Latest measurements of heavy-flavour production in heavy-ion collisions at LHCb

Jianqiao Wang on behalf of the LHCb collaboration

December 7, 2024

▲□▶ ▲御▶ ★필▶ ★필▶ [편]

1 LHCb detector for heavy-ion physics

- 2 Open heavy-flavour production
- 3 Heavy quarkonia production
- 4 Charm production in fixed-target collisions
- 5 LHCb in Run3
- 6 Summary and prospect

LHCb detector

- Single-arm forward spectrometer, covering the pseudo-rapidity range of $2 < \eta < 5$
- Designed for studying particles containing b or c quarks
- Playing more and more important roles in heavy-ion physics

LHCb detector

• Provide excellent vertex reconstruction and seperation, precise tracking, full PID, efficient and fast trigger, and unique acceptance for heavy-ion physics

• Beam-gas fixed target mode can be aquired by injecting gases in VELO detector

4 D b 4 A b

• Huge *pp* collision datasets for small-system studies

글 🖌 🖌 글 🖌 그 글 님

LHCb acceptance

• Unique kinematic coverage of low-x (pPb), medium-x (Pbp) and large-x (fixed target) regions

Open heavy-flavour production

- Prompt D^+ and D_s^+ in 5.02 TeV pPb: JHEP01(2024)070
- Prompt D^+ and D_s^+ in 8.16 TeV pPb: Phys.Rev.D110,L031105

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

- Prompt Ξ_c^+ in 8.16 TeV *p*Pb: Phys.Rev.C109(2024)044901
- Λ_b^0/B^0 in 13 TeV pp: Phys.Rev.Lett.132(2024)081901

Modification of nPDFs in pPb

• Nuclear modification factor $R_{p\rm Pb}$ of charm hadrons help to constrain gluon nPDF below $x\sim 10^{-5}$

- Significant suppression at forward rapidity
- Slight differences between hadron species at backward, hinting at possible final-state effects

Modification of nPDFs in pPb

 $\bullet\,$ Forward-backward production ratio can be calculated without pp reference

- The suppression at forward rapidity well reproduced by nPDF predictions
- $\bullet\,$ Different trend towards high $p_{\rm T}$ for different hadrons

Baryon-to-meson ratio

• Enhanced baryon production considered as a signature of modification of hadronisation and existence of quark coalescence

- Significant increasing trend of A_b^0/B^0 with multiplicity, suggesting the contribution from coalescence in addition to fragmentation in *b* quark hadronisation
- Λ_b^0/B^0 less enhanced at high $p_{\rm T}$, where fragmentation is expected to become donimant

Strangeness ratio

• Strangeness enhancement is another signature of quark coalesence due to abundant $s\overline{s}$ pairs in medium

- First observation of strangness enhancement for charm production in small systems, consistent with the evidence from B_s^0/B^0 ratio
- Coalescence contribution need to be considered for a better description of data points

Ξ_c^+/Λ_c^+ and Ξ_c^+/D^0 production ratio

• Aim to study strangeness enhancement and modification of baryon-to-meson ratio at the same time in pPb

- No significant dependence on $p_{\rm T}$ of $R_{\Xi_c^+/\Lambda_c^+}$ and $R_{\Xi_c^+/D^0}$
- Discrepancy with ALICE results, hinting at rapidity dependence of the ratio

Heavy quarkonia production

- Prompt $\psi(2S)/J/\psi$ with multiplicity in 13 TeV pp: JHEP05(2024)243
- Prompt and non-prompt $\psi(2S)$ in 8.16 TeV pPb: JHEP04(2024)111

- Prompt $\psi(2S)/J/\psi$ with centrality in 5.02 TeV PbPb: arXiv:2411.05669
- $\Upsilon(3S)$ and $\Upsilon(2S)/\Upsilon(1S)$ with multiplicity in 13 TeV *pp*: LHCb-PAPER-2024-038, in preparation
- χ_c into prompt J/ψ in 8.16 TeV pPb: Phys.Rev.Lett.132(2024)102302
- $\chi_{c1}(3872)$ and $\psi(2S)$ in 8.16 TeV *p*Pb: Phys.Rev.Lett.132(2024)242301
- Exotic $J/\psi \phi$ resonance in CEP pp: arXiv:2407.14301

