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Abstract. High Energy Physics experiments at the Large Hadron Collider gen-
erate petabytes of data per year that go through multiple transformations before
final analysis and paper publication. Recording the provenance of these data is
therefore crucial to maintain the quality of the final results. While tools are in
place within LHCb to keep this information for the common experiment-wide
transforms, analysts have had to implement their own solutions for the steps
dealing with ntuples. This gap between centralised and interactive processing
can become problematic. In order to facilitate the task, ntuples extracted by
LHCb analysts via so-called “Analysis Productions” are tracked in the experi-
ment bookkeeping database and can be enriched with extra information about
their meaning and intended use. This information can then be used to access
ntuples more easily: a set of Python tools allow querying of ntuple file loca-
tions with associated metadata, and integrate their processing within analysis
workflows. The tools are designed with the intention of ensuring analysis code
continues to be functional into the future and are robust against evolutions in
how data is accessed. This paper presents the integration of these new tools
into the LHCb codebase and demonstrates how they will be used in LHCb data
processing and analysis.

1 Introduction

The Large Hadron Collider experiments at CERN record petabytes of data from proton and
ion collision events inside their detectors. The analysis of those data is a complex process,
involving many different steps and a number of different pieces of software. In line with the
organisation’s values, the CERN Open Data Policy [1] mandates that the experiments make
their data available, following the FAIR [2] principles. This implies that the data be Findable,
Accessible, Interoperable, Reusable; the requirements for the data to be easily findable and
reusable imply that their provenance must be kept, from the initial events to the final numbers
and plots in published papers. They also imply that all tools, and the environment required to
run, then be cautiously recorded within each step.

The event processing chain for the LHCb experiment is schematised in figure 1. Data
recorded by the detector is reconstructed into particle tracks in real-time, and the events
involving physical processes of interest are recorded. Later on, they are reconstructed in
further detail, building up particle decay chains which are then indexed such that analysts can
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Figure 1: The LHCb data processing chain.

quickly find the particle decays they seek. These steps are centrally managed and carried out
using versioned software from the LHCb software stack, and the files produced are registered
in the LHCb book-keeping system [3]. LHCb analysts can use the Analysis Productions [4,
5] system, which records the configuration and scripts used while extracting ntuples from
these files in the bookkeeping. ntuples are reduced files containing only the information
needed for a particular analyses. At this stage, the centralised processing, managed and
time-limited, is over. Analysis is done on the ntuples and analysis teams use various tools to
perform measurements, a process that can last from several months to years. The analysis can
subsequently be preserved in dedicated databases such as the CERN Analysis Portal 1. During
such a long process, it is difficult to guarantee that all data transformations are recorded
faithfully, especially as this is not a linear process and many different processing methods
may be tried and abandoned until the final goal is achieved. The goal of this work is to
provide LHCb analysts with environments with all the tools needed for their tasks, as well
as helpers that make it easy to identify the data to be used and facilitate access to it from
analysis scripts and common workflows.

2 LHCb analysis environments
LHCb analysts should have access to the CERN/LHCb specific tools that are used in the
centralised processing software, such as ROOT [6], but also standard tools from the Python
ecosystem (e.g. numpy, pandas, scikit-learn) or dedicated to High Energy Physics (Scikit-
HEP [7]). These can be easily used via environments created using the conda tool 2, com-
prised of packages of those tools from the Conda-forge repository [8]. This approach was
presented at CHEP 2019 3. Such environments are made available to LHCb users using the
CernVM file system [9]. Each environment is defined by a list of packages installed, and their
versions, making it easy to recreate it if needed. For each analysis, we can therefore identify
the environment needed for a processing step by a base operating system (or docker image)
and the conda environment for the analysis packages. While the long term durability of the
infrastructure involved is not guaranteed, enough information has however been recorded to
reproduce the environment for preservation.

3 Data provenance
Within LHCb, analysts typically extract lists of file names from the book-keeping system,
and/or directly copy data to local or user storage. The former is error-prone and not robust

1https://analysispreservation.cern.ch
2https://docs.anaconda.com/
3https://cds.cern.ch/record/2699537
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as operational decisions related to the mass storage systems may cause files to be moved,
thus changing some or all of the file names and invalidating such lists. The second method
involves potentially unnecessary duplication of data, and file copies in user-managed storage
may be later moved or deleted e.g. when users leave. Both approaches do not record the
provenance of the files.

