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Abstract

In this document, we describe a new approach to obtain the energy scale and resolution correction
based on the minimization of an analytical likelihood. The energy resolution effect is incorporated
with an analytical approach. This allows to carry out the minimization using the Tensorflow library
and in particular its automatic differentiation capabilities. We review the description of the analytical
likelihood, the validation of the tool, the potential biases and solutions when the scale and resolution
are measured versus the energy itself.
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In this note, we describe a novel approach to extract Data/MC relative lepton energy scale and
resolution corrections based on Drell-Yann (DY) Z → ℓℓ production. The method is based on
the maximization of a likelihood sensitive to the energy scale and resolution which is totally
analytical with respect to the resolution and thus does no require any random number trials to
predict smeared di-lepton mass distribution. Thanks to this, the likelihood is differentiable and
its maximization is based on the automatic gradient capabilities of the TensorFlow library [1].
This method is implemented in a software tool named IJAZZ2.0 (I Just AnalyZe the Z).

1 Photon energy scale & smearing method
The aim of IJAZZ2.0 is to measure the differences between MC simulation and data in term
of lepton energy response and resolution. We note rℓ(X⃗) and σℓ(X⃗), respectively the data/MC
relative energy scale and data/MC energy smearing, where X⃗ is a list of photon input variables
(i.e. R9, ηSC, ET, ...). To be more specific, in this method, we correct the energy from the sim-
ulation to match the one in data. Therefore, rℓ(X⃗) is a correction to be applied to the lepton
energy:

Emc
corrS = rℓ(X⃗)× Emc

raw (1)

where Emc
corrS is the corrected-scale energy while Emc

raw is the original lepton energy. This cor-
rection brings the lepton-energy scale in the simulation to its corresponding level in the data.
Conversely, one can correct afterward the lepton energy in the data back to the simulation level
(which is usually properly tuned) with the formula:

Edata
corr = Edata

raw /rℓ(X⃗) . (2)

Concerning the resolution, it is assumed that the lepton-energy resolution is always better (i.e.
smaller) in the simulation, thus the energy resolution in the simulation needs to be degraded
(smeared) to its corresponding level in data. Because the simulation already includes most of
the effects due to the detector response (energy loss, material...), it is assumed that the modest
degradation due to the imperfect modelling of the simulation follows a normal distribution.
The energy smearing in the simulation is done by random number trials from a normal distri-
bution.

Emc
corr2 = Emc

raw ×N (1, σℓ(X⃗)) , (3)

where Emc
corr2 is the correted-resolution energy of the lepton. As a summary the lepton energy

in the simulation follows the probabilistic law:

Emc
corr = Emc

raw × rℓ(X⃗)×N (1, σℓ(X⃗)) (4)

1.1 Definition of the lepton categories and DY regions

In order to extract the values of rℓ(X⃗) and σℓ(X⃗), we first bin the X⃗ variables, each bin will
be named b. The response and smearing will be measured in each of these NB bins (we con-
sider here a uni-dimensional binning even if X⃗ can be multidmensional). Thus, it boils down
to measuring NB scale and smearing parameters: r⃗ℓ and σ⃗ℓ. Since the Z boson decays to 2
leptons, we need to adjust the di-lepton invariant mass scale and smearing that will be noted
respectively rℓℓ and σℓℓ. The values of rℓℓ and σℓℓ are infered from the values of rℓ and σℓ of
the 2 leptons forming the Z-boson candidate. We therefore categorize the DY events in NC
categories corresponding to all possible couples (b1, b2) for the 2 leptons, bi being the scale-
response bin of lepton i in the event. Because the couple (b2, b1) are in the same category as
the couple (b2, b1) (the rℓℓ and σℓℓ parameters are identical), the total number of DY categories



2

is thus NC ≡ NB×(NB+1)
2 . As a consequence, the per-event DY parameter rℓℓc and σℓℓc in each

category c = (b1, b2) are given by:

rℓℓc =
√

rℓb1
× rℓb2

σℓℓc = 0.5 ∗
√

σℓ
2
b1
+ σℓ

2
b2

(5)

