Rare and exotic Higgs decays in ATLAS

Diallo BOYE

The 21st Workshop of the LHC Higgs Working Group

[On behalf of the ATLAS collaboration]

The Higgs boson exists and then...

- The Higgs boson exists and it's discovered in 2012 → scrutinize its properties and the Higgs sector nature.
- Combined results set a 95% CL upper limit of 12% on the branching ratio for *H* boson decays via undetected modes.

▶ arXiv:2207.00092

 $\Rightarrow \text{ Exotic decays of the} \\ \text{Higgs boson remain a} \\ \text{high priority.} \end{cases}$

- Even with its excellent successes in providing experimental predictions, the SM leaves some phenomena unexplained.
 - hierarchy problem, baryon asymmetry, dark matter/energy etc...
- Many Beyond Standard Model (BSM) theories predict modified and extended Higgs sectors with additional Scalars → JHEP02(2015)157, → arXiv:hep-ph/0008192, → arXiv:hep-ph/0305109.

Analysis covered

5 analyses covered

- Hard to cover a lot in 15 min, but these are the latest results on searches for rare Higgs decays published (in 2024).
- More can be found in the ATLAS public results page • ATLAS-Result-Page

- S is an additional scalar and $m_S \in [30, 115] \cup [130, 800] \text{ GeV}$
- 2 SR: SR1 $\Leftrightarrow m_S < 115$ GeV and SR2 $\Leftrightarrow m_S > 130$ GeV.
- $\langle m_{\ell\ell} \rangle$ is used as observable in this analysis defined as $\frac{m_{ab}+m_{cd}}{2}$ where m_{ab}, m_{cd} are the leading and sub-leading di-lepton masses respectively with $m_{ab} > m_{cd}$.
- Three final states: $4e, 2e2\mu, 4\mu$.
- A compatibility cut between the two di-lepton masses is applied $m_{ab} \sim m_{cd}$.

- S is an additional scalar and $m_S \in [30, 115] \cup [130, 800] \text{ GeV}$
- 2 SR: SR1 $\Leftrightarrow m_S < 115$ GeV and SR2 $\Leftrightarrow m_S > 130$ GeV.
- $\langle m_{\ell\ell} \rangle$ is used as observable in this analysis defined as $\frac{m_{ab}+m_{cd}}{2}$ where m_{ab}, m_{cd} are the leading and sub-leading di-lepton masses respectively with $m_{ab} > m_{cd}$.
- Three final states: $4e, 2e2\mu, 4\mu$.
- A compatibility cut between the two di-lepton masses is applied $m_{ab} \sim m_{cd}$.

- S is an additional scalar and $m_S \in [30, 115] \cup [130, 800] \text{ GeV}$
- 2 SR: SR1 $\Leftrightarrow m_S < 115$ GeV and SR2 $\Leftrightarrow m_S > 130$ GeV.
- $\langle m_{\ell\ell} \rangle$ is used as observable in this analysis defined as $\frac{m_{ab}+m_{cd}}{2}$ where m_{ab}, m_{cd} are the leading and sub-leading di-lepton masses respectively with $m_{ab} > m_{cd}$.
- Three final states: $4e, 2e2\mu, 4\mu$.
- A compatibility cut between the two di-lepton masses is applied $m_{ab} \sim m_{cd}$.

Systematics	Background
 The dominant detector systematic is electron uncertainty: ID efficiency (~17.3% on SR yield). The dominant theory systematic is ggZZ (~35% on SR yield). 	 Dominant: Non resonant SM ZZ*. WZ, VVV/VBS processes, H → ZZ → 4ℓ, J/ψ and Υ → these bkgs are estimated From MC. tt and Z+ Jet. → Data-driven method
Diallo BOYE CH	ERN LHC 4/

- Most significant excess found in SR1 at $m_S = 110$ GeV and $m_{Z_d} = 30$ GeV with a local(global) significance of $2.7\sigma(1.6\sigma)$.
- No significant excess in SR2.
- SR2 results can be found in backup.

