.3}_{-1.7}$	5.2 First	

W and Z Boson Production

- First step in the study of gauge bosons at 13.6TeV
 - Total/fiducial/differential cross-section measurements

$pp \rightarrow W$ and $pp \rightarrow Z/\gamma^*$

PLB 854 (2024) 138725, arXiv:2403.12902

- Uncertainty ~ 2-3% dominated by luminosity uncertainty
- Ratio measurements for increased sensitivity to PDF
- Good agreement with NNLO+NNLL QCD and NLO EW predictions

$pp \rightarrow ZZ$

PLB 855 (2024) 138764, arXiv:2311.09715

- Uncertainty ~ 6% (with comparable stat./syst. uncertainties)
- Good agreement with NNLO QCD + NLO EW predictions

Z Boson Invisible Width Phys. Lett. B 854 (2024) 138705, arXiv:2312.02789

- Measurements via different final states and analysis strategies test the consistency of SM

• Sensitive to number of light neutrinos coupling to Z boson and potential non-SM contributions

Z Boson Invisible Width

Phys. Lett. B 854 (2024) 138705, arXiv:2312.02789

 $\Gamma(Z \rightarrow inv) = 506 \pm 2(stat) \pm 12(stat)$

- Single most precise recoilbased measurement
 (~ 2.5%)
- Dominated by systematic uncertainties (leptons)
- Result is in agreement with LEP combination and SM predictions

WZ Polarization and RAZ Phys. Rev. Lett. 133 (2024) 101802, arXiv:2402.16365

- Study of diboson polarization probes gauge symmetry structure and electroweak symmetry breaking mechanism.
- Radiation-amplitude-zero (RAZ): At LO, $W_T Z_{T'}$ amplitudes predicted to be exactly zero for specific W scattering angle in the WZ rest frame
- dependence of cross-section.

• Experiments gaining sensitivity to $V_L V_L$ production and starting to study energy

WZ Polarization and RAZ Phys. Rev. Lett. 133 (2024) 101802, arXiv:2402.16365

- Use leptonic decays: $WZ \rightarrow \ell \nu \ell' \ell'(\ell, \ell' = e, \mu)$
- Longitudinally polarized final state $W_L Z_L$ only make up ~ 6% of total WZ cross-section.
- Measure polarization fractions in longitudinally-enriched regions.
 - $p_T^{WZ} < 70 \text{ GeV}$: Reduce jet activity
 - High p_T^Z : Enhance s-channel contributions
- Measurements compatible with SM predictions.

	Measurement			Prediction	
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 20$
f_{00}	$0.17 \pm _{0.02}^{0.02} (\text{stat}) \pm _{0.02}^{0.01} (\text{syst})$	$0.16 \pm _{0.05}^{0.05} (\text{stat}) \pm _{0.03}^{0.02} (\text{syst})$	$\parallel f_{00}$	0.152 ± 0.006	0.234 ±
f_{XX}	$0.83 \pm_{0.02}^{0.02} (\text{stat}) \pm_{0.01}^{0.02} (\text{syst})$	$0.84 \pm _{0.05}^{0.05} (\text{stat}) \pm _{0.02}^{0.03} (\text{syst})$	$\int f_{0T}$	0.120 ± 0.002	$0.062 \pm$
f_{00} obs (exp) sig.	7.7 (6.9) σ	3.2 (4.2) <i>σ</i>	$\int f_{T0}$	0.109 ± 0.001	$0.058 \pm$
			$\ f_{TT}$	0.619 ± 0.007	$0.646 \pm$

11

WZ Polarization and RAZ Phys. Rev. Lett. 133 (2024) 101802, arXiv:2402.16365

- Variables sensitive to RAZ effect: $\Delta Y(WZ), \Delta Y(\ell_W Z)$
- Extra parton emissions dilute RAZ effect
 - Define 3 regions with reduced jet activity: $p_T^{WZ} < 20, 40, 70 \text{ GeV}$
- RAZ arises primarily from $W_T Z_T$ amplitude
 - Subtract measured $W_L Z_L$ fractions and background
- Unfolded distributions compatible with SM prediction

Quartic Electroweak Couplings

- Some of the rarest processes experimentally accessible at LHC
 - Vector-boson scattering observed in most channels ----
 - Increasing sensitivity to triboson production -