1.2 Definition of the likelihood

In each DY category c, the values rℓℓc and σℓℓc can be measured by comparing the expected
smeared and scaled di-lepton mass distribution in the MC with the corresponding on in data.
This is done by binning the di-lepton mass distribution with NI bins, note that NI can depend
on the category c (for sake of simplicity we will just use the index I). This binning will be
referred to as bI in the following. The comparison is done by assuming that the predicted
distribution from the scaled and smeared MC follows a multinomial law, therefore in each
di-lepton mass bin i of a given category c, we use the multinomial-law based likelihood.

L(nic; rℓb, σℓb) =
NC

∏
c=0

NI

∏
i=0

(∑i nic)!
∏i nic!

pnic
ic . (6)

where pic is the expected probability (depending on rℓℓc and σℓℓc and consequently on rℓb and
σℓb) for a di-lepton event to fall in bin i when belonging to the category c and nic is the observed
number of events in data corresponding to the same bin i. By definition we have ∑i pic = 1. The
likelihood from Eq. 6 can be maximized with respect to the parameters rℓb and σℓb. In practice,
we minimize the negative log-likelihood, defined by:

nll(nic; rℓb, σℓb) = −
NC

∑
c=0

NI

∑
i=0

nic log (pic) . (7)

1.3 Analytical scaling and smearing

As a consequence of Eqs. 4 and 5, each di-lepton event with mass mℓℓ
mc generates a probabilis-

tic scaled and smeared mass distribution Mpred
ℓℓ according to:

Mℓℓ(rℓℓ, σℓℓ) = mℓℓ
mc × rℓℓ ×N (1, σℓℓ) (8)

Because we compare the distribution of Mℓℓ(rℓℓ, σℓℓ) to the data in a binned distribution, we can
therefore predict for each event in the simulation its probability to fall in bin i of the di-lepton
invariant mass.

Mi(rℓℓ, σℓℓ) =
1
2

[
Erf
(

bu
i /rℓℓ − mℓℓ

mc
√

2 σℓℓ mℓℓ
mc

)
− Erf

(
bd

i /rℓℓ − mℓℓ
mc

√
2 σℓℓ mℓℓ

mc

)]
(9)

where Erf is the error function, bu
i and bd

i are respectively the upper and lower bound of bin i of
the di-lepton invariant mass distribution (i ∈ [0, NI ]). Finally, the invariant mass distribution in
the simulation is binned with a very fine grain, this considerably fasten the computation of the
probability pic, In order to avoid any bias, this binning, named bmc, has to be smaller than the
expected σℓℓ, in practive a bin width below 0.2 GeV should be considered. The numbering of
bmc will be denoted as j and the number of events in the simulation falling in bin j of category
c is noted mjc. Considering Eq. 9, we can use the tensor αijc to predict the contribution from bin
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j of the MC simulation to the bin i used in the computation of the aforementioned likelihood.
The tensor αijc is given by:

αijc(rℓℓc, σℓℓc) =
1
2

[
Erf

(
bu

i /rℓℓc − bmc
j√

2 σℓℓc bmc
j

)
− Erf

(
bd

i /rℓℓc − bmc
j√

2 σℓℓc bmc
j

)]
(10)

where bmc
j is the center of bin j of the binning bmc. Thus, we can predict the pic probabilities

with:

pic =
∑j αijc mjc

∑i,j αijc mjc
. (11)

In Eq. 11, one can note the normalisation term at the denominator which corresponds to the fact
that the binning bmc can, and should, span a larger di-lepton invariant mass than the binning bI
in order to take into account event migration in and out of bI due to the scaling and smearing
of the simulation.

The correctness of the method is demonstrated on Fig. 1 which compares a Breit-Wigned distri-
bution of 10000 events which is scaled and smeared with rℓℓ = 0.98 and σℓℓ = 0.005. A different
number of random trials was generated per simulation event and then it is be compare to the
analytical prediction, with a large number of trials nsmear = 10000 the analytical prediction and
the random one perfectly match.

