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Abstract. Hyperparameter Optimization (HPO) of Deep Learning (DL)-based
models tends to be a compute resource intensive process as it usually requires to
train the target model with many different hyperparameter configurations. We
show that integrating model performance prediction with early stopping meth-
ods holds great potential to speed up the HPO process of deep learning models.
Moreover, we propose a novel algorithm called Swift-Hyperband that can use
either classical or quantum Support Vector Regression (SVR) for performance
prediction and benefit from distributed High Performance Computing (HPC)
environments. This algorithm is tested not only for the Machine-Learned Par-
ticle Flow (MLPF), model used in High-Energy Physics (HEP), but also for a
wider range of target models from domains such as computer vision and natural
language processing. Swift-Hyperband is shown to find comparable (or better)
hyperparameters as well as using less computational resources in all test cases.

1 Introduction

Training and Hyperparameter Optimization (HPO) of Deep Learning (DL) models is often
compute resource intensive and calls for the use of large-scale High Performance Computing
(HPC) resources as well as scalable and resource efficient Hyperparameter (HP) search
and evaluation algorithms [1]. Current state-of-the-art HPO algorithms such as Hyperband
[2], ASHA [3], and BOHB [4], rely on a method of early termination. Badly performing
trials are automatically terminated to allocate compute resources to more promising ones.
Such methods have been successfully applied to optimize Machine-Learned Particle Flow
(MLPF), a particle flow reconstruction Neural Network (NN) [5]. Using this technique led
to o a reduction of ∼44% in the validation loss of MLPF [1].

In this context, performance prediction emerges as a potential approach to accelerate the
HPO process. This involves using meta-models, referred to as a performance predictors, that
can estimate the performance of a given configuration at a particular epoch by leveraging
information from its partial learning curve. By employing performance prediction, it is
possible to prioritize the training of the most promising configurations based on their
predicted performance, while avoiding the need to fully train configurations with poorer
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predicted performance. Consequently, this approach holds great potential for reducing the
time and computational resources required for the HPO process.

This work explores novel techniques based on performance prediction to accelerate the
HPO process of MLPF and other NN architectures that leverage the use of HPC resources
for training the target model and quantum computing for training the performance predictors.
Moreover, a new HPO algorithm is proposed, Swift-Hyperband, that integrates Hyperband
with the use of model performance predictors.

2 Related work

Baker et al. [6] demonstrated that Support Vector Regression (SVR) models can effectively
serve as performance predictors for various NN architectures. In addition to showing a good
predictive capability for performance prediction tasks, SVR models offer the advantage of
having negligible training and inference times, even when using a consumer-grade laptop
CPU. Hence, using SVRs prevents the training of performance predictors from becoming a
bottleneck for the potential resource savings expected from this technique.

In the European Center of Excellence in Exascale Computing "Research on AI- and
Simulation-based Engineering at Exascale" (CoE RAISE) the capability of SVRs to predict
the loss of MLPF after 100 training epochs in the Delphes dataset [7] was successfully shown
[8], achieving R2 values of around 0.9 when using 25% of the target learning curve as input.
Here, R2 is the so-called coefficient of determination, defined as

R2 = 1 −
∑

i(yi − fi)2∑
i(yi − ȳ)2 = 1 −

∑
i e2

i∑
i(yi − ȳ)2 (1)

where yi is the ground truth for data point i, fi is prediction i, ȳ is the mean of all yi and ei

is the error of prediction i. Furthermore, the Quantum Annealer at the Jülich Supercomputer
Centre, was used to train Quantum Support Vector Regression (QSVR) [9] models on
MLPF learning curves. While no significant performance benefit was expected from the
use of quantum resources, and the idea of employing quantum computers for the task of
performance prediction was primarily a proof of concept of integrating this technology into
the HPO workflow, the QSVRs achieved comparable performance to that obtained with
classical SVRs [8]. Note that the number of training samples in this case had to be reduced to
20 due to limitations in problem size arising from the current state of quantum technologies.

There are several strategies that can be considered for integrating performance predictors
with the HPO process [6]. A straightforward approach is to generate a certain amount
of random HP configurations, fully train M configurations and partially train N > M
configurations. The final loss of the fully trained configurations and part of their learning
curves are used to train a performance predictor. Then, this performance predictor is used to
predict the final loss of the partially trained configurations and only those whose predicted
loss is below a certain threshold are selected to complete training. This approach was tested
using different types of performance predictors, including QSVRs, in [10].

Another, more sophisticated example of the use of performance predictors for HPO is
the algorithm Fast-Hyperband [6]. This algorithm is a modified version of the well-known
Hyperband algorithm that uses performance predictors which are trained on the fly during the
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execution of the algorithm to save training epochs of the target model with respect to Hyper-
band. More precisely, Fast-Hyperband adds an extra decision point 1 based on performance
prediction for every epoch in each Hyperband round. Decisions in these new intermediate
points use a probability threshold, computed from an estimate of the standard deviation of
every predictor used. The proposed method of computing this estimate in Fast-Hyperband
is leave one out cross validation. The main drawback of this approach is that it requires to
train many performance predictors, which makes it impractical to use QSVRs. This is partly
due to runtime limitations on the quantum machine and partly due to the time needed to for-
mulate the regression problem in a suitable way for the quantum annealer. In addition, the
time spent to connect to the quantum machine needs to be taken into account. Furthermore,
Fast-Hyperband, as it is defined in [6], is a sequential algorithm which makes it unable to
benefit from running in a distributed manner on multiple nodes in an HPC environment.

3 Swift-Hyperband

Figure 1: Graphic representation of a Swift-Hyperband bracket. This is an illustrative exam-
ple, not the result of an actual execution the algorithm.

