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Towards an experiment-independent toolkit for fast
calorimeter simulation

From ATLAS to future HEP detectors
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Abstract. The production of a sufficiently large number of simulated Monte
Carlo events is anticipated to be one of the most significant bottlenecks for
many future high-energy physics (HEP) experiments. The simulation of the
calorimeter response, in particular, represents a major computational challenge.
While substantial efforts have been made by the HEP community to develop
machine-learning based fast simulation models, integrating these into realistic
experimental setups remains a significant hurdle.
Building on the fast simulation tools developed by the ATLAS Collaboration
at the LHC, this paper presents recent efforts to create a fully experiment-
independent library for fast calorimeter simulation. The library aims to pro-
vide a universal interface for both the lateral and longitudinal parameterization
of calorimeter showers, as well as for machine-learning based approaches to
shower generation.

1 Introduction

The production of simulated Monte Carlo (MC) events is a critical component in modern
high-energy physics (HEP) experiments. As experiments collect increasingly large datasets,
the computational resources required to simulate MC events are becoming a major bottleneck.

The simulation of the calorimeter response, traditionally performed with Geant4 [1], is
particularly demanding as incident particles generate showers containing thousands of sec-
ondaries that need to be individually tracked throughout the detector to obtain an accurate
simulation of the detector response.

To speed-up the simulation of MC events, HEP experiments have been working towards
building fast simulation models that typically parametrize the detector response depending
on the energy and position of the incident showering particles. Most notably, the ATLAS ex-
periment [2] has been deploying its state-of-the-art fast simulation tool AtlFast3 [3, 4] since
the end of Run 2 of the Large Hadron Collider (LHC). To simulate energy deposits, Atl-
Fast3 uses a combination of histogram-based sampling methods and Generative Adversarial
Networks [5], tuned to maximize the simulation accuracy across a wide range of physics
process.
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Driven by the recent rapid developments in fundamental research on generative artifi-
cial intelligence (GenAI), the HEP community has shown great interest in exploring various
architectures deemed promising for fast calorimeter simulation. Today, the results of the
community-driven CaloChallenge [6] provide the most complete and comprehensive survey
of cutting-edge generative architectures for fast calorimeter simulation. Flow-based gener-
ative models [7] and diffusion models [8] have been shown to be particularly promising,
albeit the latter can be too slow for practical applications. However, recent advances, such as
knowledge distillation and step-reduction techniques, offer promising solutions to improve
their efficiency while maintaining generative quality [9].

Despite the impressive progress made in developing and benchmarking cutting-edge
GenAI models for fast calorimeter simulation, their implementation into realistic production
environments for HEP experiments remains a significant hurdle. In practice, the irregular
and complex detector geometries make it difficult to condition a single model to accurately
simulate all regions. As a result, multiple models often need to be trained and deployed to
account for the variations in detector geometry. Moreover, models are typically trained to
reproduce energy deposits in artificially constructed spatial regions known as voxels, which
do not correspond to the cell sizes of the calorimeter system. During simulation, the pre-
dicted voxel energies must be correctly assigned to individual cells by uniformly sampling
hits from the voxel surfaces and assigning the generated hits to cells in the detector geometry.
Lastly, an accurate simulation also requires accounting for any effects that might arise from
the presence of magnetic fields.

Bridging the gap between cutting-edge GenAI architectures and their implementation in
realistic HEP environments is crucial to rapidly profit from advancements in the field. The
fast simulation tools developed by the ATLAS Collaboration already address most of the
technical challenges that arise in implementing ML models for fast calorimeter simulation in
realistic settings.

This paper presents the initial steps taken to detach the ATLAS fast calorimeter simu-
lation from its experiment-specific implementation, laying the groundwork to evolve it into
an experiment-agnostic library. By generalizing and broadening its functionality, the result-
ing toolkit aims to support the wider HEP community, particularly the next generation of
detectors envisioned for facilities like the Future Circular Collider [10].

2 The ATLAS Fast Simulation Infrastructure

To meet the stringent requirements for physics accuracy in the production of fast simulation
MC samples, the ATLAS experiment deploys a suite of advanced simulation tools collec-
tively referred to as AtlFast3. AtlFast3 is designed to significantly reduce the CPU time
required per event while maintaining a high level of agreement with Geant4, ensuring mini-
mal degradation in physics accuracy.

While the Inner Detector simulation continues to rely on Geant4, the calorimeter shower
simulation is predominantly replaced by two dedicated tools: FastCaloGANV2, which em-
ploys generative adversarial networks to generate calorimeter showers, and FastCaloSimV2,
which uses histogram-based sampling methods to simulate the detector response efficiently
and accurately. Both tools are components of what in the following will be referred to as the
FastCaloSim library. The choice of which tool to use during simulation depends on several
factors, including the particle type, the region where it enters the calorimeter system, and
its kinematic properties, with parameters tuned on an ad-hoc basis to maximize simulation
accuracy.

