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We introduce the usage of equivariant neural networks in the search for violations of the charge-parity
(CP) symmetry in particle interactions at the CERN Large Hadron Collider. We design neural networks that
take as inputs kinematic information of recorded events and that transform equivariantly under a symmetry
group related to the CP transformation. We show that this algorithm allows one to define observables
reflecting the properties of the CP symmetry, showcasing its performance in several reference processes in
top quark and electroweak physics. Imposing equivariance as an inductive bias in the algorithm improves
the numerical convergence properties with respect to other methods that do not rely on equivariance and
allows one to construct optimal observables that significantly improve the state-of-the-art methodology in
the searches considered.
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I. INTRODUCTION

The violation of the charge-parity (CP) symmetry is one
of the necessary conditions to allow baryogenesis [1] in the
early Universe and, therefore, one of the key ingredients
needed to explain the observable Universe. The only source
of CP violation in the standard model (SM) of particle
physics is introduced as an extension of the Cabibbo
mixing mechanism [2] by the Kobayashi-Maskawa (KM)
mechanism in the electroweak sector. Several observations
of CP violation stemming from the KM mechanism have
been performed in the past years [3], but this mechanism
alone cannot explain the magnitude of the matter-antimatter
asymmetry present in the Universe. In contrast, numerous
extensions of the SM incorporate additional sources of CP
violation. This, together with the fact that CP violation
manifests itself as a striking experimental signature, makes
searches forCP violation one of the most interesting probes
for physics beyond the SM (BSM).
In this manuscript, we introduce a novel technique to

enhance searches for CP-violating phenomena. We will
focus in collider experiment searches in the SM effective
field theory (SMEFT) framework: We, however, highlight
that the techniques described can be applied to other
contexts in the search for CP violation.
In the SMEFT, new physics contributions are introduced

as a set of operators Oi;d that are added to the SM

Lagrangian density weighted by coefficients, denoted
Wilson coefficients (WCs) ci;d, that regulate the size of
the contribution of each operator:

LEFT ¼ LSM þ
X
i;d

ci;d
Λd−4Oi;d: ð1Þ

Operators in the SMEFT are hierarchically sorted by
their natural dimension d, starting at dimension six for
scenarios relevant to our studies [4]. At dimension six,
there are 1350CP-invariant operators and 1149CP-odd
operators [5], assuming three generations. These operators
introduce additional interactions to those present in the
SM, and, from the phenomenological standpoint, we
distinguish between two BSM contributions to any exper-
imental observable, e.g., a given process’ cross section: We
denote “linear” contributions those that arise from the
interference between the SM and BSM Feynman diagrams,
which contribute linearly as a function of the WCs, and
“quadratic” as those that stem exclusively from BSM
diagrams, which contribute quadratically as a function
of the WCs. In the SMEFT, the linear contribution is the
only one that does not receive contributions from operators
with d > 6; hence, these contributions would be an
unambiguous indication of dimension-six effects.
In addition, when considering CP-odd operators, linear

terms are particularly interesting from the experimentalist’s
point of view. While the quadratic contributions induced by
these operators are CP invariant, the linear contributions are
odd under CP transformations and, therefore, manifest
themselves as asymmetries in CP-odd observables.
Searches based on this feature are particularly robust against
systematic uncertainties such as those related to the
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modeling of the SM prediction, as those are predominantly
CP invariant, and, therefore, cannot induce an asymmetry in
a CP-odd observable.
In this paper, we exploit machine learning techniques to

build optimal CP-odd observables to search for new
physics, using neural networks that transform equivariantly
with a symmetry group associated with the CP trans-
formation. Machine learning is widespread in the context of
high-energy physics; in particular, in the context of EFT
searches, numerous techniques have been developed to
maximally extract information from the Large Hadron
Collider (LHC) data, using dense neural networks, graph
neural networks, and others (see Refs. [6,7] for reviews).
Several studies [8–19] have also shown the power of
equivariant neural networks in exploiting physical sym-
metries present in a number of problems.
This paper is organized as follows. Section II describes

the algorithm we have developed. Section III describes the
application of the algorithm to searches for CP violation in
tt̄, WZ, and tt̄γ production, showcasing its most interesting
properties. We close the document with some conclusions
in Sec. IV.