To overcome the limitations of Fast-Hyperband mentioned in the previous section we
propose a different way to integrate performance predictors with Hyperband by a new
algorithm called Swift-Hyperband. Similarly to Fast-Hyperband, Swift-Hyperband adds
extra decision points to the classical Hyperband algorithm that are based on performance
prediction. However, Swift-Hyperband adds only one extra decision point per Hyperband
round. When a round starts, Swift-Hyperband trains a certain number of trials until the end
of the round and then uses their loss at the end of the round to define a threshold. The other
trials in the round are partially trained to the extra decision point, where the performance
predictors are used to predict their losses at the end of the round. These predictions are
compared to the previously defined threshold to decide if each trial should be terminated or
not.

Figure 1 illustrates what happens inside each bracket of Swift-Hyperband. The vertical
dashed lines represent the new decision points in which some configurations or trials are

1We understand a decision point as a certain epoch in which an early stopping HPO algorithm discards some
configurations to keep training only the most promising ones according to a certain criterion.
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discarded based on their predicted performance. The trials that did not complete their round
are represented using dashed learning curves. That is, the dashed learning curves represent
training epochs of the target model that Swift-Hyperband saved with respect to the classical
Hyperband algorithm. The trials that complete their training until the end of the round are the
ones that are always represented by continuous lines. The decision of which of these trials
are promoted to the next round is made as it is made in the classical Hyperband algorithm.

Swift-Hyperband not only needs to train less performance predictors than Fast-
Hyperband but can also be easily parallelized, as all the initial full and partial trainings inside
a round can be executed in parallel. For these two reasons, our algorithm can potentially
use QSVRs and benefit from HPC environments. A schematic comparison between Fast-
Hyperband and Swift-Hyperband is shown in Figure 2.

Figure 2: Key differences between Fast-Hyperband and Swift-Hyperband.

4 Results

To compare Hyperband, Fast-hyperband, Swift-Hyperband and Quantum-Swift-Hyperband
(Swift-Hyperband using QSVRs) for different NN architectures we simulate 10 runs of each
algorithm using the datasets of learning curves derived from the following model-dataset
combinations:

• MLPF [8] trained on the Delphes dataset [7].

• An image recognition Convolutional Neural Network (CNN) modified from [3] trained on
the Cifar10 dataset.

• An image recognition CNN trained on the SVHN dataset used in [6].

• A natural language processing Long Shot-Term Memory (LSTM) NN trained in the PTB
dataset [11].

The result of these simulated runs can be seen in Figure 3 and a summary of the learning
curve datasets used for the simulation is available in Table 1.

Beyond the simulated runs, we test the speedup provided by the parallelization of Swift-
Hyperband along with the achieved accuracies by running Hyperband, Fast-Hyperband,
Swift-Hyperband, and a parallel version of Swift-Hyperband that uses MPI to coordinate
one CPU node and two GPU worker nodes. For these runs, the HPO target was a simple
6-layer CNN (different to the CNN used in the simulated runs) trained on Cifar10 using a
3-dimensional search space consisting of learning rate, weight decay, and dropout. This net-
work was chosen because it was relatively fast to train. The results can be seen in Figure
4.

The results in Figure 3 and Figure 4 show that both Swift-Hyperband and its version using
QSVRs achieve accuracies comparable to classical Hyperband while needing considerably
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Neural Network Evluation metric HPs search space
dimension

Target epoch
for HPO

MLPF for Delphes Loss 7 100
LSTM for PTB Perplexity 2 60

CNN for Cifar10 Accuracy 5 100
CNN for SVHN Accuracy 9 100

Table 1: Summary of learning curve datasets.

(a) MLPF trained on Delphes (b) LSTM trained on PTB

(c) CNN trained on Cifar10 (d) CNN trained on SVHN

Figure 3: Average, best, and worst performance of the best configuration found as well as
the total number of epochs consumed by the different HPO algorithms for different NNs and
datasets.

fewer epochs in all cases. In comparison to Fast-Hyperband, Swift-Hyperband (SVR and
Q-SVR) is faster in all cases except on the SVHN problem. When it comes to the non-
simulated runs we observe that all algorithms achieve accuracies around 87%, with both
Swift-Hyperband and Parallel-Swift-Hyperband slightly beating Fast-Hyperband. Note that
in several cases the version of Swift-Hyperband that uses QSVRs finds better performing
configurations than the original Hyperband algorithm, something that would not happen if
the QSVRs made perfect predictions. This may indicate that using performance predictors,
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Figure 4: Performance of the best configuration found and total runtime needed for different
HPO algorithms.

aside from saving compute resources, has some type of regularizing effect that prevents some
of the errors that Hyperband makes when terminating configurations at the end of each round.

5 Conclusions

We proposed a new promising parallelizable HPO algorithm integrating Hyperband and per-
formance predictors that can be used in combination with SVRs or QSVRs. This leaves the
door open for the use of Swift-Hyperband in later HPO cycles of MLPF. Furthermore, it was
shown that, despite the current limitations of quantum computers, it is possible to execute hy-
brid Quantum/HPC workflows for HPO, achieving comparable performance to fully classical
workflows. We consider that there is a need for further studies on the speedup achieved by the
parallelization of Swift-Hyperband when using a greater number of nodes as Hyperband is
known to suffer from straggler issues [3]. Hence, developing a version of the HPO algorithm
ASHA that integrates performance predictors, potentially to be named Swift-ASHA, is one
of the identified lines to continue this work. In addition to this, conducting more empirical
tests of Swift-Hyperband on a wider range of target models would provide valuable insights
on the behavior of the algorithm. Finally, conducting theoretical studies on SVRs and QSVRs
could provide a deeper understanding of why Swift-Hyperband occasionally outperforms the
original Hyperband algorithm and shed light on the differences observed when employing
quantum or classical SVRs.
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