To integrate the FastCaloSim library with other simulators, such as Geant4, ATLAS em-
ploys its proprietary Integrated Simulation Framework (ISF) [11]. Originally developed



over a decade ago to handle complex use cases that ultimately proved unnecessary, ISF pro-
vides a flexible framework for combining full and fast simulation tools by implementing
advanced particle routing algorithms. These algorithms apply user-defined simulation selec-
tion rules that may vary for each simulated hard scattering event. However, as new simulators
and their corresponding detector regions are added, the framework’s complexity has grown
substantially, making it increasingly difficult to maintain and adapt to evolving needs.

3 FastCaloSim as Experiment-Independent Library

Transforming FastCaloSim into an experiment-independent library represents a critical step
toward enabling future HEP experiments to simplify the integration of new models for fast
calorimeter simulation into realistic detector setups. Although FastCaloSim was not inher-
ently experiment-dependent, several steps needed to be taken to enable its usage beyond
ATLAS.

Notably, dependencies on ISF were removed and replaced with detector-agnostic tools
and implementations. Furthermore, the library was decoupled from the ATLAS core software
and restructured as a standalone entity hosted in its own dedicated GitHub repository [12].

Geant4 already provides a robust infrastructure for combining full and fast simulation
tools through the use of its built-in fast simulation model interface [13]. The new implemen-
tation of FastCaloSim is specifically designed to function as a Geant4 fast simulation model,
completely replacing ISF’s functionality as a particle stack dispatcher and eliminating any
reliance on proprietary simulation infrastructure.

Figure 1 shows the comparison between the current implementation of FastCaloSim
within ISF in ATLAS’ Athena core software and its envisioned integration as Geant4 fast
simulation model for future HEP experiments. While the legacy implementation is tied to
ISF and the ATLAS core software, the new library can be used as a simple hook in a Geant4
fast simulation model. By enabling a direct and streamlined integration within Geant4, the
new implementation eliminates the complexities and potential overhead associated with ISF’s
intricate particle routing algorithms, all while retaining the full required functionality.

Figure 1: Sketch of the current implementation of the FastCaloSim library within ISF in
the ATLAS core software Athena and its future experiment-independent implementation as a
Geant4 fast simulation model.

The following outlines some of the recent key developments that are essential toward
enabling the use of FastCaloSim for generic detectors.



3.1 Track Transport in Simplified Geometry

To accurately reproduce the lateral shapes of particle showers, FastCaloSim relies on the
calculation of the shower centre position within each calorimeter layer during simulation.
This involves propagating the incident particle through the calorimeter system, starting at the
boundary with the tracking detector, while accounting for magnetic field effects [14]. In fact,
the propagation of particles is the key bottleneck in FastCaloSim’s simulation.

The current deployment of FastCaloSim within ISF relies on the propagation with cus-
tomary tracking software in ATLAS’ Athena software. For broader applicability beyond
ATLAS, alternative experiment-agnostic solutions needed to be found. In principle, Geant4
offers all required functionality within its built-in G4PropagatorInField class, which can
be attached to the global G4FieldManager instance. However, a propagation of particles in
the full calorimeter geometry implies G4Steps at each cell boundary, which proved compu-
tationally prohibitive.

A precise simulation of the detector response with FastCaloSim does not necessitate a
highly accurate representation of the track throughout the calorimeter system. Instead, the
simulation relies solely on the position of the track at the entrance and exit of each calorimeter
layer. By simplifying the calorimeter geometry for particle navigation—avoiding cell-by-cell
steps—the propagation speed can be dramatically increased without compromising accuracy.

To simplify the generation of such geometries for future HEP experiments, a detector-
agnostic Python package named pyGeoSimplify [15] was developed. Given cell positions
and dimensions as input, pyGeoSimplify can automatically generate a clash-free simplified
detector in the GDML file format [16]. The file can be easily read into Geant4 and a new
G4CaloTransportTool in FastCaloSim automatically manages the propagation in the sim-
plified geometry, fully independent of the main navigation of the Geant4 simulation. Figure 2
shows a visualization created with pyGeoSimplify of the ATLAS calorimeter cells used as in-
puts to generate the simplified geometry.

Figure 2: Display of the calorimeter cells of the ATLAS detector produced by pyGeoSim-
plify. The various colours encode the different layers of the calorimeter.

To build a simplified geometry representation, pyGeoSimplify aims at representing each
calorimeter layer as a cylindrical structure, approximating the real entry and exit surfaces
of the original geometry. The surfaces of these cylinders are defined to match the actual
boundaries through which particles enter and exit the calorimeter layers, with the constraint
of generating a final geometry free from any internal overlaps, ensuring an unambiguous
navigation of particles through the simplified model.



