Highlights of SM measurements including Top with the ATLAS experiment at the LHC

John McGowan MIAMI 2024

Introduction

- Recent highlights from ATLAS Standard Model and Top quark physics program
 - W/Z (+jets) production measurements
 - Multiboson measurements
 - Measurements of jet observables and measurements sensitive to UE
 - Top quark (+jet) measurements

W/Z Boson Production Measurements

Measurement of W/Z production Cross sections at 13.6 TeV

- $W^+ \rightarrow \ell^+ v, W^- \rightarrow \ell^- v$, and $Z \rightarrow \ell^+ \ell^- (\ell = e, \mu)$ production XS 4250 ± 150 pb, 3310 ± 120 pb, and 744 ± 20 pb
- Standard-Model predictions calculated at NNLO in α_s and NLO in $\alpha_{\rm EW}$

Measurement of Z production in association with b or c jets at 13 TeV

- First ATLAS measurement of Z+charm production
- Generators underestimate Z+c jet cross section

Eur. Phys. J. C 84 (2024) 984

Simultaneous unbinned differential cross section measurement of twenty-four Z+jets kinematic observables

- MULTIFOLD used to produce simultaneous measurements
- Result is presented unbinned as a dataset of particle-level events

Particle Level Unbinned Z+jets differential distributions

- MULTIFOLD algorithm is used to simultaneously unfold 24 observables
 - Smooth weighting function learned by NN correcting reconstructed level MC to data
 - Weights are propagated to particle level
 - New reweighting learned correcting particle level to corrected particle level
 - Weighting propagated back to detector level
 - Done for pre-defined number of iterations

- Larger uncertainties than Iterative Bayesian unfolding
- Allows for re-analyzing results at particle level: constructing new observables from 24 input observables, applying selections to different kinematic regions and adjusting binning.
- Usage recommendations provided.

Particle Level Unbinned Z+jets differential distributions

- 24 input variables unfolded
 - \circ p^T and rapidity of di-muon system
 - p^{T} , η , ϕ of two muons
 - p^T, rapidity of two leading charged particle jets
 - Masses, charged particle multiplicities and N-subjettiness ratios of 2 leading jets

Particle Level Unbinned Z+jets differential distributions

• Additional "derived" variables that were not directly unfolded

- τ_2/τ_1 is a useful observable for hadronic W/Z identification
- $\Delta \bar{R}(\ell l, \Box j_1)$ sensitive to higher order effects
- Potential use case is event generator tunes improving modelling of parton showers, hadronization and the underlying event

Multiboson Measurements

Fiducial and differential cross-section measurements of electroweak Wyjj production

- Observation of electroweak process with a neural network
- Measurement in 6 kinematic observables
- aQGC constraints

Eur. Phys. J. C 84 (2024) 1064

Measurement of Polarization Fractions and RAZ effect in WZ Production

- Energy-dependence of diboson polarization fractions in $WZ \rightarrow \ell \nu \ell' \ell'$ ($\ell, \ell' = e, \mu$) production
- Radiation Amplitude Zero effect
- Unfolded $\Delta Y(\ell_W Z)$ and $\Delta Y(WZ)$

Phys. Rev. Lett. 133 (2024) 101802

Measurement of Polarization Fractions and RAZ effect in WZ Production

- Radiation Amplitude Zero effect: WZ production suppressed
 - Dominant helicity amplitude with two transversely polarized is 0
 - Experimental signature is a dip at 0 in $\Delta Y (WZ)$ and $\Delta Y (\ell_W Z)$
- Hard to measure with NLO QCD corrections: reduce jet activity by cutting on p_T^{WZ}
- Quantify presence of dip using $D = 1 - 2(N_{central}/N_{sides})$

where

 $N_{central}$ is N events with $|\Delta Y (WZ)| < 0.5$ N_{sides} is N events with $(0.5 < |\Delta Y (WZ)| < 1.5)$

Measurement of Polarization Fractions and RAZ effect in WZ Production

- BDT is trained to separate 00 and other polarization states.
- Binned MLE fit performed on BDT distributions
- 5.2 (4.3) σ for f_{00} in 100 < $p_T^Z \le 200 \text{ GeV}$

BDT score

	Measurement			Prediction	
8	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$
f_{00}	$0.19 \pm _{0.03}^{0.03}$ (stat) $\pm _{0.02}^{0.02}$ (syst)	$0.13 \pm _{0.08}^{0.09}$ (stat) $\pm _{0.02}^{0.02}$ (syst)	$ f_{00}$	0.152 ± 0.006	0.234 ± 0.007
f_{0T+T0}	$0.18 \pm_{0.08}^{0.07} (\text{stat}) \pm_{0.06}^{0.05} (\text{syst})$	$0.23 \pm_{0.18}^{0.17} (\text{stat}) \pm_{0.10}^{0.06} (\text{syst})$	for	0.120 ± 0.002	0.062 ± 0.002
f_{TT}	$0.63 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.04}^{0.04} (\text{syst})$	$0.64 \pm_{0.12}^{0.12} (\text{stat}) \pm_{0.06}^{0.06} (\text{syst})$	f_{T0}	0.109 ± 0.001	0.058 ± 0.001
f_{00} obs (exp) sig.	5.2 (4.3) σ	1.6 (2.5) σ	ftt	0.619 ± 0.007	0.646 ± 0.008

Measurement of Jet Cross-Section Ratios

- Observables sensitive to JES, angular distribution of radiation due to QCD measured double differentially in bins of jet multiplicity
- Precision benefits from improvements in modelling of JES uncertainties

Phys. Rev. D 110, 072019 (2024)

Measurement of Jet Track Functions

- Measurement of r_q = p^T_{tracks}/p^T_{jet}
 Measurement of r_q enables
- Measurement of r² enables determination of universal track functions.
- Important input to theoretical models of jet formation

ATLAS Preliminary

s = 13 TeV, 140 fb

Central n bin

Total Syst

0.2 0.3 0.4 0.5 0.6

600 GeV < p < 800 GeV

....