This paper proposes a way for LHCb analysts to enrich their datasets with tag metadata
i.e. key/value pairs, using the Analysis Productions system. Data produced using this system
is registered in the book-keeping system and can be selected using tags added by analysts,
giving meaning to the samples and preserving information about data provenance in the anal-
ysis code.

Some of this metadata can be derived directly from the Analysis Productions jobs, as
they are key parameters to any file in the LHCb book-keeping, e.g. whether we have data or
a Monte Carlo simulation, the data type, which corresponds to the data taking year, the type
of decay in case of simulated data. For each analysis, it is possible to add one or several tags
to indicate what the data is used for in the analysis (e.g. evaluating errors, double checking
resolution). These tags can be set in the LHCb Analysis Productions web application as
shown in Figure 2.

Figure 2: Tree view visualisation of the samples produced for an analysis, grouped by con-
figuration (i.e. real data or Monte Carlo simulation), data taking year, event type and magnet
polarity.

Files generated by Analysis Productions can therefore be identified by working group
and analysis name, as well as several tag/value pairs. This also makes data sharing between
analyses easier: provided conventions are established for the meaning of the various tags, it
becomes possible to mine the data previously derived from LHCb output.

The Analysis Productions web application also allows the referencing of files from other
Analysis Productions, thus making sure the use of those files is properly recorded, which is
helpful for data management purposes.
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4 The Analysis Productions Data Python package

To be useful in the context of data analysis, a programming interface has to be defined to
query the files and specify which ones to process. As well as a graphical user interface, the
Analysis Productions application proposes a REST [10] (Representational State Transfer)
interface that can be queried from any programming language. This type of interface has
the advantage that, for long term preservation, it is possible to replace the server by a static
website serving the data for the LHCb analyses. The Python language [11] is very popular
amongst LHCb analysts, and it is therefore a good candidate to provide a client interface to
the system: this is the goal of the Analysis Productions Data (APD) Python package. APD
provides a simple interface to the Analysis Productions server: it is a Python package pub-
lished to standard repositories (the Python Package Index pypi.org) and conda-forge, and it is
installed in the LHCb analysis environment available to users. It has minimal dependencies
and can be installed on any machine, independently of the other LHCb software applications.
Using APD from Python scripts requires minimal effort from the analysts, who do not have
to deal with a list of files any more, as in Listing 1.

from apd import get_analysis_data
dataset = get_analysis_data("sl", "rds+hadronic")
files = dataset(config="lhcb", datatype="2012", polarity="magdown",

eventtype="90000000", sign="rs")↪→

Listing 1: Retrieving a list of files for the "SL/RDs_hadronic" analysis for data for polarity
magdown and the sample with right-sign decay.

APIs have not been written for other languages, such as C++ for ROOT macros, but it is
easy to invoke the Python API and save the list of files to CSV or JSON format for consump-
tion from other languages. In order to avoid processing samples that are derived from the
same input data with different configurations, which would be problematic, some safeguards
have been put in place: APD checks that this is not the case and throws an exception if it is.
Listing 2 illustrates this case.

dataset = get_analysis_data("sl", "rds_hadronic")
dataset(config="lhcb", datatype="2012", polarity="magdown", eventtype="90000000")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/cvmfs/lhcbdev.cern.ch/conda/envs/default/2023-04-26_20-20/"
"linux-64/lib/python3.10/site-packages/apd/analysis_data.py", line 391, in __call__
raise ValueError("Error loading data: " + error_txt)

ValueError: Error loading data: 1 problem(s) found
{'config': 'lhcb', 'polarity': 'magdown', 'eventtype': '90000000', 'datatype':

'2012'}: 2 samples for the same configuration found, this is ambiguous:↪→

{'config': 'lhcb', 'polarity': 'magdown', 'eventtype': '90000000', 'datatype':
'2012', 'sign': 'rs', 'version': 'v0r0p4882558', 'name':
'2012_magdown_data_bsdstaunu', 'state': 'ready'}

↪→

↪→

{'config': 'lhcb', 'polarity': 'magdown', 'eventtype': '90000000', 'datatype':
'2012', 'sign': 'ws', 'version': 'v0r0p4882558', 'name':
'2012_magdown_data_bsdstaunu_ws', 'state': 'ready'}

↪→

↪→

Listing 2: Retrieving data with a list of tags selecting multiple datasets.

In conclusion, the APD Python package is an abstraction layer that allows analysis code
to query the data files to be processed by a series of meaningful tags, avoiding hardcoded file
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lists. This in itself however does not completely allow tracking the provenance of the results:
the integration with a workflow tool can help further in that direction.

