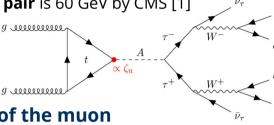
Search for a light CP-odd Higgs boson decaying into a pair of τ-leptons in *pp* collisions at 13 TeV with the ATLAS detector

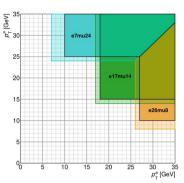

Tom Kreße on behalf of the ATLAS collaboration

160th LHCC Meeting CERN - 18th Nov 2024

Motivation

Exploring uncovered low-mass range

- * Lowest mass probed for a **gluon-gluon fusion** produced CP-odd Higgs boson decaying into a *t***-lepton pair** is 60 GeV by CMS [1] (90 GeV by ATLAS [2])
- ☆ Now probing mass range *m*_A = 20 – 90 GeV

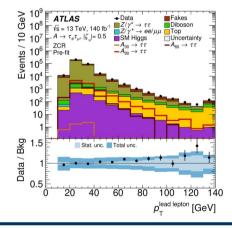

Explaining g-2 discrepancy of the muon

- \star Deviation of up to 5 σ between experiment and theory [3]
- Could be explained by a loop contribution involving a light CP-odd
 Higgs boson within the flavor-aligned 2HDM [3]

Strategy and selection

Strategy

- * **Leptonic decay channels** to exploit low lepton $p_{\rm T}$ trigger thresholds
- ☆ Exactly **one electron** and **one muon** to reduce background from *Z* boson decays


★ Estimate invariant mass of τ⁺τ⁻ system
 with likelihood-based Missing Mass
 Calculator algorithm

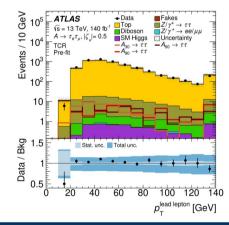
		SR		ZCR	TCR	FVR
Selection		Low-mass	High-mass			
	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 50 GeV	> 30 GeV	-	> 30 GeV	-
	$m_{\mathrm{T}}^{\mathrm{tot}}$	< 45 GeV	< 65 GeV	< 65 GeV	< 65 GeV	< 65 GeV
	$\Delta R_{\ell\ell}$	< 0.7	< 1.0	> 1.4	< 1.0	> 1.4
	$q_e \times q_\mu$	-1	$^{-1}$	-1	-1	1
	nb-jets	0	0	0	≥ 2	0

Background modeling

$Z \rightarrow \tau \tau$ control region

- ☆ Validate **most important background** of the analysis: *Z* → *ττ*
- ★ Extract weights to **reweight** $Z \rightarrow \tau \tau$ **MC** background to data

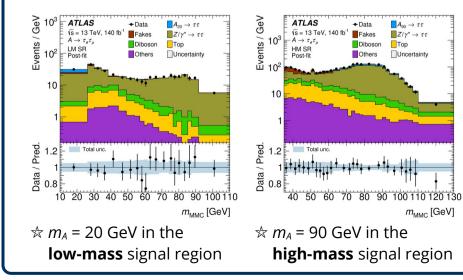
★ Using **data-driven matrix method** to estimate


Fake validation region

- background from **non-prompt leptons** & validate it
- ☆ Parametrize lepton efficiencies in tightness of accompanying lepton

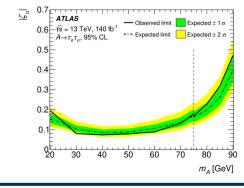
Top control region

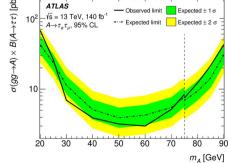
- Validate background from top-quark processes
- ☆ Reweighting $p_{\rm T}^{\rm lead \, lepton}$ of $t \bar{t}$ process to apply NNLO QCD and NLO EW corrections



Results

the second has the table of the set of the second sec


- No significant excess above CM predicti


Fit results in the signal regions

- No significant excess above SM prediction observed
- ☆ Exclusion limits set on the cross-section times branching ratio

☆ First time exploring the mass range 20–60 GeV

★ **Exclusion limits set** on the absolute value of the up-type quark coupling parameter $|ζ_u|$ within the flavor-aligned 2HDM [3]

☆ **Improving on previous limits** |ζ_u|< 0.5 [3] over the full mass range