Figure 1: On the left the original MC distribution (Breit-Wigner) from 10000 generated events.
On the right, the smeared MC simulation obtained with a random smearing technique, nsmear
corresponding to the number of trials per original MC event, and with the analytical smearing
(dashed line). One can see that the analytical smearing reproduces the expected smeared dis-
tribution, approximated by nsmear = 10000 (the 2 distributions are indisguishable).

1.4 Qualitative comparison: analytical vs random smearing techniques

In order to compute the pic probabilities, a random method can be used with a typical num-
ber of trial per simulated event of nsmear = 10, cf. the CMS collaboration scale and smearing
method [2]. The gain in terms of CPU time (assessed on a laptop with 6 CPU cores) to compute
the pic probabilities between the analytical smearing method presented here with respect to a
random smearing method, based on random number generation, ranges from 500 from a small
MC sample with a size of 106 events to 5000 for a typical MC sample with a size of 107 events
using nsmear = 10.
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This gain of performance has to convoluted with the automatic-gradient capabilities of Tensor-
Flow. With a random smearing technique, the likelihood gradient has to be computed numeri-
cally, which requires a typical time of 2 × Npar × tsmear

nll where Npar is the number of parameters
to be fitted while tsmear

nll is the time to compute the likelihood with the random smearing tech-
nique. For the analytical method, empirically it has been observed that the gradient computa-
tion is about 2× tana

nll with tana
nll the time to evaluate the nll with the analytical smearing method.

Therefore the total gain in term of CPU time for the maximization of the likelihood is of several
orders of magnitude on recent laptop. It can be further accelerated using GPUs. Typically, a
minimisation with 100 parameters and 20.106 evenements (data and MC) ranges from 20-30’ of
CPU time on a laptop to less than a minutes on a competitive GPU. Such a minimisation would
take several days with a random smearing approch.

1.5 Statistical uncertainties

The uncertainties due to the limited amount of data are computed via the covariance matrix
(Σ) defined as the inverse of the Hessian matrix of nll Hnll, defined as:

Σ−1
kp ≡ Hnll

kp =
∂2nll(nic; θ⃗)

∂θk ∂θp
(12)

where θ⃗ generically refers to the list of parameters in the nll function, i.e. rℓb and σℓb. Note that
this uncertainty does not take into account the statistical fluctuations related to the limited size
of the MC simulation (which might the same size as the data sample in some cases).

1.6 Validation with a naive MC approach

We first validate the method by generating 25 × 106 MC events according to a Cauchy distri-
bution with mean µ = mZ and width γ = ΓZ/2 where mZ and ΓZ are respectively the mass
and the natural width of the Z boson taken from Ref. [3]. Thus in this first validation, the
kinematic of the two leptons is not generated, solely a naive Z-boson line shape according to a
classical Breit-Wigner distribution. For each event, we generate 2 random numbers mimicking
a property X of the 2 leptons from the Z-boson decay, X is generated according to a uniform
distribution other the range [0, 100]. We also simulate the energy-resolution of the detector by
generating a random number for each event according to a normal distribution with a mean of
1 and a standard deviation of 0.015. For a fraction of this sample, 5 × 106, we further decali-
brate and smear each event according to known functions depending on X, this is emulating
the difference between the actual detector response (data) and the simulated one (MC). Even-
tually, we retrieve this decalibration and smearing parameters using the method described in
this document assuming as data the latter part of the sample (which includes the additional
decalibration), and as MC the rest.

The results of this validation are presented in Fig. 2 which demonstrates that the fitted param-
eters are in agreement with the injected ones within the statistical precision.

2 Additional specifities fo the method
In this section we will present additional specifities of the method which concern the compu-
tation of the uncertainties due to the limited size of the MC simulation, and the tuning of the
binning bI depending on the available statistics in the category c.
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Figure 2: Validation of the method. A naive MC simulation is decalibrated and smeared ac-
cording to known functions (injected curves). These parameters are properly fitted (points) by
the method. The top panels show the absolute parameters while the bottom ones present the
ratio of the fitted values to the injected ones. The left (resp. right) plots refer to the response
(resp. resolution) parameters rℓb (resp. σℓb).

