
XRootD Client: a robust technology for LHC Run-3 and
beyond

Guilherme Amadio1,∗, Cedric Caffy1, Andrew Bohdan Hanushevsky2, Michał Kamil
Simon1, and David Smith1

1CERN
2SLAC

Abstract. During the LHC era the XRootD framework has proven to
be a critical component of numerous data management and software
defined storage solutions (most importantly EOS, the CERN storage
technology used for the LHC experiments), and as such grew into one
of the most strategic storage technologies in the High Energy Physics
(HEP) community. Over the last year significant developments in the
area of the XRootD client have been introduced, making it even more
reliable and robust, as well as easier to debug. Here, we present an
overview of the new XRootD client and its main features, namely, sup-
port for erasure coding, in-flight data integrity checks, and the new
record plug-in and replay tool that allow to record an I/O pattern and
then replay it for debugging or benchmarking purposes.

1 Introduction
The challenges for Run-3 of the LHC [1], which began in 2022, include managing
the massive amounts of data generated by the LHC experiments and ensuring their
efficient storage, access, and analysis. In order to address these challenges, XRootD [2,
3] is now widely used by the High Energy Physics (HEP) community. XRootD was
initially developed to meet the data storage and access requirements of the BaBar
experiment [4–6] at SLAC and later extended to meet the needs of experiments at
the Large Hadron Collider (LHC) [7, 8]. XRootD supports multiple data access
models, including hierarchical, file-based, and object-based access, and it can operate
on various types of storage systems, including disk, tape, and cloud storage. It is
designed for scalable, high-performance, and fault-tolerant data access, transfer, and
management.

XRootD has become a critical component in the data management strategy of the
LHC along its history, which spans more than 20 years. In the early days, it was
developed as a replacement for rootd within ROOT [9, 10], therefore its name. In
the early 2000s, the code was moved into its own repository, and XRootD became
an independent project. It was briefly rebranded as Scalla in the early 2010s [8], but
the old name proved too popular, so it was later renamed back to XRootD. At the
time of this writing, XRootD is in its fifth major version, which introduced support
for encryption with TLS and other major features discussed in the next sections.
∗e-mail: amadio@cern.ch

EPJ Web of Conferences 295, 01056 (2024) https://doi.org/10.1051/epjconf/202429501056
CHEP 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

2 The XRootD Client
Early in XRootD’s development history, the client was part of the ROOT repos-
itory [10]. The first production version of the standalone XRootD client [11–13],
XrdClient, was added to the repository in Sep 2004 by Fabrizio Furano. This version
of the client introduced important features such as support for parallel asynchronous
requests for data block reads, coalescing of requests to avoid multiple requests for the
same data, and a memory cache to store the coalesced requests. In the second half of
2012, Lukasz Janyst introduced a newly rewritten, thread-safe version of the client,
XrdCl, into the repository. This is the version still in use today. Its debut happened
in XRootD 4.0, at which point XrdClient was declared obsolete. In XRootD 5.0, the
code for XrdClient was finally removed from the repository.

Early Days
XrdClient

XrdCl

v3.0 v4.0 v5.0

2000 2004 2008 2012 2016 2020 2022

Figure 1: XRootD client development timeline.

The XRootD client is the main tool used to transfer experimental data into and
out of the data center at CERN. In 2022, over 570 PB of data have been written
into EOS physics instances by the main LHC experiments. The XRootD protocol
accounted for the majority of this amount, as it can be seen in the statistics data
shown below.

Data Written to EOS
XRootD

HTTP
FUSE

GridFTP

477 PB
88.5 PB

6.20 PB
3.54 PB

Data Read from EOS
XRootD

FUSE
HTTP

GridFTP

2.39 EB
1.22 EB

155 PB
14.6 PB

Figure 2: Data written and read on EOS physics instances in 2022.

Whilst the volume of data written is already massive, it is dwarfed by the amount
of data read for analysis. In the same year of 2022, about 3.78 EB of data have been

EPJ Web of Conferences 295, 01056 (2024) https://doi.org/10.1051/epjconf/202429501056
CHEP 2023

2

read from the data center, 2.4 EB of which using the XRootD protocol, either by the
standalone XRootD client, xrdcp, or via XRootD client code integrated into other
applications, such as ROOT. Moreover, since the EOS FUSE client also relies on the
XRootD client code in its implementation, it means that reads via FUSE are also
served by XRootD.

3 Erasure Coding Plugin (XrdEc) v5.2

Running the LHC is expensive, hence the possibility of data loss has to be minimized.
Traditionally, data durability has been achieved by replicating data at CERN as
well as distributing copies across the world within the Worldwide LHC Computing
Grid (WLCG). This strategy, however, may become prohibitively expensive at the
increased data rates to be produced by the High-Luminosity LHC (HL-LHC). The
solution, implemented originally for EOS and later in XRootD, is to use erasure
coding to provide redundancy at much smaller overhead than simple data replication.
Erasure coding works by dividing data into chunks and adding parity blocks that can
be used to reconstruct the original data in the event of hardware failure.