5 Snakemake interface

We chose to provide an interface to the Snakemake workflow engine [12], as it is adapted to
data analysis and already popular among LHCb physicists as it is taught during the LHCb
Starterkit [13], the software introduction course aimed at LHCb newcomers. Furthermore,
this is a Python based tool and therefore allows using the code described previously. We
propose an integration that eases the use of ntuples created by LHCb Analysis Productions
within the workflows, by specifying the metadata tags identifying the dataset. The tags can
be matched to Snakemake wildcards, therefore allowing for very flexible workflows. Fur-
thermore, APD returns Snakemake remote objects for the XRootD protocol 4, which allows
Snakemake to check the modification dates of remote files (this is the criteria to decide which
workflow artefacts are outdated and should be recreated).

rule create_histo:
input:

data=lambda w: dataset(config=w.config, datatype=w.datatype,
eventtype=w.eventtype, polarity=w.polarity)

output: f"bmass_{{config}}_{{datatype}}_{{eventtype}}_{{polarity}}.root"
run:

import ROOT
inputfiles = [ f for f in input ]
f = ROOT.TFile.Open(output[0], "RECREATE")
rdf = ROOT.RDataFrame("SignalTuple/DecayTree", input)
h = rdf.Histo1D((“BM_Hist”,”BM_Hist”, 200, 0., 25e3), "B_M")
h.Write()
f.Close()

Listing 3: Snakemake rule that creates a histogram of a single variable (B_M).

Listing 3 shows a Snakemake rule that creates a histogram of a single variable(B_M) in
the TTree “SignalTuple/DecayTree” for any combination of config (i.e. Monte Carlo simu-
lation or real data), datatype, event type (for simulation), polarity. Workflow tools inherently
track the dependency graph between rules, and commonly allow displaying them; Figure 3
illustrates the dependency graph for a workflow that applies the rule presented in Listing 3 to
two event types and to the two LHCb magnet polarities and then combines the results.

6 Continuous integration and testing

Using Snakemake during an analysis allows dependencies between analysis artefacts to be
tracked using rule definitions, but the accuracy of those workflows can only be ensured if they
are tested on a regular basis. Published LHCb analyses are required to provide a GitLab 5

repository on the CERN GitLab instance, with relevant scripts for preservation.
The GitLab Continuous Integration system (GitLab CI) is therefore a convenient way

to run the workflows at every new change in the code committed to the repository. Fully
specified and versioned conda environments, available globally via CVMFS, can be used to

4https://xrootd.slac.stanford.edu/
5https://about.gitlab.com/
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all

gather

create_histo
config: mc

datatype: 2012
eventtype: 13266069

polarity: magdown

create_histo
config: mc

datatype: 2012
eventtype: 13266069

polarity: magup

create_histo
config: mc

datatype: 2012
eventtype: 11266009

polarity: magdown

create_histo
config: mc

datatype: 2012
eventtype: 11266009

polarity: magup

Figure 3: Dependency graph to apply the create_histo (see Listing 3) rule to two event
types and two LHCb magnet polarities.

run analysis scripts in a reproducible way. They feature ROOT, common Python packages
(including matplotlib, numpy, scipy) as well as Scikit-HEP [7].

One last component is needed: a storage system to host data files. LHCb production
files are hosted on the Worldwide LHC Computing Grid (WLCG [14]), and accessed via the
XRootD protocol. Analysis Productions files are kept at the CERN site, on the EOS [15]
storage instance. However, access to storage, both to read or write data, requires proper
authentication and authorisation.

7 Authentication and Authorisation

Access to Analysis Productions information is restricted to the members of the LHCb col-
laboration. Users accessing Analysis Productions must authenticate using the CERN Single
Sign On (SSO) system, access being granted to all members of the LHCb collaboration as
defined by the lhcb-general CERN e-group.

Authentication of users from Python scripts or command line tools is done using
OpenID Connect [16] to authenticate and authorise users against CERN SSO. Invoking the
apd-login command creates a request and blocks until the user has authenticated with
CERN SSO and authorised the login. Once this is done, apd-login is provided with a
short-lived JSON Web Token [17] (JWT) that grants access to the Analysis Productions data.
This is cached on the local file system for further use.