II. ALGORITHM AND PROPERTIES

Our algorithm constructs a function f∶D → Rn1þn2 ,
where the domainD is the space of per-event input features.
We note that this space can be a subset of Rm for a fixed
dimension m, representing, e.g., the four-momenta of a
fixed set of objects in the event, but can also be as general
as a point cloud including the variable-size list of objects in
the event. We will design f in a way that the first n1
dimensions of its score are odd under CP transformation of
its input and the latter n2 dimensions are invariant under
such transformations. For the purpose of constructing a
single CP-odd observable, one chooses n1 ¼ 1 and n2 ¼ 0;
however, the algorithm we present is more general than
that. Building an algorithm with n1 > 1 can be used to
design a set of observables that are sensitive to a given set
of n1 > 0 CP-odd operators. In addition, algorithms with
n2 > 0 are appropriate when building discriminators aim-
ing to discriminate among different SM backgrounds or
when attempting to obtain variables sensitive to CP-even
operators or the quadratic term induced by a CP-odd
operator.
We impose that f transforms equivariantly with respect to

theZ2 symmetry group, under the following representations
in the domain and target spaces. For the domain, we choose
the representation given by f1; hCPg, where 1 denotes the
neutral element [1ðdÞ ¼ d for all d in D] and hCP the CP
transformation applied to the input variables, which needs to
be specified for each specific problem to be solved. For the
target space, we choose f1n1þn2 ; h̃CPg, where 1n1þn2 is
the identity matrix in Rn1þn2 and h̃CP is a transformation
that acts on a given element of Rn1þn2 , ðx1;…; xn1þn2Þ,

as h̃CPðx1;…; xn1þn2Þ ¼ ð−x1;…;−xn1 ; xn1þ1;…; xn1þn2Þ.
The most general function satisfying this equivariant prop-
erty is defined by its action on any element d in D:

fðdÞ ¼ ðg1ðdÞ − g1ðhCPðdÞÞ;
� � � ;
gn1ðdÞ − gn1ðhCPðdÞÞ;
gn1þ1ðdÞ þ gn1þ1ðhCPðdÞÞ;
� � � ;
gn1þn2ðdÞ þ gn1þn2ðhCPðdÞÞÞ; ð2Þ

where gi are arbitrary functions gi∶ D → R. It is straight-
forward to prove that the first n1 components of f in
Eq. (2) are CP odd, and the last n2 are CP even. In
addition, any function fulfilling this equivariant condition
can be written under the functional form of Eq. (2). In
practice, gi can be parametrized by an appropriately
designed neural network, and, when doing so, such a
function f can be used to approximate any function
satisfying the equivariant property described above. In
this paper, we parametrize gi using multilayer perceptrons
with four hidden layers and between 20 and 80 neurons
each, using leaky rectified linear units as activation
functions. We highlight that more advanced architectures
could be used for more complex use cases.
This algorithm allows to build optimal CP-odd or CP-

