
Online track reconstruction with
graph neural networks on FPGAs

for the ATLAS experiment
Sebastian Dittmeier on behalf of the ATLAS collaboration

Physikalisches Institut – Universität Heidelberg
CHEP 2024

Krakow, 19. – 25. October 2024

https://indico.cern.ch/event/1338689

ATLAS Upgrade: ITk & TDAQ
● Increase in pileup up to 〈μ〉 ≈ 200 @ HL-LHC
● New tracking detector: Inner Tracker (ITk)

○ Extended forward coverage
○ More readout channels

● Upgrade: Trigger and Data Acquisition
○ L0 trigger rate increase to 1 MHz (× 10)
○ Event Filter accept rate increase to 10 kHz (× 3)

■ ITk track reconstruction computationally
most expensive → power hungry!

■ Potentially heterogeneous computing
farm with GPUs and/or FPGAs

■ Data center class FPGAs:
testbed with AMD Alveo U250 & U55C

2Sebastian Dittmeier - Heidelberg University

[1]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2023-001/

GNNs for EF Tracking FPGA Pipeline

3Sebastian Dittmeier - Heidelberg University

FPGA-
BASED
DATA
PREP

PIPELINE

PATTERN
RECOGNITION SCORINGSLICING

ENGINE
ROAD TO
TRACK

DUPLICATE
REMOVAL

KALMAN
FILTER

FPGA

CPU

EXTRAPOLATOR

[2]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/

● Metric Learning: FPGA deployment with a compressed model
● Graph Neural Network: model compression study
● Connected Components: FPGA deployment as a kernel
● Detector regionalization as an overall strategy to reduce graph sizes

Content of this talk

4Sebastian Dittmeier - Heidelberg University

[2]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/

Sebastian Dittmeier - Heidelberg University

Graph Construction
● Graph structure

○ Represent each hit as a node
○ Edges suggest two consecutive hits of same track
○ Typical ITk event @ pileup ❬𝜇❭ = 200: ~ 300 000 hits

● Goal of graph construction:
high efficiency and minimal graph size

● Module Map
○ Map of possible connections between detector

modules derived from simulation

● Metric Learning
○ ML approach, trained on simulation
○ Multi-Layer Perceptron (MLP) embedding

followed by radius clustering

5

Node

Edge

Track

Sebastian Dittmeier - Heidelberg University

Graph Construction

6

latent space

detector space

MLP

● Graph structure
○ Represent each hit as a node
○ Edges suggest two consecutive hits of same track
○ Typical ITk event @ pileup ❬𝜇❭ = 200: ~ 300 000 hits

● Goal of graph construction:
high efficiency and minimal graph size

● Module Map
○ Map of possible connections between detector

modules derived from simulation

● Metric Learning
○ ML approach, trained on simulation
○ Multi-Layer Perceptron (MLP) embedding

followed by radius clustering

Sebastian Dittmeier - Heidelberg University

Graph Construction

7

MLP

r

latent space

detector space

● Graph structure
○ Represent each hit as a node
○ Edges suggest two consecutive hits of same track
○ Typical ITk event @ pileup ❬𝜇❭ = 200: ~ 300 000 hits

● Goal of graph construction:
high efficiency and minimal graph size

● Module Map
○ Map of possible connections between detector

modules derived from simulation

● Metric Learning
○ ML approach, trained on simulation
○ Multi-Layer Perceptron (MLP) embedding

