
The migration to a standardized architecture for developing
systems on the Glance project

Carlos Henrique Ferreira Brito Filho1,∗, Gabriel Jose Souza e Silva1,∗∗, and Gloria Corti2,∗∗∗

Joel Closier2,∗∗∗∗

1Universidade Federal do Rio De Janeiro, COPPE/EE/IF, Brazil
2European Organization for Nuclear Research, Switzerland

Abstract. The Glance project is responsible for over 20 systems across three
CERN experiments: ALICE [1], ATLAS [2] and LHCb [3]. Students, engi-
neers, physicists and technicians have been using systems designed and man-
aged by Glance on a daily basis for 20 years. In order to produce quality prod-
ucts continuously, considering internal stakeholder’s ever-evolving requests,
there is a need for standardization. The adoption of such a standard had to
take into account not only future developments but also legacy systems of the
three experiments. These systems were created using an in-house built frame-
work, and, as they scaled, became difficult to maintain due to the framework’s
lack of documentation and use of technologies that were becoming obsolete.
Migrating them to a new architecture would mean speeding up the develop-
ment process, avoiding rework and integrating CERN systems widely. Since
a lot of the core functionalities of the systems are shared between them, both
on the frontend and on the backend, the architecture had to assure modularity
and reusability. In this architecture, the principles behind Hexagonal Archi-
tecture are followed and the systems’ codebase is split into two applications:
a JavaScript client and a REST backend server. The open-source framework
Vue.js was chosen for the frontend. Its versatility, approachability and extended
documentation made it the ideal tool for creating components that are reused
throughout Glance applications. The backend uses PHP libraries created by the
team to expose information through REST APIs both internally, allowing eas-
ier integration between the systems, and externally, introducing to users outside
Glance information managed by the team.

1 Introduction

Glance [4] was originally a single system created as an abstraction layer to perform CRUD1

operations over several databases. One of its main features was recognizing the structure
of the selected database, allowing the user the creation of customized views for searching
and inserting data. Glance was designed to be generic and was not able to cope with new

∗e-mail: carlos.brito@cern.ch
∗∗e-mail: gabriel.jss@cern.ch
∗∗∗e-mail: gloria.corti@cern.ch
∗∗∗∗e-mail: joel.closier@cern.ch

1Create, Read, Update, Delete

EPJ Web of Conferences 295, 05021 (2024) https://doi.org/10.1051/epjconf/202429505021
CHEP 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

requirements, which often involved more specialized features. In order to fulfill these re-
quirements, systems were created on top of Glance, using the tool to easily retrieve and alter
data. This later part evolved into FENCE [5], an acronym for Front-ENd ENgine for glaNCE,
a Web framework created with the purpose of unifying the interfaces for these systems. Even
though FENCE was designed to be used alongside Glance, it became a framework encom-
passing both the backend and the frontend, which resulted in FENCE becoming a framework
with highly coupled concerns. Being an in-house framework with limited customization com-
bined with a lack in documentation and the aforementioned coupling concern made it very
difficult to maintain. A new architecture for systems built with FENCE was adopted, moving
away from the framework and focusing on creating maintainable applications with modern
programming practices using free, well documented and open-source software.

2 Glance

Introduced in 2003, Glance simplified the access and integration of technical coordination
data for the ATLAS experiment at CERN stored in diverse databases. It utilized XML markup
language to describe interface and seamlessly connected to different storage technologies,
including Oracle, MySQL, and Microsoft SQL Server.

Glance’s key feature was its automatic recognition and presentation of the internal struc-
ture of databases, providing users with insights into data organization without requiring previ-
ous knowledge of the database itself. It allowed the creation of customized search and inser-
tion interfaces, facilitating efficient data retrieval and manipulation across multiple sources.

Glance provided a user-friendly web interface for accessing these interfaces, making it
versatile and easy to use. It offered flexibility in delivering retrieved information by allowing
the user to export the results in various formats such as HTML, XML, and CSV.

However, the Glance’s interfaces were not able to adapt and keep pace with the require-
ments as they evolved. For this reason a new framework had to be developed to make use of
Glance’s data retrieval capabilities and address its limitations on the presentation layer.

3 FENCE

FENCE (Frontend ENgine for glaNCE) was the framework developed by the team with the
goal of facilitating the generation of content for user interfaces, and constitutes the first at-
tempt at creating a standard across the three CERN experiments (ATLAS, ALICE and LHCb)
where Glance is used for creating and managing web systems for collaboration and equip-
ment data.