$\psi(2S)/J/\psi$ ratios in pp

- Heavy quarkonia considered aas a thermometer for studying the local temperature where it is produced
- Various bounding energies from 50 MeV to 1 GeV for heavy quarkonia

- Decreasing trend of prompt $\psi(2S)/J/\psi$ ratios with multiplicities, indicating that $\psi(2S)$ are more significantly broken by comoving particles
- Independent of multiplicities for non-prompt ratio
- Consistent ratios with $p_{\rm T}$ across different experiments

EL SOC

Y(1.5) 1100 MeV

J/ψ 640 MeV Y(2S) 530 MeV χ_b(2P) 300 MeV

... Y(3S)180-220 Me

50 MeV

$\psi(2S)/J\!/\!\psi\,$ ratios in $p{\rm Pb}$

• Making comparisons of R_{pPb} for J/ψ and $\psi(2S)$ states to cancel initial-state effects

- A flat trend with $p_{\rm T}$, generally reproduced by CGC models incorporating improved Color Evaporation Model (ICEM) with appropriate parameters
- $\bullet\,$ Dependence with multiplicities and comparison with pp coming soon

$\psi(2S)/J\!/\!\psi\,$ ratios in PbPb

• Regeneration becomes obvious when system size increases

- Regeneration more possible to occur during medium evolution (TAMU) than during freeze-out (SHMc)
- With Run3 data, further investigation with higher precision and more central region will be accessible

$\Upsilon(2S)$ and $\Upsilon(3S) / \Upsilon(1S)$ ratios

• Interactions with comoving particles dominate the nuclear effects in Υ production

- Clear decreasing trend with multiplicity
- $\Upsilon(3S)$ found to be more suppressed with a sequential pattern
- About 35% Υ(2S) from χ_b(2P) and 40% Υ(3S) from χ_b(3P) according to previous χ_b measurement. Stronger suppression of Υ(3S) may originate from χ_b(3P) dissociation

Fraction of χ_c decays in prompt J/ψ

- No χ_c dissociation from final-state effects, suggesting that *p*Pb collisions cannot inhibit the formation of charmonium with binding energy larger than 180 MeV
- χ_c states share similar binding energy (~ 180 MeV) with $\Upsilon(3S)$, while different double ratio measured
- $\chi_b(3P)$ dissociation can also explain this, which has a binding energy (~ 47 MeV) similar to $\psi(2S)$

 $\chi_{c1}(3872)$ production in *p*Pb

- Heavy-ion collisions provide unique insights into structures of exotic states
- $\chi_{c1}(3872)$ state experiences different dynamics with conventional $\psi(2S)$ state

 Increasing trend with system size, different from the suppression with multiplicity in pp collisions, indicating that quark coalescence becomes dominant as system size increases

Phys.Rev.Lett.132,242301(2024)

Exotic $J/\psi \phi$ resonance in CEP

• First observation of exotic hadrons in central exclusive pp collisions

- Clean χ_c signals in $J/\psi \phi$ invariant mass spectrum with only four final-state tracks
- Provides new method to investigate exotic states with CEP/UPCs

Charm production in fixed-target collisions

• $D^0 - \overline{D}^0$ asymmetry in 68.5 GeV pNe: Eur.Phys.J.C83(2023)541

- J/ψ and $\psi(2S)$ in 68.5 GeV pNe: Eur.Phys.J.C83(2023)625
- D^0 and J/ψ in 68.5 GeV PbNe: Eur.Phys.J.C83(2023)658

$D^0 - \overline{D}^0$ production asymmetry in pNe

- Charm production involving high-x partons help to study intrinsic charm of nucleons and nPDFs at large x regions
 - Intrinsic charm: $c\bar{c}$ pairs as sea quarks of nucleons rather than from gluon splitting

- Largest negative asymmetry of $\sim 15\%$ at $y^*\approx -2$
- $\bullet\,$ MS model with 1% intrinsic charm and 10% recombination in good agreement with data