followed by radius clustering

ITk simulation sample @ ❬𝜇❭ = 200

Target particles primaries, no e±

Target min. pT > 1 GeV

Target num. spacepoints ≥ 3

Metric Learning MLP on FPGA Workflow

8Sebastian Dittmeier - Heidelberg University

MLP Definition
+ Training

Input features 3

Hidden layers 4

Hidden dimension 512

Normalization Batch

Activation ReLU

Output layer Linear

Output features 12

MLP architecture Training data parameters

https://pytorch.org/

Metric Learning MLP on FPGA Workflow

9Sebastian Dittmeier - Heidelberg University

Brevitas

MLP Definition
+ Training

Iterative Pruning

Quantization
Aware Training

800k Parameters
Floating-Point 32 bit

< 30k Parameters
Fixed-Point [4, 6] bit

Input features 3

Hidden layers 4

Hidden dimension 512

Normalization Batch

Activation ReLU

Output layer Linear

Output features 12

MLP architecture

https://github.com/Xilinx/brevitas
https://pytorch.org/

Metric Learning MLP on FPGA Workflow

10Sebastian Dittmeier - Heidelberg University

Brevitas QONNX

MLP Definition
+ Training

Iterative Pruning

Quantization
Aware Training

Quantized
Exchange Format

Compiler for
FPGA Accelerator

FINN build targeting 300 kHz inferences @ 300 MHz clock

● Throughput measured @ 385 kHz inferences

● fmax > 300 MHz

● Resource utilization of
streaming dataflow partition

Resource Utilization
(% of full U280)

LUT 25k (1.9 %)

FF 63k (2.4 %)

BRAM 166 (8.2 %)

URAM 0

DSP 1547 (17 %)
Streaming Dataflow Partition on U280

https://github.com/Xilinx/finn/tree/main
https://github.com/Xilinx/brevitas
https://github.com/fastmachinelearning/qonnx
https://pytorch.org/

Metric Learning Radius Clustering on FPGA

● Sort data in buckets and compute 12-dim distances
→ create edge list

● HLS kernel implemented with Vitis 2023.1
● Very preliminary resources for sizing of full ITk event

Heavy on BRAM as MLP output features were
not yet optimized for sorting data into buckets

● Timing not yet optimized
● Functionally verified

11Sebastian Dittmeier - Heidelberg University

r

r

r

Resource Utilization
(% of full U280)

LUT 27k (2.1 %)

FF 35k (1.3%)

BRAM 871 (43 %)

URAM 0

DSP 140 (1.6 %) Radius Clustering on U280

Metric Learning – Physics Performance FPGA vs GPU

12Sebastian Dittmeier - Heidelberg University

● Graphs created with compressed model are ~ 10 % larger for same efficiency
● Differences FPGA vs GPU mostly due to QONNX export

[3] [3]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

Computing Performance Optimizations

13Sebastian Dittmeier - Heidelberg University

FINN build targeting 300 MHz inferences @ 300 MHz clock
requires higher sparsity (here ~ 15k Parameters)

● Throughput measured @ 20 MHz (fmax = 201 MHz),
most likely limited by under-sized FIFOs

● Model was trained on old samples, even smaller
model has been trained, FINN build pending

● Metric Learning optimized for sorting data into buckets by additional loss term:
uncorrelated and wide uniform distributions for 3 dimensions used for sorting

● This will reduce bucket size → expect significant speed-up and BRAM utilization reduction
by more than a factor of 10 for the radius clustering kernel

Resource Utilization
(% of full U280)

LUT 352k (27 %)

FF 107k (4.1 %)

BRAM 0

URAM 0

DSP 133 (1.5 %) Streaming Dataflow Partition on U280
for a fully unrolled model

Edge Labeling with Graph Neural Network

14

Encoders Interaction
Network DecoderInput Graph Edge Scores

Sebastian Dittmeier - Heidelberg University

Geometric deep learning algorithm to classify edges as true or false

𝜈x
k
 = features of node x at iteration k

ex,y
k
 = features of edge between nodes x and y at iteration k

𝜙n: Node update MLP

∑: Aggregation function

𝜈x
1 = 𝜙n(𝜈x

0,∑ex,y
1)

Repeat for N message passing steps

ex,y
1 = 𝜙e(𝜈x

0, 𝜈y
0, ex,y

0)

𝜙e: Edge update MLP
𝜈0

0

𝜈1
0 𝜈2

0

𝜈5
0 𝜈6

0

𝜈3
0 𝜈4

0

e0,2
0e0,1

0

e0,3
0 e0,4

0

e1,5
0 e2,6

0

e1,2
0

Graph Neural Network – Model Compression

15Sebastian Dittmeier - Heidelberg University

Brevitas

GNN Definition
+ Training

Iterative Pruning

Quantization
Aware Training

● GNN with 48 hidden dim + 8 message passing steps
● For pruning: quantization fixed to 6 bits
● Great potential for model compression

PyG

[3] [3]

https://github.com/Xilinx/brevitas
https://pytorch.org/
https://pyg.org
https://pyg.org
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