EW Gauge Structure

Diboson: Wyjj Eur. Phys. J. C 84 (2024) 1064, arXiv:2403.02809

- Observation of EW $W\gamma jj$ with > 6σ established using ML techniques

Diboson: WZjj JHEP 06 (2024) 192, arXiv:2403.15296

- Multivariate discriminant used to separate EW and strong production modes
- First study of modelling of several key kinematic observables

EW Gauge Structure

Triboson

• BDT discriminants trained in each event category to enhance the separation between signal and background

Process	Signal strength	Cross section (fb)	Observed
VVZ	$1.43 \pm 0.20(\text{stat.})^{+0.21}_{-0.19}(\text{syst.})$	660_{-90}^{+93} (stat.) $_{-81}^{+88}$ (syst.)	(
WWZ	$1.33 \pm 0.28(\text{stat.})^{+0.21}_{-0.17}(\text{syst.})$	$442 \pm 94(\text{stat.})^{+60}_{-52}(\text{syst.})$	(
WZZ	$2.13^{+1.18}_{-0.96}$ (stat.) $^{+0.76}_{-0.41}$ (syst.)	200^{+111}_{-91} (stat.) $^{+65}_{-37}$ (syst.)	

 $W\gamma\gamma$

Phys. Lett. B 848 (2024) 138400

EW Gauge Structure

Anomalous Quartic Gauge Couplings

• Deviations from the SM are quantified in an Effective Field Theory approach

 $\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}}$

- Considering only operators affecting QGC at dimension-8
- Limits on Wilson coefficients reported without and with unitarity preservation using clipping technique.

	W	<i>Yjj</i>		
Eur. Phys. J. C	284 (2024	4) 1064, arXiv	:2403.02809	
Coefficients [TeV ⁻⁴]	Observable	Expected [TeV ⁻⁴]	Observed [TeV ⁻⁴]	-
f_{T0}/Λ^4	$p_{\mathrm{T}_{\perp}}^{jj}$	[-2.4, 2.4]	[-1.8, 1.8]	
f_{T1}/Λ^4	p_{T}^{jj}	[-1.5, 1.6]	[-1.1, 1.2]	
f_{T2}/Λ^4	p_{T}^{jj}	[-4.4, 4.7]	[-3.1, 3.5]	First I HC
f_{T3}/Λ^4	p_{T}^{jj}	[-3.3, 3.5]	[-2.4, 2.6]	
f_{T4}/Λ^4	p_{T}^{jj}	[-3.0, 3.0]	[-2.2, 2.2]	constraints
f_{T5}/Λ^4	$p_{\mathrm{T}_{\perp}}^{JJ}$	[-1.7, 1.7]	[-1.2, 1.3]	constraints
f_{T6}/Λ^4	$p_{\mathrm{T}_{\perp}}^{JJ}$	[-1.5, 1.5]	[-1.0, 1.1]	
f_{T7}/Λ^4	p_{T}^{JJ}	[-3.8, 3.9]	[-2.7, 2.8]	_
f_{M0}/Λ^4	p_{T}^{l}	[-28, 28]	[-24, 24]	
f_{M1}/Λ^4	p_{T}^{l}	[-43, 44]	[-37, 38]	
f_{M2}/Λ^4	p_{T}^{\prime}	[-10, 10]	[-8.6, 8.5]	
f_{M3}/Λ^4	p_{T}^{\prime}	[-16, 16]	[-13, 14]	
f_{M4}/Λ^{4}	$p_{\mathcal{T}}^{\prime}$	[-18, 18]	[-15, 15]	
f_{M5}/Λ^{4}	$p_{\mathcal{T}}^{\prime}$	[-17, 14]	[-14, 12]	
f_{M7}/Λ^{-}	p_{T}^{\prime}	[-78,77]	[-66, 65]	-

$$+\sum_{i} \frac{f_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \sum_{i} \frac{f_{i}^{(8)}}{\Lambda^{4}} O_{i}^{(8)} + \dots$$

Summary

- LHC offers unique environment to test EW theory
- Wealth of electroweak measurements made by ATLAS in recent months. - Precision measurements of key Standard Model parameters

 - Investigation of electroweak gauge structure
- Measurements are in good agreement with SM predictions.
- As datasets grow, new opportunities arise to explore increasingly rare physics processes.
- New physics could be just around the corner the search continues.
- All ATLAS results available at <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>

18