Several authentication methods can be used when accessing data stored on the EOS sys-
tem at CERN via the XRootD protocol: in the case of interactive access, users can either
have CERN Kerberos tickets, or X509 grid proxies (also used to submit jobs on the WLCG).
Any process with access to such credentials may carry out any of the actions permitted to
the user. It is possible to delegate Kerberos credentials to a continuous integration system
(CI), but this is not advised as this delegates all of the user’s rights to the CI. It is safer to
create dedicated accounts with limited rights and accesses. This is not a very practical way
to delegate credentials to a continuous integration system, as all those extra accounts have to
be managed, and a better solution had to be found.

Each GitLab CI job is given a JWT by the GitLab server; it is available in the environment
under the name CI_JOB_JWT_V2. This is a way for the CI job to claim that it was created by
GitLab, following the standard defined in Ref. [17]. The job can pass it on to any external
service that can therefore check that the token was indeed generated by GitLab. Such tokens
are time limited, to the maximum duration of the CI job.
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We use such tokens to identify CI jobs, and generate for them EOS tokens for a set of
directories defined in a configuration database for the project. EOS tokens are a finer grained
way to give access to files or directory sub-trees in the EOS filesystem: a token can give
access to a portion of the EOS filesystem, in read-only or read-write mode. The drawback
is that they need to be appended to the file URL and are authenticated on the server side.
Furthermore, depending on the path one wants to read or write, the appropriate one must be
chosen from all the tokens passed to the job.

The APD package provides a way for the CI job to get the EOS tokens: when in a GitLab
environment (i.e. when the variable CI_JOB_JWT_V2 is defined), the apd-login command
forwards it to the APD service and receives EOS tokens defined for the project. It then
provides two methods: the first one, apd.auth(url) appends a read-only EOS token to
the file URL if an appropriate token is found. In interactive use with Kerberos tickets, for
example, this function is a simple pass-through. The second one, apd.authw(url) appends
a read-write token if available instead. The Analysis Productions web application allows
configuring the list of EOS tokens per GitLab repository that will be granted to each CI job.
Furthermore, the creation of EOS tokens is recorded in logs, and the lifetime of the tokens is
short, limited to the lifetime of the CI jobs themselves.

Using APD requires users to modify their code. However, once this is done, their code
can get access to data files in both interactive and GitLab CI use cases.

The Snakemake interface also appends tokens to input files from EOS files at the same
time as it returns Snakemake XRootD wrappers for remote files. This allows Snakemake
rules to transparently read files from CVMFS. When writing back to EOS, it is necessary to
invoke the apd.snakemake.remote() method, specifying the write mode.

8 Further work

The system in place allows creating workflows that derive data from ntuples created by the
Analysis Productions framework. The derived data can be stored in EOS, with naming con-
ventions allowing to find out which data it contains. This is not however very satisfactory and
it would be useful to be able to register this data in the LHCb bookkeeping and add metadata
as can be done with Analysis Productions output. This would allow for easier sharing be-
tween analyses, instead of re-running common workflows. The idea is therefore to introduce
Derived Analysis Productions, on a similar principle as the Analysis Productions except that
the workflow would be run by GitLab CI instead of being driven by the LHCb grid software.

The current Analysis Productions system and related APD Python package rely on the
fact that all data is stored on EOS at CERN. This simplifies access as the site is inherently
known, and relies on the EOS tokens to grant access to file and directories from the continuous
integration system. This constraint could actually be reviewed, as efforts are underway for the
WLCG to use tokens instead of the current X509 infrastructure, and maybe use pre-signed
URLs for data access, as can be done with the Amazon S3 6 interface. APD would have to
be updated to support pre-signed URLs, but the same interface could be kept. This would
open the door to the development of analysis scripts that could process data stored on public
clouds for example.

9 Conclusion

Analysis Productions and the APD Python package help LHCb analysts accessing their data
while keeping track of the provenance of the derived artefacts: Analysis Productions data can

6https://docs.aws.amazon.com/s3
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be found using metadata declared at production time, and integration with the Snakemake
workflow tools allows tracking dependencies between derived artefacts. Integration with
the GitLab CI continuous integration system improves reproducibility further. This does
not solve all problems related to the preservation of analyses, but facilitates the use of good
practices while keeping a low barrier of entry. The Analysis Productions framework and tools
have been received enthusiastically by analysts and are the standard system used for creating
ntuples in Run 3. Given the clear advantages the APD package provides to both analysis
workflow development and data provenance tracking, it is experiencing rapid uptake as we
explore the LHCb Run 3 dataset.
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