● Remove edges scored below threshold
● Store remaining edges in a memory efficient edge table
● Compute connected components
● HLS Kernel implemented with Vitis 2023.1
● Measured preliminary execution time:

193 ms for a realistic full detector event
● Identified future optimizations

○ In- and output data structures
○ Full event-pipeline
○ Arbitrary precision data types

Graph Segmentation – Connected Components on FPGA

16Sebastian Dittmeier - Heidelberg University

Resource Utilization
(% of full U280)

LUT 13k (1%)

FF 17k (0.7%)

BRAM 181 (9%)

URAM 0

DSP 0

Connected Components on U280

Detector Regionalization
● Strategy to fit graphs into FPGA on-chip memory
● Region Definitions

○ 0.2 η x 0.2 ɸ with z/ɸ spread and overlap
to account for track curvature

○ 1353 regions with deep overlap
→ each true track inside at least one region

● Regional graph construction implementation
with Module Map > 99.5 % edge-wise efficiency

● Results in average graph size reduction by
a factor of 100 compared to full detector

17Sebastian Dittmeier - Heidelberg University

[3]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

Detector Regionalization – Track Technical Efficiency

18Sebastian Dittmeier - Heidelberg University

● Interaction Network trained on full detector events
● No significant difference in efficiency for inference regional vs full detector
● Overlaps lead to significant increase of duplicate tracks → duplicate removal

[3] [3]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

● Heterogeneous online computing farm under
consideration for the ATLAS Event Filter at HL-LHC

● Development of GNN-based track finding on FPGAs
● Preliminary standalone implementations of FPGA

algorithms for graph construction and segmentation
available and functionally verified

● Started compression and FPGA implementation
of Interaction Network

● Validated detector regionalization as an
approach to fit graphs into on-chip memory

Summary

19Sebastian Dittmeier - Heidelberg University

Backup

20Sebastian Dittmeier - Heidelberg University

References
[1] ATLAS Inner Tracker Layout 03-00-00

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2023-001/

[2] Track finding performance plots for a Graph Neural Network pipeline on ATLAS ITk Simulated Data
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/

[3] ATLAS Experiment – Public Results: Approved plots for the EF Tracking project
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

21Sebastian Dittmeier - Heidelberg University

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2023-001/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2023-001/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

● Development of an FPGA based track reconstruction pipeline for the
ATLAS Event Filter [Thursday, 14:24 (track 2)]

● Performance of the ATLAS GNN4ITk Particle Track Reconstruction GPU
pipeline [Monday, (poster)]

● Improving Computational Performance of ATLAS GNN Track
Reconstruction Pipeline [Thursday, 16:33 (track 3)]

● High Performance Graph Segmentation for ATLAS GNN Track
Reconstruction [Thursday, 16:51 (track 3)]

● Energy-efficient graph-based algorithm for tracking at the HL-LHC
[Thursday, 17:45 (track 3)]

Related contributions @ CHEP

22Sebastian Dittmeier - Heidelberg University

https://indico.cern.ch/event/1338689/contributions/6015392/
https://indico.cern.ch/event/1338689/contributions/6015428/
https://indico.cern.ch/event/1338689/contributions/6011080/
https://indico.cern.ch/event/1338689/contributions/6010082/
https://indico.cern.ch/event/1338689/contributions/6010270/

Upgrade of the ATLAS Experiment for the HL-LHC

23
https://cds.cern.ch/record/1095924

Inner Tracker (ITk)

High Granularity
Timing Detector (HGTD)

New Muon Chambers

Electronics Upgrades for
Calorimeters & Muon

Upgraded Trigger and Data
Acquisition (TDAQ) System

Sebastian Dittmeier - Heidelberg University

https://cds.cern.ch/record/1095924

ATLAS ITk material

24Sebastian Dittmeier - Heidelberg University

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2023-001/

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2023-001/

● Tracking is a crucial element of
the ATLAS trigger

● Leptons (isolation), b-physics:
Regions of Interest (100 kHz)

● Jets and Missing pT:
Full detector (14 kHz)

Tracking for the ATLAS Trigger

25G. Aad et al 2024 JINST 19 P06029
2016 J. Phys.: Conf. Ser. 762 012029

Sebastian Dittmeier - Heidelberg University

https://iopscience.iop.org/article/10.1088/1748-0221/19/06/P06029/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/762/1/012029/pdf

Kalman Filter at Trigger Level

● Very well suited for
precision track fitting

● Using full material and magnetic
field information takes CPU time
→ approximations for track finding

● Even then: biggest CPU consumer
in ATLAS trigger system by far!