In its conception, FENCE would work with Glance serving as an API (Application Pro-
gramming Interface) providing the data for the frontend, which would format it accordingly
and display it to the user via a friendly web interface. JSON2 configuration files were used
to efficiently store and manage the system’s rules. By loading these files into the engine, it
dynamically created HTML responses for users’ browsers. The advantage lies in its ability to
modify an application’s behavior by targeting configuration files rather than making changes
directly to the source code. However, the core functionalities of a system were primarily
handled on the server, ensuring secure manipulation of sensitive data and access control.

FENCE was designed as a framework to be easy to adopt by requiring minimal code to
get a basic application setup up and running. This approach allowed for the efficient imple-
mentation of user-requested changes and the development of over 20 web systems in the three
experiments. The trade-off with this design was the difficulty and time needed to implement

2JavaScript Object Notation

EPJ Web of Conferences 295, 05021 (2024) https://doi.org/10.1051/epjconf/202429505021
CHEP 2023

2

Figure 1: Structure of FENCE based ap-
plications

Figure 2: Structure of the new architec-
ture applications

unique and specific features because of its rigidity and inflexibility. The lack of documenta-
tion for FENCE exacerbated the problem. Taking this into account, the development of the a
newer architecture began.

4 Architecture

Systems developed using FENCE were created under a single repository with FENCE as one
of its dependencies. Before the creation and adoption of the new architecture, the LHCb
experiment had two systems in production: the Membership system which was taking case,
among other things, for the administrative management of members and their employments,
and the LHCb Equipment Management system, addressing the registration and tracing of
equipment in the experimental cavern. The strucutre of the LHCb’s system as implemented
with FENCE is depicted on Figure 1.

The first step in developing the new architecture was defining these systems as separate
applications with their own GitLab repositories. This restructuring followed the Hexagonal
Architecture design alongside with Domain-Driven Design (DDD) principles [6] . Hexagonal
Architecture promotes isolating the business logic from the infrastructure and technology-
dependent code in a way that the core functionality of the application is not concerned by the
details of how it interacts with the outside world. According to Noback [7], this separation
of concerns goes in harmony with DDD principles, ensuring that all the core business logic
has a single source of truth, which is the backend domain. In turn, this facilitates adapt-
ing to changing requirements and introduces flexibility since it allows adding or removing
components as needed to scale the applications.

The implementation of this new architecture started by separating the applications into
two parts: a JavaScript client and a REST backend server. Through a REST interface, data
can be exposed to frontend clients, other CERN APIs and even external applications. Code
sharing is made possible through bundles which are small Gitlab repositories that can be
included as part of the application’s dependencies. Since the tools developed by the team are
internal open-source within CERN, these bundles allow better integration not only within the
team but also CERN as a whole. The structure of the new architecture is depicted on Figure 2.

4.1 Backend

The REST backend server described utilizes the FENCE REST API (FRAPI) [8], an in-house
tool that serves multiple purposes within the system. First and foremost, FRAPI handles the

EPJ Web of Conferences 295, 05021 (2024) https://doi.org/10.1051/epjconf/202429505021
CHEP 2023

3

authorization process with CERN’s services, ensuring secure and authenticated access to the
server’s endpoints. This integration with CERN’s services enhances the server’s security
and allows for seamless authentication. However, FRAPI also allows the creation of public
endpoints in which no authentication is required. This is an use case for accessing certain
data from the collaboration that are public, such as an experiment’s published papers or the
list of associated institutes.

FRAPI is also responsible for building the server’s endpoints. Similar to FENCE, it uses
JSON configuration files for defining and managing the API configuration (such as the type
of authentication and the API endpoints) allowing developers to easily create, modify, and
maintain them. This streamlined approach to endpoint management simplifies the develop-
ment process and promotes efficient code organization.

A logging mechanism is in place, designed to capture and record HTTP requests made
to these endpoints. This logging functionality works on an user basis, saving the requests
made on a file specific for each user. Logging these requests aids in debugging and allows for
security audits.

In summary, FRAPI offers a comprehensive solution for handling authorization, building
endpoints, and logging HTTP requests. Its use allows developers to focus on implementing
the server’s core functionality while benefiting from streamlined development processes.