Figure 3: Erasure Coding in an Nutshell.

When configured to use erasure coding, the server will automatically split files
into n data blocks and k parity blocks according to the configuration and distribute
each piece to a different disk or file storage server as depicted below.

Figure 4: Writing Data via I/O Gateway with Erasure Coding Plugin.

When reading, the data can be reconstructed either at the server, in case the client
does not have support for erasure coding enabled, or each block can be read directly
if the client has support for erasure coding enabled. The client can also write data
directly in this case.

EPJ Web of Conferences 295, 01056 (2024) https://doi.org/10.1051/epjconf/202429501056
CHEP 2023

3

Figure 5: Reading Data via I/O Gateway with Erasure Coding Plugin

Figure 6: Client with Erasure Coding Plugin can Read/Write Data Directly

4 Declarative Asynchronous API v5.0–v5.4
The declarative API for the XRootD client [14, 15] has been created with erasure
coding support as its main use case. Its main objective is to simplify composition of a
series of asynchronous operations on one or more remote files, such as writing a data
block striped into n data chunks and k parity chunks in parallel. Its main advantage is
that it allows composing multiple asynchronous operations together without requiring
error-prone boiler plate code in the process, as shown in the code listing below.

using namespace XrdCl;
void ECWrite(uint64_t offset, uint64_t size, const void *buffer,

ResponseHandler *handler) {
/* calculate number of chunks */
std::vector<Pipeline> writes(nchunks);
for (size_t i = 0; i < nchunks; ++i) {

/* calculate offset, size, and buffer for each chunk */
File f = new XrdCl::File();
Pipeline p = Open(file, url, flags)

| Parallel(Write(file, chunk_offset, chunk_size, chunk_buffer),
SetXAttr(file, "xrdec.cksum", checksum))

| Close(file) >> [file](XRootDStatus&) { delete file; };
}
Async(Parallel(writes) >> [handler](XRootDStatus&) {

handler->HandleResponse(new XRootDStatus(), 0);
});

}

Listing 1: XRootD client declarative API example.

EPJ Web of Conferences 295, 01056 (2024) https://doi.org/10.1051/epjconf/202429501056
CHEP 2023

4

5 Data Integrity (pgRead/pgWrite) v5.0–v5.5

Disk failures can cause corruption for data at rest, but transmission errors while
the network is under heavy load may also lead to data corruption across the wire.
For small file transfers, this sort of corruption is not a problem, since the cost of
retransmitting the data is low in case a checksum mismatch occurs at the end of the
transfer on the destination. However, when transferring large files (>10GB), a better
mechanism is necessary. Therefore, in addition to data durability features like erasure
coding for data at rest, XRootD has also introduced pgRead and pgWrite to ensure
data integrity for data tranfers across the network. With pgRead/pgWrite, data is
checksummed at 4K page boundaries, and if any transmission errors occur, only pages
with mismatched checksums need to be retransmitted, greatly improving reliablility.

Figure 7: XRootD data integrity checks reduce cost of data retransmission.

Read/write 6144 bytes at offset 0 (page aligned)

CRC32 4096 bytes (1 page) CRC32 2048 bytes
Offset 0 Offset 4096

Read/write 8000 bytes at offset 2040 (typical random I/O)

CRC32 2056 bytes CRC32 4096 bytes (1 page) CRC32 1848 bytes
Offset 2040 Offset 4096 Offset 8192

Read/write 4000 bytes at offset 2040 (degenerate case)

CRC32 2056 bytes CRC32 1944 bytes
Offset 2040 Offset 4096

Figure 8: Wire Layout for Data Transfers with pgRead/pgWrite.

EPJ Web of Conferences 295, 01056 (2024) https://doi.org/10.1051/epjconf/202429501056
CHEP 2023

5

6 Record/Replay Plugin v5.5

The recorder plugin for the XRootD client, introduced in XRootD 5.5.0, allows users
to record remote data access patterns in a way that is transparent to client appli-
cations. It can be enabled by the user by creating a configuration file in its home
directory at $HOME/.xrootd/client.plugins.d/recorder.conf with the following
contents:

url = *
lib = /usr/lib64/libXrdClRecorder-5.so
enable = true
output = /tmp/xrdrecord.csv

This configuration will instruct the XRootD client to load the recorder plugin and
record each operation into the /tmp/xrdrecord.csv file on disk. A simple example is
shown below using ROOT to run an RDataFrame tutorial that reads CMS opendata
via XRootD.