invariant observables by training f to minimize the category
cross-entropy in a multiclass classification problem [20] or
by building a surrogate model of the likelihood ratio, using
any of the loss functions described in [21–32], as we do in
Sec. III. Our algorithm further extends the method described
in Ref. [20], which also allows one to build optimal CP-odd
observables, in the following ways. First, our algorithm
allows one to naturally introduce an arbitrary number of
CP-odd or CP-invariant output scores. In addition, our
approach imposes the behavior of the model with respect to
the CP asymmetry in the model architecture, rather through
the loss function and training strategy, leaving the freedom
to choose any cost function suitable for the specific
problem. More importantly, the resulting model fulfills
the imposed equivariance properties, regardless of the
convergence of the training. This aspect, which is illustrated
in Sec. III, is of utmost importance in searches in the
SMEFT framework. Those analyses employ SMEFT pre-
dictions by reweighing simulated samples [33] as we
describe in Sec. III. This reweighing procedure reduces
the statistical power of the samples and often introduces
outliers that may distort the training, spoiling the numerical
convergence. In our algorithm, while this effect could
induce a nonoptimality of the achieved discriminator, the
resulting observables are CP odd or invariant by construc-
tion, regardless of the convergence of the training.
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III. APPLICATIONS OF THE ALGORITHM

We apply our algorithm in the search for CP violation in
the production of a top quark-antiquark pair (tt̄), the
associated production of a W� and a Z boson (WZ) and
the associated production of a top quark-antiquark pair
with a high-energy photon (tt̄γ). We employ realistic
simulations of these processes at the LHC with a
center-of-mass energy of 13 TeV. The hard scattering part
of the collision is simulated using the MADGRAPH5_

aMC@NLO generator v2.9.18 [34], including the decays
of the top (anti)quarks into W� bosons and bottom quarks,
and the subsequent decays of the W� and Z bosons into
leptons [35] or quarks, depending on the final state
considered. SMEFT effects are introducing using the
dim6top [36] model for tt̄ and tt̄γ production, and the
SMEFTSim v3.0 [37] model for WZ production. We use
the PYTHIA v8.3 [38] package to simulate the parton shower
and hadronization and the DELPHES v3.5.0 [39] software
with a detector response description based on the ATLAS
experiment settings (“ATLAS card”). After the event
selection, described in the upcoming sections, we consider
samples of 6.6, 5.8, and 2.5 million tt̄, WZ, and tt̄γ events,
respectively, half of which are used for training and half for
testing. In this study, we consider only the effect of these
signal processes.
We obtain a parametric prediction of our detector-level

observables as a function of the WCs weighting our
simulated events. The weights have a quadratic dependence
on the WCs, wjðcÞ ¼ wSM

j þPi cil
i
j þ
P

ik cickq
ik
j , where

j labels a given simulated event, c represents the vector of
WCs, and wSM

j , lij, and qikj represent the SM, linear, and
quadratic SMEFT contributions, respectively. We derive
these three quantities for each event using MADGRAPH5_

aMC@NLO with the MADWEIGHT [40] module for a
sufficiently large of parameter points to derive a quadratic
parametrization.
We follow the same procedure used in Ref. [41] to obtain

optimal discriminants to capture the linear contribution.
This method, which is similar to the scores approximates
likelihood locally method [22], considers the per-event
likelihood ratio between a given BSM point with WCs c⃗

and the SM, given by pðdjc⃗Þ
pðdjSMÞ, which is a function of the per-

event features d. Since we are interested in the linear
contribution, we consider on the score vector at the SM

⃗tðdÞ ¼ ∇c⃗ logpðdjc⃗Þjc⃗¼SM ¼ ∇c⃗pðdjc⃗Þjc⃗¼SM

pðdjSMÞ ; ð3Þ

which is a sufficient statistic for smaller values of c⃗, where
the linear term dominates. While p is not a tractable
quantity as a function of d, we can use simulations to
learn it. It is indeed shown in Ref. [41] that a function f
minimizing the loss function,

L ¼
X

j∈ events

wSM
j

 
lij

wSM
j

− fðdjÞ
!