Stat

Tracking

원부

Ratio to Data

Relative uncertain 0.5

- K_S⁰ and Λ production ratios measured and compared to different generators
- Hadronisation and UE models considered cannot describe the data over the full kinematic range considered

CERN-EP-2024-105

ATLAS-CONF-2024-012

IES+IEF

Data

Pythia

Sherpa (AHADIC

Sherpa (Lund)

Improved JES in Measurement of Jet Cross Section Ratios

- Response of ATLAS to jets depends on underlying particle spectra
- Previously: 2 point comparison between herwig and pythia gluon jets
- Now
 - UI/MPI/Shower: Pythia vs. Sherpa lund string
 - Hadronization: Sherpa AHADIC cluster-based model and the Lund string model
 - Shower: Herwig angle ordered vs. dipole PS
- Does not consider models disfavored by data
- Derived/applied per jet flavor
- Uncertainty goes from dominant to subdominant

Measurement of Jet Track Functions

- Track functions characterize the p^T fraction r_g carried by charged hadrons from a fragmenting quark/gluon
- Non-perturbative + must be determined by experiment
- Analysis:
 - 2 leading p^T jets in multijet events ($p^T_i > 240 \text{ GeV}$)
 - Tracks with $p^T > 500 \text{ MeV}$
 - Measure r_q in central and forward regions
 - $\circ \quad \text{Use improved JES} \\$
 - MULTIFOLD used

 r_{d} underestimated at low p^{T} , overestimated at high p^{T}

Measurements with Top Quarks in p-Pb and Pb-Pb

Observation of Top Pair Production in Proton-Lead Collisions

- 165 nb⁻¹ of p+Pb, \sqrt{s} = 8.16 TeV
- First observation of top pair production in p+Pb collision at the LHC
- Cross section and measurement of nuclear modification factor in good agreement with SM and state of the art predictions

JHEP 11 (2024) 101 John McGowan (University of Victoria)

Observation of Top Pair Production in Lead-Lead Collisions

- Probe nuclear PDF
- Measure cross-section in single lepton and dilepton channels
- Measurement of nuclear modification factor R_{DA}

https://arxiv.org/pdf/2411.10186

Measurements with Top Quarks

Search for same charge top quark pair production

- Neural networks used to select regions sensitive to BSM couplings enhancing same sign quark pair production
- No significant excess
- Limits on total cross section and relevant SMEFT Wilson coefficients set.

Measurement of top pair production in association with b-iets

- Measurement of top pair production+b-quarks in e_{μ} channel
- Differential cross sections measured with ~10% precision
- Fid. XS consistent with NLO prediction
- No state of the art theoretical predictions accurately describe all measured observables

Measurement of Top Quark Pair Production in Association with Charm Quarks

- Top quark pair production with single charm quark and ≥ 2 charm quarks measured.
- See Sergei's talk!

CERN-EP-2024-242

Observation of Quantum Entanglement with Top Quarks

- Large top mass and short lifetime: quantum numbers are transferred to its decay products
- Angular direction of leptons correlated with direction of spin of parent top quark
- Define entanglement marker as D = 3(cos φ)
- D < -¹/₃ is sufficient criteria for existence of entangled state.
- Measurement performed near production threshold where top quark pairs are maximally entangled
- Measurement unfolded for detector effects → entanglement observed at particle level D^{obs(exp)} = -0.537 ± 0.002 [stat.] ± 0.019 [syst.] (-0.470 ± 0.002 [stat.] ± 0.017 [syst.])

Conclusion

- The ATLAS run 2 dataset continues to provide for a rich program of Standard Model measurements
- Many new measurements and novel analysis techniques
 - Simultaneous unfolding of multiple observables with MULTIFOLD
 - WZ polarization fractions and Radiation Amplitude Zero effect
 - Jet Track Function Measurements
 - Quantum Entanglement in Top Quark Pairs
- No hints of new physics in the measurements presented
- Valuable feedback for the community as to where generators are not describing the data.
- Just getting started with run 3 results!

Measurement of top pair production in association with b-jets

John McGowan (University of Victoria)

(b)

(a)

Search for same-sign top pair production

Z + heavy flavor jets

- Broad agreement of fiducial XS between different generators.
- No generator accurately describes distributions over full range

Wy + jet production

- Measurement performed in VBS enhanced region
 - 0 jets in rapidity gap between leading jets
 - Low lepton-photon centrality (<0.35)
- Modelling uncertainties dominate
 - Only LO signal prediction