- $J/\psi/D^0$ ratio in 68.5 GeV pNe and PbNe
 - $J/\psi/D^0$ ratio measured as a function of collision size, where initial state effects on $c\overline{c}$ production canceled
 - AB: product of beam and target atomic mass number
 - N_{coll}: number of binary nucleon-nucleon collisions

- 10^{2} 10^{3} 10 10 N_{coll}^{10} AB• The suppression with increasing collision size leads to $\alpha < 1$ and indicates
- additional nuclear effects of J/ψ than D^0 mesons
- Consistency of decreasing trend across pNe, peripheral PbNe and central PbNe collisions, with no evidence of anomalous suppression or QGP formation

Heavy flavour data in Run3

- Much larger sample size from the continuous beam-gas data-taking (SMOG2), which runs simultaneously with high-luminosity *pp* collisions
 - Large pH_2 to pAr data collected
 - Significant optimisations for 2024 data-taking
- Clear D^0 , J/ψ and $\psi(2S)$ peaks!

- Semi-central (~ 30% centrality) data ideally accessible for PbPb 2024 data
- Full centrality for SMOG2 Pb-gas data

Summary and prospect

- Heavy flavour particles are sensitive to nuclear matter effects in heavy-ion collisions, and the LHCb experiment has strong capabilities to study them
- LHCb provide unique access to probes of nuclear matter with heavy flavour production
 - Give stringent test on nPDF at very small and large x regions
 - ▶ Help to study hadronisation mechanisms in heavy-ion collisions with strangeness ratio and baryon-to-meson ratio
 - Investigate quarkonium dissociation and regeneration in various collision systems across wide binding-energy coverage
 - ▶ Search for QGP signatures in different system sizes
- Stay tuned for more heavy flavour results with newly collected Run3 data!

Thanks

Backups

◆□▶
◆□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶

Previous heavy-flavour results with LHCb

- B_s^0/B^0 in 13 TeV pp: Phys.Rev.Lett.131(2023)061901
- Prompt Λ_c^+/D^0 in 5.02 TeV peripheral PbPb: JHEP06(2023)132
- Coherent *J/ψ* production in UPC PbPb: JHEP06(2023)146, Phys.Rev.C105(2022)L032201, JHEP07(2022)117
- Prompt D^0 production in 8.16 TeV pPb: Phys.Rev.Lett.131(2023)102301
- Prompt χ_{c1}/χ_{c2} in 8.16 TeV *p*Pb: Phys.Rev.C103(2021)064905
- Prompt $\chi_c(3872)/\psi(2S)$ with multiplicity in 13 TeV pp: Phys.Rev.Lett.126(2021)092001
- Double charm in 8.16 TeV pPb: Phys.Rev.Lett.125(2020)212001
- B^+ , B^0 and Λ_b^0 in 8.16 TeV pPb: Phys.Rev.D99(2019)052011
- D^0 and J/ψ in 87 GeV pHe: Phys.Rev.Lett.122(2019)132002
- Υ in 8.16 TeV *p*Pb: JHEP11(2018)194
- Prompt Λ_c^+ in 5.02 TeV pPb: JHEP02(2019)102
- Prompt D^0 in 5.02 TeV pPb: JHEP10(2017)090
- J/ψ in 8.16 TeV pPb: Phys.Lett.B774(2017)159
- $\psi(2S)$ in 5.02 TeV pPb: JHEP03(2016)133
- Υ in 5.02 TeV *p*Pb: JHEP07(2014)094
- J/ψ in 5.02 TeV pPb: JHEP02(2014)072

B_s^0/B^0 ratio in pp collisions

• First evidence of strangness enhancement in *b*-quark production

LHCb detector at Run3

CERN-LHCC-2012-007

- Collision rate at 40 MHz
- Pile-up factor $\mu \approx 5$
- New tracking system:
 - Silicon upstream detector (UT)
 - Scintillating tracking fibre (SciFi)
- Full software trigger:
 - ► Remove L0 triggers
 - Read out the full detector at 40 MHz