2

; ð4Þ

provides a surrogate of the score vector as a function
of the Wilson coefficient i and is, therefore, a sufficient
statistic.
We highlight that this method allows us to naturally

account for the contribution from more than one signal
process or background that do not show any EFT depend-
ence. This is achieved by training on a sample of simulated
events sampled from all processes of interest. wSM

j should
then incorporate each process’ cross section so that the
sample contains the relative contribution of each process
that is expected in data.
When considering background events, since they do not

show any EFT dependence, lij should be taken to be zero. In
this case, the resulting score will play the dual role of, on
the one hand, extracting CP-violating features from the
signal and, on the other hand, discriminating between
signal events, which will typically take values different
from zero, and background events, which will take values
closer to zero.

A. CP violation in tt̄ production

We consider tt̄ production in its dileptonic final state. This
process could receive contributions from the chromoelectric
dipole moment operator OI

tG ¼ ImðQ3σ
μνTAu3Φ̃GA

μνÞ,
which has been exploited in previous searches [42,43]. In
addition, several observables have been proposed [44],
which rely on spin correlations to probe different kinds
of CP-invariant and violating BSM contributions.
Therefore, tt̄ production is, together with WZ production,
an excellent test bed for our method and study the interplay
with those already-proposed based on analytical studies at
parton level.
We select events with two reconstructed leptons (elec-

trons or muons) with transverse momentum pT > 15 GeV
and pseudorapidity jηj < 2.5 with the opposite charge. We
also require the presence of two jets, clustered with the anti-
kT method [45] with parameter 0.4, that are separated in
ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϕ2 þ Δη2

p
< 0.4 with respect to the selected

leptons. We require at least one of the jets to be b tagged.
Our space of input variables D is spanned by the

following variables, whose distribution is shown in
Fig. 1: the three-momentum vector of the positively charged

leptons pþ
l

�!
, the three-momentum vector of the negatively

charged leptons p−
l
�!, the three-momenta of two selected jets

pj1
�! and pj2

�!, and the missing transverse momentum in the

transverse plane pmiss
T

��!
. As the two selected jets, we take the

two leading b-tagged jets. If only one jet in the event is b
tagged, we select it along with the leading non-b-tagged jet.
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The indices of the two jets are assigned at random in order to
have a consistent representation of the CP transformation
hCP. We choose hCP as

hCP
�
pþ
l

�!
; p−

l
�!; pj1

�!; pj2
�!; pmiss

T

��!�
¼
�
−p−

l
�!;−pþ

l

�!
;−pj2
�!;−pj1

�!;−pmiss
T

��!�
: ð5Þ

We train our algorithm by minimizing the loss function
in Eq. (4), associated to the linear contribution of cItG. The
distribution of the regressed score is shown in Fig. 2 for
events distributed under the SM hypothesis and the
interference contribution. As described earlier, the equiv-
ariance condition imposes that the SM distribution as a
function of the score is an even function, while the
interference is an odd function, which is shown in the

FIG. 1. Distribution of tt events under the SM hypothesis of the input variables used in our algorithm. The first three rows show the x
(first row), y (second row), and z (third row) components of the three-momentum of the positive lepton (first column), negative lepton

(second column), first jet (third column), and second jet (fourth column). The last row shows the x and y components of pmiss
T

��!
. It has been

checked that the linear contribution of cItG does not modify the one-dimensional distribution of these variables.
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figure. In addition, SM-like events tend to have values
closer to zero, while events resembling the CP-odd
contribution tend to take larger absolute values.
To illustrate one of the properties of the algorithm, we

also depict the score of the algorithm before any training has
been performed, with all parameters of the g function set to
their initial random values. In that case, the equivariance
property still holds and the SM (linear) contributions are
distributed as an odd (even) function. While this example is
of little practical relevance, it serves us to illustrate that the
algorithm will produce CP-odd observables, regardless of
the convergence of the training, a crucial property in
practice, as discussed in the previous section.