Search for $H \to aa \to bb\tau^+\tau^-$ (*arXiv:2407.01335)

- 12 GeV $< m_a < 60$ GeV.
- 3 channels: $e\mu$, $e\tau_{had}$, $\mu\tau_{had}$
- 3 categories per channel: 1bjet, >1bjet, 1 DeXTer • Link "B-jet".
- Use a Parameterized NN to enhance sensitivity.

Search for $H \to aa \to bb\tau^+\tau^-$ (*arXiv:2407.01335)

Summary

- 12 GeV $< m_a < 60$ GeV.
- 3 channels: $e\mu$, $e\tau_{had}$, $\mu\tau_{had}$
- 3 categories per channel: 1bjet, >1bjet, 1 DeXTer • Link "B-jet".
- Use a Parameterized NN to enhance sensitivity.

Backgrounds

- main bkg: $t\bar{t}$ and single top events, Z+jets where $Z \to \tau \tau$.
- Other backgrounds: $h \to \tau^+ \tau^-$, VV, $t\bar{t}$ in association with a boson $\to t\bar{t}V$.
- Dedicated control region are defined in each channel for each major background
- Top CR, Z CR, SS CR

Search for $H \to aa \to bb\tau^+\tau^-$ (* arXiv:2407.01335)

Summary

- 12 GeV $< m_a < 60$ GeV.
- 3 channels: $e\mu$, $e\tau_{had}$, $\mu\tau_{had}$
- 3 categories per channel: 1bjet, >1bjet, 1 DeXTer • Link "B-jet".
- Use a Parameterized NN to enhance sensitivity.

Systematics

- Experimental: muons, electrons, hadronic τ -leptons, jets, and missing transverse energy. Also on DL1r and DeXTer.
- Theory systematics (PDF, α_S , QCD, shower variation). Also on resummation (QSF) and merging (CKKM) scales.
- Full uncertainties and their impact available in the backup.

Backgrounds

- main bkg: $t\bar{t}$ and single top events, Z+jets where $Z \rightarrow \tau\tau$.
- Other backgrounds: $h \to \tau^+ \tau^-$, VV, $t\bar{t}$ in association with a boson $\to t\bar{t}V$.
- Dedicated control region are defined in each channel for each major background
- Top CR, Z CR, SS CR

CERN

Search for $H \to aa \to bb\tau^+\tau^-$ (* arXiv:2407.01335)

• The observed (solid) 95% C.L. upper limits on $(\sigma(H)/\sigma SM(H))B(H \to aa \to b\bar{b}\tau^+\tau^-)$ as a function of m_a and the expected (dashed) limits under the background-only hypothesis when combining all categories.

Search for $H \to aa \to bb\tau^+\tau^-$ (*arXiv:2407.01335)

- The observed (solid) 95% C.L. upper limits on $(\sigma(H)/\sigma SM(H))B(H \to aa \to b\bar{b}\tau^+\tau^-)$ as a function of m_a and the expected (dashed) limits under the background-only hypothesis when combining all categories.
- Limit of the same quantity when considering different categories based on the heavy-flavor objects separately.
- A factor of two improvement at low masses is observed w.r.t. to CMS results arXiv:2402.13358 due to the specific 1B-jet category.

Summary 1/2

Summary 2/2

- Probing unconstrained $m_a C_{a\gamma\gamma}$ parameter space:
 - $H \to aa \to 4\gamma$.
 - $a \rightarrow \text{axion-like}$ particles(ALPs)
 - $C_{a\gamma\gamma}$ is the ALP-photon coupling.
 - $0.5 \text{ GeV} \leq m_a \leq 60 \text{ GeV}$

•
$$10^{-5} \le C_{a\gamma\gamma} \le 1$$

- 5 categories according to their experimental signature: 4S (single), 3S, 2M(merged), 1M1S, 2S
 - Photon can be fully reconstructed, merged, or missing.
- Promptly decaying ALPs considered for $m_a > 5$ GeV.