2.1 Uncertainties due to the limited statistics of the MC simulation

As mentioned in section 1.5, the covariance matrix computed from the method only takes into
account the statistical fluctuations due to limited size of the data sample, assuming that the
predicted probabilities pic are computed with an infinite precision, while they are limited by
the statistical size of the simulation sample. To take this effect into account, we can compute
the variation of the nll minimum related to fluctuations of the mjc numbers. If the mjc varies by
δjc, then the negative log-likelihood becomes nllδ, that can be computed:

nllδ (⃗θ, δjc) = nll(⃗θ) + δnll(⃗θ, δjc) (13)

where θ⃗ collectively denotes the response and resolution parameters of the nll function. To first
order in δjc, δnll(⃗θ, δjc) is given by:

δnll(⃗θ, δjc) =
∂nll
∂mjc

(⃗θ)× δjc

=

[
∑

i

nc
pc

αijc − ∑
i

nic
pic

αijc

]
× δjc ,

(14)

with nc ≡ ∑i nic and pc ≡ ∑i pic, the second line is obtained by derivating Eq. 7 with respect to
mjc. Therefore to second order, nllδ can be written as:

nllδ (⃗θ, δjc) = nll(⃗θ∗) +
∂nll
∂⃗θ

(⃗θ∗) δ⃗θ +
1
2

δ⃗θT Hnll δ⃗θ +
∂nll
∂mjc

(⃗θ∗) δjc,+
∂2nll

∂⃗θ∂mjc
(⃗θ∗) δ⃗θ δjc , (15)
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where θ⃗∗ denotes the minimum of the nll function and δ⃗θ ≡ θ⃗ − θ⃗∗. Deriving Eq. 15 with
respect to θ⃗, the minimum of the function nllδ statisties:

∂nll
∂⃗θ

(⃗θ∗) + Hnll δ⃗θ +
∂2nll

∂⃗θ ∂mjc
(⃗θ∗) δjc = 0 (16)

Since ∂nll
∂⃗θ

(
θ⃗∗
)
= 0 by definition of θ⃗∗, the minimum θ⃗jc ≡ θ⃗∗ + δ⃗θjc of nllδ is thus given by:

δ⃗θjc = H−1
nll ×

∂2nll
∂⃗θ ∂mjc

(⃗θ∗)δjc . (17)

Since all the δjc fluctuations are independent, one should sum in quadrature to obtain the final
uncertainties on θ⃗∗ due to the limited MC statistics.

(
δ⃗θ∗
)2

= ∑
i,c

(
δ⃗θjc

)2
= ∑

i,c

[
H−1

nll ×
∂2nll

∂⃗θ ∂mjc
(⃗θ∗)

]2

δ2
jc . (18)

One can note that for a weighted simulation mjc = ∑q wjcq, where wjcq is the weight of event q

and δjc =
√

∑q w2
jcq. In order to validate this formula, we use the simple simulation described

in section 1.6: 2 × 106 events are used as data sample. We measure the scale and smearing
parameters for a set of 100 different simulations of 2 × 106 events each and obtained for each
parameter a set of 100 measurements. The standard deviation of this set thus represents the
statistical uncertainty due to the fluctuations of the mjc’s. We then compare these standard
deviations to the predictions of Eq. 18 for each parameter. The results are presented in Fig. 3