We also show that imposing equivariance as an inductive
bias in the algorithm improves the numerical convergence in
the training. To do so, we train 100 instances of our
equivariant algorithm and another 100 of a nonequivariant
algorithm. The nonequivariant algorithm minimizes the
same loss function and the same function g as the equiv-
ariant case. The initial weights and biases of g are randomly
chosen in each instance of the trainings, while all the
hyperparameters take the same values. Figure 3 shows the
median of the loss function evaluated in the test dataset as a
function of the training epoch, along with bands containing
68% of the trainings. The results show that the training
converges significantly faster when considering the equiv-
ariant algorithm: The median of the nonequivariant algo-
rithm takes between 40% and 300% fewer epochs than the
equivariant algorithm to reach a given loss function value.
Finally, in order to interpret the features that the

algorithm is learning, we check the model against observ-
ables specifically designed to capture CP violation effects
in tt production. We consider crn − cnr and ckn − cnk, which
are described in Ref. [44]. These observables are related to
angles of the leptons in an specific reference frame, rely on
the reconstruction of the tt̄ system to be constructed, and are
sensitive to the linear contribution of cItG.
Figure 3 shows the average score as a function of each of

these variables for the true model and for the surrogate
model learned by our algorithm. These magnitudes quantify,
for each of the models, the dependence of the distribution
of the different variables as a function of the WCs for
infinitely small values of the WCs, which is given by the
linear contributions only. Obtaining the same value for two
models means that the surrogate model is able to learn the
dependence introduced by the linear contribution that is
predicted by the simulation. The algorithm is able to partially
learn the trend predicted by the true model, especially for
ckn − cnk, although not fully. We have verified that this is not

FIG. 2. Distribution of the algorithm score before (dashed lines)
and after (full lines) training, for simulated events distributed as
the SM hypothesis, and the linear contribution when cItG ¼ 10.

FIG. 3. Left: evaluation of the loss function in the test dataset as a function the number of epochs that have been trained for the
equivariant and nonequivariant algorithms. The lines show the median of 100 independent trainings of each algorithm, and the bands
span the 0.16 and 0.84 quantiles. Center and right: score mean as a function of crn − cnr (center) and ckn − cnk (right), using the true and
surrogate model.
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due to limitations introduced by our algorithm, by training a
similar model that uses all parton-level information as an
input and that is able to fully learn the behavior predicted by
the true model. In addition, we have checked that the
equivariant model learn a similar behavior as the equivariant
one but needs more iterations to be trained, as discussed in
the previous paragraph.
We conclude that the fact that our algorithm does not

fully learn the true model is due to the impossibility of
unambiguously reconstructing the tt̄ system in the dilep-
tonic decay mode, stemming from the presence of two
undetected neutrinos, the assignment of the selected jets to
each of the top quarks, and the presence of additional jets
produced in the initial- and final-state radiation. To a lesser
extent, the power of the algorithm is also bounded by the
limited expressivity of the chosen functional form for g.
Several advanced algorithms have been developed to
improve the reconstruction of the tt̄ system [46–48] that
could be used as inputs to our algorithm, but we consider
this beyond the scope of this work.

B. CP violation in WZ production

We consider now WZ production in its final state with
three leptons and the effect of the CP-odd operator
OW̃ ¼ ϵijkW̃iν

μ W
jρ
ν W

kμ
ρ . Similar new physics scenarios have

been studied in the framework of anomalous couplings in
Ref. [49], but CP-odd observables were not studied.
Reference [50] describes some CP-odd observables spe-
cifically for this process, which rely on the angles between
each of the bosons in the decay plane and the beam plane.
We use our algorithm to extend the reach of the searches
profiting from those angular variables, as well as the energy
growth expected in these operators.
We selected events with three leptons with pT > 15 GeV

and jηj < 2.5, and we require the leading lepton to have
pT > 25 GeV. Out of the three selected leptons, we define
a Z boson candidate by picking the two opposite-sign
same-flavor leptons with their invariant mass closer to the Z

boson mass. As input variables to our algorithm, we take
the three-momentum of the positive and negative lepton

of the Z candidate, pZ
lþ
�!

and pZ
l−
�!