Summary 1/2

Summary 2/2

- Probing unconstrained $m_a C_{a\gamma\gamma}$ parameter space:
 - $H \to aa \to 4\gamma$.
 - $a \rightarrow \text{axion-like}$ particles(ALPs)
 - $C_{a\gamma\gamma}$ is the ALP-photon coupling.
 - $0.5 \text{ GeV} \leq m_a \leq 60 \text{ GeV}$

•
$$10^{-5} \le C_{a\gamma\gamma} \le 1$$

- 5 categories according to their experimental signature: 4S (single), 3S, 2M(merged), 1M1S, 2S
 - Photon can be fully reconstructed, merged, or missing.
- Promptly decaying ALPs considered for $m_a > 5$ GeV.

Backgrounds

- Using a sideband in m_H distribution:
 - The range and the function of the fit depends on the category.
 - Signal region is excluded.
- Using a 2D sideband fit approach for prompt case.

Summary 1/2

Summary 2/2

- Probing unconstrained $m_a C_{a\gamma\gamma}$ parameter space:
 - $H \to aa \to 4\gamma$.
 - $a \rightarrow \text{axion-like} \\ \text{particles}(\text{ALPs})$
 - $C_{a\gamma\gamma}$ is the ALP-photon coupling.
 - $0.5 \text{ GeV} \leq m_a \leq 60 \text{ GeV}$

•
$$10^{-5} \le C_{a\gamma\gamma} \le 1$$

Systematics

- Experimental systematic depends on the category, m_a and $C_{a\gamma\gamma} \rightarrow$ from 6.5% to 18% for most categories.
- Except 4S which rises to 40% for $m_a < 15$ GeV and small couplings $C_{a\gamma\gamma}$.
- Theoretical uncertainty $\rightarrow 6\%$ for all categories.

Diallo BOYE

- experimental signature: 4S (single), 3S, 2M(merged),
 - 1M1S, 2S
 - Photon can be fully reconstructed, merged, or missing.

• 5 categories according to their

• Promptly decaying ALPs considered for $m_a > 5$ GeV.

Backgrounds

- Using a sideband in m_H distribution:
 - The range and the function of the fit depends on the category.
 - Signal region is excluded.
- Using a 2D sideband fit approach for prompt case.

CERN

• Upper limits on $B(H \rightarrow aa \rightarrow 4\gamma)$ at 95% CL as a function of the axion mass for $C_{a\gamma\gamma}=10^{-5}, 1$ (left, right)

• Upper limits on $B(H \rightarrow aa \rightarrow 4\gamma)$ at 95% CL as a function of the axion mass for $C_{a\gamma\gamma}=10^{-5}, 1$ (left, right)

- Upper limits on $B(H \rightarrow aa \rightarrow 4\gamma)$ at 95% CL as a function of the axion mass for $C_{a\gamma\gamma}=10^{-5}, 1$ (left, right)
- Limits on the ALP mass and coupling to photons at 95% CL, assuming $B(a \rightarrow \gamma \gamma) = 1$, $\Lambda = 1$ TeV with $|C_{aH}^{\text{eff}}| = 1$ and $|C_{aH}^{\text{eff}}| = 0$ as predicted. Most stringent limits to date.

Search for $H \to Za \to \ell \ell \gamma \gamma \bullet arXiv:2312.01942$

- Lepton triggers to select Z events.
- Select photons and categorise the event in 2 categories:
- Resolved category (2γ) .
- Merged category (1γ)

Search for $H \to Za \to \ell \ell \gamma \gamma$ • arXiv:2312.01942

Summary

- Lepton triggers to select Z events.
- Select photons and categorise the event in 2 categories:
- Resolved category (2γ) .
- Merged category (1γ)

Backgrounds

- Data-driven background parametrisation of Zjets (90%) and $Z\gamma$ backgrounds in SR and shape fit \rightarrow resolved case.
- CR+SR simultaneous fit to estimate $Z\gamma$ (75%) and Zjets backgrounds.

Search for $H \to Za \to \ell \ell \gamma \gamma$ • arXiv:2312.01942

Summary

- Lepton triggers to select Z events.
- Select photons and categorise the event in 2 categories:
- Resolved category (2γ) .
- Merged category (1γ)

Backgrounds

- Data-driven background parametrisation of Zjets (90%) and $Z\gamma$ backgrounds in SR and shape fit \rightarrow resolved case.
- CR+SR simultaneous fit to estimate $Z\gamma$ (75%) and Zjets backgrounds.