2.2 Adaptative binning bI

Because the predicted pic appear in the nll function in a logarithm, it is mandatory to avoid
null values for these probabilities. In addition, because the invariant mass distribution is very
peaked, the tail of the distribution may suffer from low statistics potentially biasing the fit
(increasing artificially the resolution to fill some empty pic if there is a data event in bin bi for
category c). To avoid this, we use an adaptative binning and in addition a minimum number
of MC events in each category is required (100 events by default), categories not satisfying this
condition are discarded. For each category the width of each bin is determined with a quantile
technique so that the number of events is the same in each bin bI , thus the binning bI depends
on the category. The total number of bins is inspired by the Freedman–Diaconis rule and is

taken to be the minimum between (∑i nic)
1
3 and ∆Mℓℓ/(0.5 GeV) with ∆Mℓℓ the size of the

di-lepton mass window over which the fit is performed, typically ∆Mℓℓ = (100 − 80) GeV, the
limit on the total number of bins in bI comes from the fact that the typical energy-resolution is
larger than 0.5 GeV at the Z peak, this default behaviour is configurable.

A demonstration of this technique is presented on Fig. 4. A similar simulation as the one
described in section 1.6 is used but we reduce the total number of events to 5 × 104 for both
data and simulation and the property X is generated according to a normal distribution so have
some categories with lower statistics, the number of scale and smearing parameters is NB = 3,
consequently giving raise to NC = 6 categories.
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Figure 3: Validation of the statistical uncertainties due to the limited MC statistics for both the
response parameters (left) and the smearing parameters (right). The triangles represent the
standard deviation of 100 measurements performed with the same data but different simula-
tions, the stars represent the MC uncertainty predictions from Eq. 18, the two are in very good
agreement validating the predictions. In addition the statistical uncertainties for each parame-
ters are also presented (dashed line), since the data sample and simulation samples are of the
same size, the MC uncertainties and the statistical uncertainties are of the same order.

3 Categorisation vs pT and validation with a Pythia-based MC sim-
ulation

The method presented in this document is designed to properly work when the set of proper-
ties X⃗ used for the lepton categorisation is not affected the measured energy-scale and smearing
parameters. When the transverse momentum pT or the energy E of the leptons enter the cate-
gorisation, the measured parameters may suffer from biases due to category migration and/or
correlation between the categorisation and the reconstructed di-lepton invariant mass.

Since these biases are strongly correlated with the pT spectrum of the lepton, we use a realistic
DY simulation based on the Pythia MC event generator [4]. For each of two leptons from the
Z-boson decay, its energy is smeared a first time according to a normal distribution with mean
µsim = 1 and standard deviation σsim = 1.5 %, the event properties in this simulation are re-
ferred to as sim (e.g. mℓℓsim, pTsim) . A total number of 30 × 106 events are generated this way.
Half of this sample is used as reference simulation. For the other half, we introduce an addi-
tional decalibration and smearing of the lepton energies (referred to as injected parameters) to
emulate the difference between the real detector and the simulated one, . We further proceed
in measuring the scale and smearing parameters with a lepton-pT dependent categorisation.
The results are presented on Fig. 5. We observe a small bias introduced in the measured scale
parameters (below 0.1 %) and a larger bias of the measured smearing parameters.

In order to comprehend these biases, we select events with one lepton with 45 < pTℓ < 50 GeV
and the other with 50 < pTℓ < 60 GeV. These events exhibit a double-peak structure re-
constructed di-lepton mass mℓℓ as shown on Fig. 6a, this is due to a threshold effect related
to the pT requirements. In addition, the two peaks have different correlation to the original
mℓℓsim, the peak at the Z-boson mass is not correlated while the secondary peak is strongly
correlated. These correlations are presented on Fig. 6b. These effects introduce the biases
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Figure 4: Adaptative binning: The bin width is adapted so that the total number of events in
the simulation is the same in each bin, the total number of bins in each category depends on
the available MC statistics in this category. The points corresponds to the fitted data (in this
case a toy MC dataset) while the histogram refers to the fitted prediction from the smeared
simulation.

described above, especially when the two peaks tend to mix (for instance for symmetrical
pT requirements). These biases can be removed by selecting events based on the relative
pT defined as rpT

= pTℓ/mℓℓ. As a comparison to the absolute pT selection, we apply the
relative pT criteria: one lepton with 45/mZ < pTℓ/mℓℓ < 50/mZ GeV and the other with
50/mZ < pTℓ/mℓℓ < 60/mZ GeV where mZ is the Z-boson mass [3]. The di-lepton mass mℓℓ is
shown on Fig. 6c and the correlation to the simulated mass on on Fig. 6d, demostrating that the
double-peak structure in the mℓℓ distribution as well as the related correlations to the simulated
mass disappear with the relative pT selection.