; the three-momentum of

the third lepton pW
l

�!
and its charge QW; and the missing

momentum vector in the transverse plane pmiss
T

��!
. We choose

hCP as

hCP
�
pZ
lþ
�!

; pZ
l−
�!

; pW
l

�!
; QW; pmiss

T

��!�
¼
�
−pZ

l−
�!

;−pZ
lþ
�!

;−pW
l

�!
;−QW;−pmiss

T

��!�
: ð6Þ

We show the score of our algorithm after being trained in
Fig. 4, resulting in a good separation power between the
SM hypothesis and the linear contribution. In addition, the
distribution of events under the SM hypothesis has an even
distribution as a function of this score, while the linear
contribution has an odd distribution, as expected from the
equivariance property of the algorithm.
We contrast our results against known observables

sensitive to the linear term, described in Ref. [50]. The
linear contribution introduced by the OW̃ induces a modu-
lation in the ϕZðWÞ angle, defined as the angle between the Z
(W) boson decay plane and the beam plane, in the WZ rest
frame. In order to check whether our algorithm is learning
this modulation, we show in Fig. 4 the average score as a
function of these variables for the true model and for the
surrogate model learned by our algorithm. We observe that
the algorithm captures almost perfectly the modulation in
ϕZ, while it does not fully capture entirely the modulation in
ϕW. This behavior is, in fact, expected and described
already in Ref. [50] and stems from the fact that in the
fully leptonic channel the decay products of the W boson
cannot be unambiguously reconstructed because of the
presence an undetected neutrino. The modulation on ϕW
can be studied in events where the W boson decays
hadronically, as described in Refs. [41,50].

FIG. 4. Left: distribution of the algorithm score for simulated events distributed as the SM hypothesis and the linear contribution when
cW̃ ¼ 10. Center and right: score mean as a function of ϕZ (left) and ϕW (right), using the true and surrogate model.
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Figure 4 also illustrates one of the ways our algorithm
extends the sensitivity reach on top of the observables
proposed in Ref. [50]. In the figure, we also show the score
as a function of the ϕZðWÞ observable for events passing
our selection and for the subset of those events in which
the pT of the reconstructed Z boson is larger than
100 GeV. In the latter case, the amplitude of the ϕZðWÞ
oscillation is larger, due to the energy growth of the linear
contribution. The figure demonstrates that our algorithm is
able to capture this energy growth, learning the amplitude
of the ϕZ modulation, conditionally to the kinematics of
each events.
This results in an improved sensitivity with respect to the

usage of ϕZ alone. To illustrate this, we perform two
counting analyses binned in ϕZ and in the score of our
algorithm, respectively. We then build a likelihood model
given by

L ¼
Y

j∈ bins

PðnjjμjðcW̃ÞÞ; ð7Þ

where P is the Poissonian probability function with a mean
μjðcW̃Þ, which denotes the number of expected events in a
given bin as a function of cW̃. While this model clearly
gives optimistic results, as it ignores the presence of
systematic uncertainties, we note that, for strategies based
on CP-odd observables, the effect of systematic uncertain-
ties to the linear contribution should be highly suppressed
by the fact that most such uncertainties are going to have
CP-symmetric effects. In Fig. 5, we show the likelihood as
a function of cW̃, assuming the observation of the number
of events predicted by the SM. The cW̃ values for which the
2ΔNLL is equal to 1 and 4 can be interpreted as 68% and
95% confidence level intervals in those parameters, respec-
tively, showing that our proposed method would improve
the sensitivity to cW̃ by roughly a factor of 3.