4.2 Frontend

The choice of the JavaScript client was carefully considered. It had to fulfill specific re-
quirements, including being open-source, well-documented, and capable of creating reusable
components, since many core functionalities were shared across Glance systems. The tech-
nologies chosen were Vue.js [9] along with two key libraries: Vuetify [10] and Vuex [11].

4.2.1 Vue.js

Vue.js, an open-source JavaScript framework, provides the foundation for building the client-
side applications. It has many libraries that enhance and simplify the development process.
It also provides comprehensive documentation, allowing the developers to understand and
implement the requested features. The framework allows the creation of components that
could be easily reused throughout Glance systems, reducing code duplication, improving
maintainability and familiarizing the end user with Glance interfaces.

4.2.2 Vuetify

Vuetify, an open-source material design component framework for Vue.js, offers a wide range
of ready-to-use UI components. Its use further enabled the creation of the aforementioned
reusable components, ensuring consistency and speeding up development.

4.2.3 Vuex

Vuex, a state management pattern library for Vue.js applications, is used in order to effectively
manage state within the applications. It provides a centralized state management solution
which handles complex data flows, ensuring that the state can only be mutated in a predictable
fashion. The components’ view is automatically synchronized, reflecting new values when
the application state is mutated. Vuex’s clear patterns allowed efficient organization and
maintaining of the application’s state.

EPJ Web of Conferences 295, 05021 (2024) https://doi.org/10.1051/epjconf/202429505021
CHEP 2023

4

5 Conclusion

In conclusion, the adoption of the new architecture marks a significant milestone in the evo-
lution of the Glance project, with a clear focus on creating a standard across the experiments
alongside with improving maintainability and code sharing.

In the LHCb context, the migration away from the FENCE framework is currently under-
way, with most of the legacy systems already migrated and efforts being made to complete
the migration of the remaining one. Additionally, two new systems (Radiological Protection
Survey system and Analysis Life Cycle Management system) are already in production and
have been deployed using the new architecture, demonstrating its viability and independence
from FENCE. The ultimate goal of this endeavor is to fully migrate away from FENCE and
utilize the new architecture for all future systems.

This transition signifies a commitment to modernization and lays the foundation for en-
hanced performance, scalability, and maintainability in the evolution of the Glance project.

References

[1] ALICE collaboration. The ALICE experiment at the CERN LHC, JINST 3 (2008)
S08002.

[2] ATLAS collaboration. The ATLAS Experiment at the CERN Large Hadron Collider ,
JINST 3 (2008) S08003.

[3] LHCb collaboration. The LHCb detector at the LHC, JINST 3 (2008) S08005.
[4] C Maidantchik, F F Grael, K K Galvão and K Pommès. Glance project: a database

retrieval mechanism for the ATLAS detector. J. Phys.: Conf. Ser. 119 (2008) 042020.
[5] B Lange, C Maidantchik, K Pommes, V Pavani, B Arosa and I Abreu. An object-

oriented approach to deploying highly configurable Web interfaces for the ATLAS ex-
periment. J. Phys.: Conf. Ser. 664 (2015) 062026.

[6] E Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. 2004.
ISBN: 978-0-321-12521-7.

[7] M Noback. Advanced Web Application Architecture. 2020. ISBN: 978-90-821201-6-5.
[8] FRAPI: Product Requirements v1. URL https://readthedocs.web.cern.ch/fence-

docs/product-requirements/requirements-v1 [accessed 01-Jul-2023].
[9] Vue.js - The Progressive JavaScript Framework. URL https://www.vuejs.org/ [accessed

01-Jul-2023].
[10] Vuetify - A Vue Component Framework. URL https://vuetifyjs.com/en [accessed 01-Jul-

2023].
[11] What is Vuex? URL https://www.vuex.vuejs.org/ [accessed 01-Jul-2023].

EPJ Web of Conferences 295, 05021 (2024) https://doi.org/10.1051/epjconf/202429505021
CHEP 2023

5

http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1088/1742-6596/119/4/042020
http://dx.doi.org/10.1088/1742-6596/664/6/062026
https://readthedocs.web.cern.ch/fence-docs/product-requirements/requirements-v1
https://readthedocs.web.cern.ch/fence-docs/product-requirements/requirements-v1
https://www.vuejs.org/
https://vuetifyjs.com/en
https://www.vuex.vuejs.org/

	Introduction
	Glance
	FENCE
	Architecture
	Backend
	Frontend
	Vue.js
	Vuetify
	Vuex

	Conclusion