Systematics

- Systematics on signal:
 - Main shape uncertainties coming from photon isolation, electron ID and PU reweighting
 - Signal modelling uncertainty: shape and parameters variation
- Systematics for data-driven background:
- Background modelling uncertainty: spurious signal method

Diallo BOYE

Search for $H \to Za \to \ell \ell \gamma \gamma$ • arXiv:2312.01942

Results

- Left: Expected and observed 95% CL upper limits on $\mathcal{B}(H \to Za, a \to \gamma\gamma)$ vs m_a in the merged $(m_a \leq 2 \text{ GeV})$ and the resolved $(m_a > 2 \text{ GeV})$ categories.
- Right: ATLAS observed 95% CL exclusion contours limits in terms of the ALP mass and its effective coupling to photons, $|C_{\gamma\gamma}|/\Lambda$, for different values of the Higgs coupling to Za, $|C_{ZH}|/\Lambda$.

Diallo BOYE

- $0.5 \text{ GeV} < m_a < 4 \text{ GeV},$ focusing at low masses.
- Hadronic decays of *a*, reconstructed as a single jet (large boost)
- Z leptonic decays.
- 50 GeV $< m_{\ell\ell jj} < 180$ GeV.

Summary

- $0.5 \text{ GeV} < m_a < 4 \text{ GeV},$ focusing at low masses.
- Hadronic decays of *a*, reconstructed as a single jet (large boost)
- Z leptonic decays.
- 50 GeV $< m_{\ell\ell jj} < 180$ GeV.

Backgrounds

- Main bkg \rightarrow Z+jets.
- A reweighing technique is used to estimate bkg:
- 11 training variables are reweighted simultaneously for a high level of MC-Data agreement.

Summary

- $0.5 \text{ GeV} < m_a < 4 \text{ GeV},$ focusing at low masses.
- Hadronic decays of *a*, reconstructed as a single jet (large boost)
- Z leptonic decays.
- 50 GeV $< m_{\ell\ell jj} < 180$ GeV.

Backgrounds

- Main bkg \rightarrow Z+jets.
- A reweighing technique is used to estimate bkg:
- 11 training variables are reweighted simultaneously for a high level of MC-Data agreement.

Systematics

- Signal Uncertainties:
 - Experimental uncertainties.
 - PS and hadronization.
- Bkg Uncertainties:
 - Data-driven uncertainty
 - Theory uncertainty, NN performance, JET experimental uncertainties.

Results

- Expected and observed 95% CL upper limits on $\mathcal{B}(H \to Za)$ vs m_a .
- Left corresponds to $\mathcal{B}(a \to gg) = 100\%$ and right corresponds $\mathcal{B}(a \to qq) = 100\%$.
- The weaker limits from the previous version of the analysis are also shown.

Diallo BOYE

Conclusion

- Searches for Higgs exotic decays and additional scalars in ATLAS are presented focusing on the most recent results.
- Five analyses published this year have been shown, some of them for the first time
- There are still many uncovered interesting searches stay tuned for updates!!

BACKUP

BACKUP

Uncertainty source	Expected limit on $(\sigma(H)/\sigma_{\rm SM}(H))\mathcal{B}(H \to aa \to b\bar{b}\tau^+\tau^-)$		
Succramity source	$m_a = 12 \text{ GeV}$	$m_a = 25 \text{ GeV}$	$m_a = 60 \text{ GeV}$
Stat-only limit	1.34	1.79	3.00
Observed limit	2.89	2.02	3.37
MC statistics	1.42	1.81	3.04
Experimental	2.72	1.94	3.21
Detector response	2.43	1.84	3.03
Luminosity and pileup	1.37	-	-
b-tagging	-	1.81	-
B-tagging	2.35	-	-
Jet and E_{T}^{miss}	-	1.83	-
Electrons	1.36	-	-
Muons	1.35	-	-
Taus	-	-	-
Data-driven normalization	1.58	1.94	3.19
Non-prompt leptons	1.58	1.85	3.16
Non-prompt taus	-	1.86	3.10
MC reweighting	-	-	-
Theoretical modeling	1.38	1.89	3.04
Signal	-	-	-
Background	1.37	1.87	3.03

Search for $H \to aa \to bb\tau^+\tau^-$ (*arXiv:2407.01335)

• Different systematic uncertainties group are considered individually in each line of the table. The larger the difference relative to the expected limit without systematic uncertainties (stat-only), the more important the uncertainty group is for the final result.