To achieve this clash-free representation, pyGeoSimplify uses a multi-step approach,
visualized in Figure 3 for the ATLAS calorimeter. Each calorimeter layer is initially mod-

(a) Cell envelopes (not clash-free) (b) Thinned cell envelopes (clash-free)

(c) Processed thinned cell envelopes (clash-free)

Figure 3: Rendering of the intermediate steps taken by pyGeoSimplify to generate a simpli-
fied clash-free detector geometry, in this case for the ATLAS calorimeter system.

elled as a cylindrical envelope determined from the maximum geometric extension of its
constituent cells. These cylindrical hulls approximate the original lateral and longitudinal
extent of the detector layers. To avoid overlaps among the cylindrical envelopes, a thinning
process is applied. For barrel layers, the hull — initially spanning inner and outer radii — is
thinned down to a single midpoint radius. For endcap layers, the extent in the longitudinal
direction is similarly reduced to a single midpoint surface. After the initial thinning, the ge-
ometry is grown back as much as possible toward the original envelope sizes, while avoiding
the reintroduction of overlaps. Through this controlled restoration step, the simplified geom-
etry is optimized to closely match the actual detector boundaries while ensuring a clash-free
configuration.

For ATLAS, the track transport previously handled by the proprietary tracking software
has now been successfully replaced by the Geant4-based propagation in the simplified ge-
ometry, with no noticeable changes in physics observables. Figure 4a shows the propagation
of a single electron event through the simplified ATLAS calorimeter in the FastCaloSim im-
plementation as a Geant4 fast simulation model. Figure 4b compares the simulation time
for single-electron events using the original ATLAS tracking software and the Geant4-based
approach in both the full and simplified geometry. While the full geometry significantly in-
creases the CPU time, the simplified geometry restores performance to a level comparable
with the original ATLAS tracking tools.

3.2 Hit-to-cell Matching

In order to distribute the simulated energy within each calorimeter layer, FastCaloSim sam-
ples a series of hit positions that must be matched to the appropriate cells of the detector
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Figure 4: (a) Transport of a single electron event through the simplified calorimeter geometry
in the Geant4 fast simulation model. The dots indicate individual Geant4 steps taken at each
boundary, while the colours of the individual tracks encode the time required to transport
the track. (b) Event simulation time of single electron events using the Geant4 transport in
the full calorimeter geometry (blue), with the Athena tracking tools (orange), and with the
Geant4 transport in a simplified geometry (green). The vertical lines indicate the mean track
transport time in both cases. [17]

geometry. The current approach relies on custom, complex ATLAS-dependent geometry
maps to achieve a rapid hit-to-cell assignment.

To enable the usage for other experiments, the matching was generalised by organizing
cell information into R-trees [18]. R-trees are spatial indexing data structures that do not
necessitate detector-specific information for the lookup and minimize the number of compar-
isons needed to identify the correct cells. Figure 5 compares the time required to match hits
to cells using custom geometry maps and the new R-tree approach. Although the R-tree cell
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Figure 5: Time required to match positions in the EMB0 layer of the ATLAS calorime-
ter to their corresponding cells using 2D R-trees (blue), 3D R-trees (orange) and custom,
experiment-dependent geometry maps (green). 100 positions are sampled randomly within
each cell of the calorimeter layer and matched to its respective cell. [19]



lookup is observed to be up to a factor 100 slower, this level of performance is still expected
to be sufficiently fast.

It is important to highlight that the default geometry treatment in FastCaloSim assumes
that calorimeter cells can be approximated as rectangular cuboids in some coordinate sys-
tem. In scenarios where the cell shapes deviate substantially from this approximation, the
R-tree-based lookup may not provide the required accuracy. For example, the highly ir-
regular cells of the ATLAS forward calorimeter [20] cannot be reliably handled with a
generic approach. To accommodate such cases, FastCaloSim allows developers to imple-
ment experiment-specific geometry handlers on a per-layer basis, ensuring flexibility and
accuracy for complex detector layouts.

3.3 Open Source Distribution

FastCaloSim is now distributed as an open-source shared library, with its source code hosted
on GitHub [12]. The development process embraces modern best practices: a CMake-based
build system for flexible integration, unit tests with GoogleTest, and static analysis with
clang-tidy and cppcheck for continuous code quality. Consistent coding style is enforced
through formatting and linting tools such as clang-format, while reproducible development
environments are provided via Docker images. The project is continuously tested on multi-
ple platforms, including AlmaLinux, Ubuntu, and LCG [21] releases, ensuring a robust and
portable solution for the HEP community. Figure 6 offers a visual example of the simulation
output for two photon showers, produced by one of FastCaloSim’s unit tests. Such outputs
are continuously monitored to detect any unintended changes or regressions in the library’s
core components.

Figure 6: Visualization of simulated photon showers produced by FastCaloSim unit tests.

4 Conclusion

Significant progress has been made in decoupling FastCaloSim from ATLAS-specific infras-
tructure, enabling its use as an experiment-agnostic toolkit for fast calorimeter simulation.
By reimplementing core functionalities with detector-agnostic tools and introducing open-
source practices, FastCaloSim now provides a robust foundation for integrating advanced
fast simulation models into diverse experimental setups.

Future work will focus on demonstrating its capabilities with the Open Data Detec-
tor [22], providing a concrete example of how to integrate FastCaloSim into current and
future experiments, including those extending beyond the LHC.
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