$ root.exe -l -b -q df102_NanoAODDimuonAnalysis.C

Processing df102_NanoAODDimuonAnalysis.C...
Info in <TCanvas::Print>: pdf file dimuon_spectrum.pdf has been created
Events with exactly two muons: pass=31104343 all=61540413 eff=50.54
Muons with opposite charge: pass=24067843 all=31104343 eff=77.38

The output file can be inspected and replayed with the xrdreplay command
line tool. Without any options, it will read the CSV file and execute again the same
operations, taking care of reproducing the timings from the original run as well. When
run with the -p option, it produces a summary of the operations performed by the
client:

$ xrdreplay -p /tmp/xrdrecord.csv
===
IO Summary (print mode)
===
Sampled Runtime : 23.195940 s
Playback Speed : 1.00
IO Volume (R) : 2.24 GB [std:581.69 KB vec:2.24 GB page:0 B]
IO Volume (W) : 0 B [std:0 B vec:0 B page:0 B]
IOPS (R) : 147 [std:72 vec:75 page:0]
IOPS (W) : 0 [std:0 vec:0 page:0]
Files (R) : 18
Files (W) : 0
Datasize (R) : 40.40 GB
Datasize (W) : 0 B

Quality Estimation

Synchronicity(R) : 100.00%
Synchronicity(W) : 0.00%

In the summary above, we can see that ROOT read 2.24 GB of data in 23.2 s
from the remote file, mostly using vector reads.

EPJ Web of Conferences 295, 01056 (2024) https://doi.org/10.1051/epjconf/202429501056
CHEP 2023

6

7 Conclusion and Future Work
We have presented the new XRootD client, XrdCl, and its main features. As we
approach the high luminosity phase of the LHC, XRootD is evolving to cope with the
higher volume of data and to offer better performance and observability for remote
data analysis and storage. In the future we plan to extend these features further and
use them to optimize XRootD, EOS, and remote analysis applications using ROOT.

References
[1] M. Arsuaga-Rios, V. Bahyl, M. Batalha, C. Caffy, E. Cano, N. Capitoni,

C. Contescu, M. Davis, D.F. Alvarez, J. Guenther et al., LHC Data Stor-
age: Preparing for the Challenges of Run-3, in 25th International Conference
on Computing in High-Energy and Nuclear Physics (2021), Vol. 251, p. 02023,
https://doi.org/10.1051/epjconf/202125102023

[2] xrootd/xrootd: v5.6.1 (2023), https://doi.org/10.5281/zenodo.8135874
[3] A. Hanushevsky, A. Dorigo, F. Furano, The next generation root file server, in

14th International Conference on Computing in High-Energy and Nuclear Physics
(2005), pp. 680–683, https://cds.cern.ch/record/865679/files/p680.pdf

[4] B. Aubert et al. (BaBar), Nucl. Instrum. Meth. A 479, 1 (2002), hep-ex/0105044
[5] A. Adesanya et al. (BaBar Computing Group), On the Verge of one petabyte:

The Story behind the BABAR database system, in 13th International Conference
on Computing in High-Energy and Nuclear Physics (2003), Vol. C0303241, p.
MOKT010, cs/0306020

[6] A. Hanushevsky, A. Trunov, L. Cottrell, Peer to peer computing for secure high
performance data copying, in 12th International Conference on Computing in
High-Energy and Nuclear Physics (2001)

[7] S. Campana, D.C. van der Ster, A. Di Girolamo, A.J. Peters, D. Dullmann,
M. Coelho dos Santos, J. Iven, T. Bell, Commissioning of a CERN production and
analysis facility based on xrootd, in 18th International Conference on Computing
in High-Energy and Nuclear Physics, edited by S.C. Lin (2011), Vol. 331, p.
072006

[8] A. Hanushevsky, D.L. Wang, Scalla: Structured Cluster Architecture for Low
Latency Access, in 26th IEEE International Parallel and Distributed Processing
Symposium (2012)

[9] ROOT Data Analysis Framework, https://root.cern
[10] A. Dorigo, F. Furano, P. Elmer, A. Hanushevsky, XTNetFile, a fault tolerant

extension of ROOT TNetFile, in 14th International Conference on Computing in
High-Energy and Nuclear Physics (2005), pp. 996–999, https://cds.cern.ch/
record/865754

[11] A. Hanushevsky, Hyper-scaling data access: understanding XROOTD data clus-
ters, in ROOT Workshop 2005 (2005)

[12] F. Furano, A. Hanushevsky, Journal of Physics: Conference Series 119, 072016
(2008)

[13] F. Furano, A. Hanushevsky, J. Phys. Conf. Ser. 219, 072005 (2010)
[14] R. Poenaru, M. Simon, C++ Declarative API – Implementation Overview Within

the XRootD Framework, in 19th RoEduNet Conference: Networking in Education
and Research (2020)

[15] M. Simon, A. Hanushevsky, EPJ Web Conf. 251, 02063 (2021)

EPJ Web of Conferences 295, 01056 (2024) https://doi.org/10.1051/epjconf/202429501056
CHEP 2023

7

https://doi.org/10.1051/epjconf/202125102023
https://doi.org/10.5281/zenodo.8135874
https://cds.cern.ch/record/865679/files/p680.pdf
https://root.cern
https://cds.cern.ch/record/865754
https://cds.cern.ch/record/865754

	Introduction
	The XRootD Client
	Erasure Coding Plugin (XrdEc) v5.2
	Declarative Asynchronous API v5.0–v5.4
	Data Integrity (pgRead/pgWrite) v5.0–v5.5
	Record/Replay Plugin v5.5
	Conclusion and Future Work

