

Primary vertex time reconstruction using the LHCb RICH detectors

LHCC Poster Session 2024, 18 November 2024

Lorenzo Malentacca^{1,2}, Floris Keizer¹, on behalf of LHCb RICH collaboration

¹ CERN, ² Milano-Bicocca University

. Introduction and motivation

During LHC High-Luminosity phase, the LHCb RICH detector will face challenges due to increased particle multiplicity and pile-up of hits in the photon detector. Introducing sub-100 ps time information is crucial to maintaining excellent particle-identification (PID) performance. The LHCb RICH collaboration will introduce timing during the LS3 Enhancements [1], using a new front-end electronics readout chain based on the FastRICH ASIC [2], capable of timestamping photon detector hits with ~25ps time bins.

- Improved PID performance during Run 4.
- > New fast-timing perspective to LHCb including a primary vertex (PV) time estimate during Run 4.
- > Introduction of technologies for high-Iuminosity operation ahead of Upgrade II.
 - > New photodetectors for the RICHs.
 - \succ PV time from tracking.

	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	
	Run 3					LS3				Run 4			LS4		Run 5		
CÉRN	LHC 13TeV					LHC 14TeV											
<i>LHCb</i>		2x10 ³³ cm ⁻² s ⁻¹ ; 23fb ⁻¹				LS3 Enhancements				2x10 ³³ cm ⁻² s ⁻¹ ;50fb ⁻¹			Upgra	ade II	1.5x1	1.5x10 ³⁴ cm ⁻² s ⁻¹ ; 300fb ⁻¹	

RICH 1

2. The time information in the RICH detectors

Cherenkov photons from a given track arrive almost simultaneously to the photodetector plane. However, photon time-of-arrival ('S') for multiple bunch crossings is spread across a few 10^5 nanoseconds, mainly due to the PV time spread.

Without event reconstruction, the best time-based filtering is a nanosecond-scale time shutter around the expected RICH detector hit time.

value ~ $\pm 2\sigma_{det}$) and the precision of the PV time estimate.

compares the simulated The plot performance of Run 3 and Run 4, assuming a MAPMT time resolution of 150 ps and an exact PV time. [1][4] Uncertainty in the PV time will propagate to the predicted photon time and may require a wider software time gate to be chosen.

5. Results

The two proposed cuts show an average purity increase of ~30%, with less than 1% of PVs lost.

Applying the two proposed cuts results in a resolution of 97ps FWHM.

Further studies are ongoing, focusing on eventspecific selections rather than global cuts.

- Impact of the number of PVs in the event on the PV time resolution.
- Algorithm to identify isolated tracks, which make the best contribution to the estimated PV time. Subsequently, the hits associated to that PV

KEY REFERENCES

[1] LHCb Particle Identification Enhancement Technical Design Report, CERN-LHCC-2023-005, LHCB-TDC-024. [2] The FastRICH ASIC for the LHCb RICH enhancements, F. Keizer, Nuclear Instruments and Methods in Physics Research (https://doi.org/10.1016/j.nima.2024.169664) [3] Sub-nanosecond Cherenkov photon detection for LHCb particle identification in high-occupancy conditions and semiconductor tracking for muon scattering tomography, F. Keizer (Doctoral Thesis). [4] Proposal for LHCb RICH detector enhancements during LHC Long Shutdown 3, CERN-LHCb-PUB-2021-014

can be removed to reduce background for the other PVs.

- Isolated-rings finder algorithm.
- Machine-Learning model.

6. Summary and outlook

- The study shows how the time information can be integrated in the RICH detector and used to estimate the PV T_0 , with a particular focus on the PO properties that can be exploited to improve the resolution.
- A sub-100 ps resolution (FWHM) has been achieved for ~99% of the PVs.

Ongoing studies aim to further improve the PV time resolution with the goal of enhancing the PID performance of the RICH detector during Run 4.