In light of the properties of the relative pT categoriation, we adopt the following procedure
to measure the scale and smearing parameters. The lepton-pT categorisation is replaced by a
relative pT categorisation using, in place of pT, the variable pT/mℓℓ, the relative pT binning is
defined as the original pT binning ([pT1, pT2, . . . , pTn]) divided by mZ. A first fit is performed
to extract the energy-scale parameters, and the lepton pT and di-lepton mass mℓℓ are corrected.
A second fit is performed to measure the energy-smearing parameter, indeed the relative pT
categorisation introduces a correlation between the two leptons and thus the scale must be 1
to properly extract the smearing parameter. Nevertheless, in order to correct the scale and/or
smear the lepton energy in the simulation, one needs an absolute lepton pT criterium. There-
fore the relative pT binning is transformed back into an absolute pT binning. In each relative
pT bin b, the average absolute pT, p̄Tb, is computed and used to define an absolute pT binning:
[pT1, 0.5 × ( p̄T1 + p̄T2), . . . , 0.5 × ( p̄Tbk + p̄Tk+1), . . . , pTn] . It is observed that this pT-binning
recasting is very close to the original pT categories used as input. The results from this pro-
cedure are presented on Fig. 7, the x axis is obtained from the recasted absolute pT binning
aforementioned. In addition, the injected parameters presented in the figure, are measured in
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Figure 5: Measured scale (left) and smearing (right) parameters with the Pythia-based DY sim-
ulation described in the text. The dashed line corresponds to the injected parameters, the
shaded uncertainties represent the contribution due to the limited MC statistics to the total
uncertainty. One can observe that a pT dependent categorisation introduces a bias both in the
measured scale and in the measured smearing parameters.

the recasted-pT categories meaning that they actually correspond to the scale and smearing pa-
rameters that would be apply when correcting the energy-scale and/or smearing the energy in
the simulation. Note that this 2-steps fit procedure does not improve the smearing parameters
in the situation of Fig. 5, since for the absolute pT binning case the second fit converges to the
exact same smearing parameters as the first one (this is expected as there are no correlation
introduced between the two electrons as opposite to the relative pT binning case).

From Fig. 7, one can observe that both the scale and smearing parameters are properly retrieved
within the uncertainties, with the exception of the first pT bin for the scale parameter which is
slightly biased, this is due to the absolute pT cut: pT > 25 GeV.

Conclusion
In this document, we propose a novel method to measure the energy-scale and smearing cor-
rections so that the lepton-energy in the simulation as similar properties as the one in data.
The method is based on the minimizarion of negative log-likelihood comparing the di-leptong
mass distribution between data and simulation to fit the scale and smearing parameters. The
computation of the likelihood relies on an analytical smearing method which allows to use the
automatic gradient capabilities of the TensorFlow library which fastens the minimization by
several orders of magntitude compare to method such as the one used in Ref. [2]. In addition,
because no random numbers are used to compute the likelihood, the likelihood dependence
on the scale and smearing parameters are continuous which garanties a robust minimization.
Eventually, the method is further adapted to the lepton-pT categorisation case.
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Figure 6: Left: reconstructed di-lepton mass for the absolute pT categorisation (top) and rel-
ative pT categorisation (bottom). Right: Correlation between the di-lepton mass smearing
(mℓℓ/mℓℓsim) from the detector level simulation and the simulated di-lepton mass.
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Figure 7: Measured scale (left) and smearing (right) parameters with the Pythia-based DY sim-
ulation described in the text using the relative pT categorisation. The dashed line corresponds
to the injected parameters, the shaded uncertainties represent the contribution due to the lim-
ited MC statistics to the total uncertainty.
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