Search for $H \to Za \to \ell \ell \gamma \gamma$ (* arXiv:2312.01942)

Distributions related to the merged category:

- Left: $m_{Z\gamma}$ distribution along with the range, indicated by vertical dashed lines, in which the merged category events after the E_{ratio} cut are found.
- Right: post-fit final discriminating variable $\delta R_{Z\gamma}$ in the signal region. Signal distributions for ma values used in this category are overlayed for comparison, assuming a branching ratio of the Higgs boson decay to Za times the branching ratio $a \rightarrow \gamma\gamma$ of 100%.

$m_{\rm inv}^{\rm reco}$ distribution for the nominal signal selection

- The nominal sideband fitting function is shown as the blue dashed line. The estimated background and its systematic variation (obtained from a fit with reduced range) is shown as the blue histogram. The green dotted line shows the alternative fitting function which is used to estimate the spurious signal uncertainty
- The signal region selection on $m_{\rm inv}^{\rm reco}$ is indicated using vertical dashed lines.
- Left corresponds to the 1M1S category and right to 2M category.

 $H \to Za \to \ell \ell j j$ • arXiv:2411.16361

- Angularity (left), invariant mass of the lepton pair plus jet system (right) for data, background (pre- and post-reweighting) and three $H \rightarrow Za$ signal hypotheses (for $a \rightarrow q\bar{q}/gg$ inclusively).
- The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H \to Za) = 100\%$, and it is scaled up by a factor of 100.

Diallo BOYE

Motivation: 2HDM+s (Slide from Kevin)

- Add a second Higgs doublet (heavy, not directly detected) and a new light (pseudo)scalar to the SM.
 - · Light scalar can in general decay to SM via its mixing with other scalars in the scalar potential.
 - Alignment limit avoid spoiling the SM-like nature of the 125 GeV Higgs. Higgs can decay to aa to about 10% (Higgs coupling limits)
- A wide range of phenomenology results, including regimes where the pseudo scalar branching ratio to $\tau\tau$ and bb are roughly equal, and decays to $bb\tau\tau$ are up to 45% of the aa decays.

AS cut-flow reduced

	1	4	
Quadruplet	Minimal Δm	Select quadruplet with smallest $\Delta m =$	same
Ranking		$ m_{ab} - m_{cd} $	
Event Selec-	Electron ID	All e in quadruplet pass LooseLH working	same
tion		point	
	Isolation	All leptons in quadruplet pass Fixed-	
		CutLoose working point	
	Impact Parameter	$ d_0^{BL}Sig. < 5(3)$ for $e(\mu)$ in quadruplet	same
	Quarkonia Veto	$(m_{J/\psi} - 0.25 GeV) <$	same
		$m_{ab}, m_{cd}, m_{ad}, m_{cb} < (m_{\psi(2S)} + 0.30 GeV)$	
		or, $(m_{\Upsilon/(1S)} - 0.70 GeV) <$	
		$m_{ab}, m_{cd}, m_{ad}, m_{cb} < (m_{\Upsilon(3S)} + 0.75 \text{ GeV})$	
	LowMass Veto	$(m_{ab}, m_{cd}, m_{ad}, m_{cb}) > 5 \text{ GeV}$	same
	ZVeto	<i>m</i> _{ab} ∉ [50, 106] GeV	m_{ab} and $m_{cd} \notin [83.2, 99.2]$ GeV
			m_{ad} and $m_{cb} \notin [87.2, 95.2]$ GeV
	LooseSR	$(m_{ab}, m_{cd}, m_{ad}, m_{cb}) > 10 GeV$	same
	H veto	$m_{4\ell} < 115 \text{GeV}$	$m_{4\ell} > 130 \text{GeV}$
	MediumSR	new SR	same
	TightSR	$ E_{ab}'/M_{4l} - 0.5 < 0.008$	same