C. CP violation in ttγ production

We consider tt̄γ production in final states where one of
the top (anti)quarks decays leptonically and the other
hadronically. In this case, we consider the effect of the
ctZ and cItZ operators, which are CP even and odd,
respectively. The effect of these operators in tt̄γ has been
studied by the ATLAS and CMS Collaborations [51,52],
relying on the spectrum of the reconstructed photon pT.
In this section, we show that the sensitivity of such analyses
can be significantly be improved by using CP-odd observ-
ables constructed with our algorithm.
We consider events with a photon with pT > 50 GeV,

one lepton with pT > 25 GeV, and at least four jets with
pT > 30 GeV, out of which one b tagged. All of these
objects are required to have jηj < 2.5. As input variables we
use the three-momentum of the reconstructed photon pγ

�!;
the three-momentum of the reconstructed lepton pl

�! and

the sign of its charge Ql; the three-momenta of the four
leading selected jets pb1

�!, pb2
�!, pj1

�!, and pj2
�!; and the

missing transverse momentum vector pmiss
T

��!
. As the jets b1

and b2, we pick the two leading b-tagged jets, and, if only
one b-tagged jet is present in the event, we pick that one
together with the leading non-b-tagged jet. We label the
other two selected jets as j1 and j2. The indices 1 and 2 are
chosen at random, as we did in the tt measurement. We
choose hCP as

hCP
�
pγ
�!; pl

�!; Ql; pb1
�!; pb2

�!; pj1
�!; pj2

�!�
¼
�
− pγ
�!;− pl

�!;−Ql;−pb2
�!;−pb1

�!;−pj2
�!;−pj1

�!�: ð8Þ

We then compare two analysis strategies, both of them
classifying events in bins of a given distribution. For one of
the strategies, we classify events as a function of the photon
pT, while, in the other, we classify events based on the
output score of our equivariant algorithm. We build a
likelihood model similar to the one in Eq. (7), where μj is
now a function of cItZ and ctZ, and we use it to draw
exclusion contours in the ðctZ; cItZÞ plane under different
assumptions in Fig. 6. First, we show that, for an expected
value of ðctZ ¼ 0; cItZ ¼ 0Þ and taking into account only
linear contributions of these two operators, our approach
constrains ctZ equally well to the strategy based on the
photon pT. In addition, our approach is able to significantly
constrain cItZ in this scenario, while the approach based on

FIG. 5. Negative log-likelihood (−2ΔNLL) as a function
of the cW̃ parameter for an analysis based on ϕZ (blue) and
an analysis based on the score of the equivariant network
(orange). The horizontal gray lines represent values where this
quantity is 1 and 4.
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the photon pT is not sensitive to this contribution, as it is a
CP-even observable.
We also show results in which quadratic contributions

are included. When the true value lies on ðctZ ¼ 0;
cItZ ¼ 0Þ, the sensitivity of the two approaches is very
similar, as the SMEFT contribution is dominated by
the quadratic term. We remark that our approach,
despite not being optimized to be sensitive to this con-
tribution, performs nevertheless equally well. In addition,
when the true value lies on ðctZ ¼ 0; cItZ ¼ 0.4Þ, the
photon pT approach does not provide sensitivity to the
sign of cItZ, showing a bimodal structure in the exclusion
contours. In contrast, our approach is sensitive to the
linear contributions, which translates into sensitivity to the
sign of this operator. We conclude that our approach is
superior to the state-of-the-art methodology in this
channel.

IV. CONCLUSION

We have developed an algorithm to construct optimal
observables that transform equivariantly with the CP
symmetry, by introducing an inductive bias through the
use of equivariant neural networks with respect to the Z2

symmetry group. We have showcased the performance of
our algorithm using realistic simulations of tt, WZ, and tt̄γ
events, using it to produce CP-odd observables that respect
this symmetry property, regardless of the convergence of
the training. We have also shown that the developed
algorithm shows a faster numerical convergence of the
method, requiring, in the presented benchmarks, between
40% and 300% fewer epochs than a nonequivariant
algorithm to be trained. We have also show that the
observables produced with the method improve the state-
of-the-art methodology used for CP-violating searches in
WZ and tt̄γ production.
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