● Execution time scales worse
than linearly with number of
simultaneous interactions

26Sebastian Dittmeier - Heidelberg University

G. Aad et al 2024 JINST 19 P06029

https://iopscience.iop.org/article/10.1088/1748-0221/19/06/P06029/pdf

Importance of Tracking in the Trigger @ HL-LHC

27Sebastian Dittmeier - Heidelberg University

ATLAS-TDR-029

https://cds.cern.ch/record/2285584

Edge Labeling with Graph Neural Network

28

MLP Edge
Block

MLP Node
Block

MLP Edge
Decoder

MLP Node
Encoder

MLP Edge
Encoder

Encoders Interaction
Network Decoder

Number of Message Passing step

Embeds graph input features into
a D-dimensional latent space

Learns geometric
patterns of tracks

Transforms the latent features of
each edge into a classification score

Input Graph

Node Features

Edge Features

Edge Scores

Goal: classify edges as “True” or “False” – could they belong to a track?

Sebastian Dittmeier - Heidelberg University

29

● GNN track finding → 𝜒2 fit
to extract track parameters

● Comparison against ATLAS
default tracking: Combinatorial
Kalman Filter (CKF)

● GNN efficiency close to CKF
● Comparable resolution on

impact parameters

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-06/
https://cds.cern.ch/record/2882507

Results of GNN tracking for ATLAS ITk

Sebastian Dittmeier - Heidelberg University

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-06/
https://cds.cern.ch/record/2882507

Metric Learning: Model Compression

● Application of Quantization and Pruning:
○ Single largest MLP in whole pipeline
○ GNN also heavily relies on MLPs

● Trained on ITk Geant4 simulation of , ❬𝜇❭ = 200
● Target particles

○ Primaries except electrons
○ pT > 1 GeV
○ ≥ 3 space points

● BatchNorm instead of LayerNorm for FPGA study
● Performance metric

Purity of constructed graphs evaluated
@ 98 % edge-wise graph construction efficiency

30

Linear
BatchNorm

ReLU

Linear

Linear
BatchNorm

ReLU

Linear
BatchNorm

ReLU

Linear
BatchNorm

ReLU

space points

embedded space points

3

12

512

512

512

512

dimensions

~ 800k Parameters

Sebastian Dittmeier - Heidelberg University

Workflow for this study

31

https://indico.cern.ch/event/1283970/contributions/5537711/

Sebastian Dittmeier - Heidelberg University

https://indico.cern.ch/event/1283970/contributions/5537711/

● Fully quantized
○ Linear layers: weights & bias
○ ReLU activations
○ Input data

● Heterogeneous quant.
○ Bit widths bi= [x,y,z] bit

■ bw: weights
■ ba: activations
■ x: first layer
■ y: hidden layers
■ z: last layer

32

Quantization Aware Training Results

● Model size evaluated in Bit Operations:
BOP ∝ (1 - fp) ba bw , fp: pruning fraction (or sparsity)

Sebastian Dittmeier - Heidelberg University

[3]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

● L1 loss weighting factor λ
highly model dependent

● A well chosen weight can
even enhance accuracy

● Creates sparsity →
reflects in bit operations
for quantized networks

33

L1 Regularisation Results

Sebastian Dittmeier - Heidelberg University

[3]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

● Best performance for
every pruning step
versus model size

● Unstructured pruning:
○ Fine tuning allows for

about 83 % sparsity
○ Learning Rate Rewinding

allows for > 98 % sparsity
● Structured pruning may

require different
regularisation

34

Iterative Pruning Results

FT = Fine Tuning
LRR = Learning Rate Rewinding

Sebastian Dittmeier - Heidelberg University

[3]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

35

Iterative Pruning Results

FT = Fine Tuning
LRR = Learning Rate Rewinding

sparsity in %

● Best performance for
every pruning step
versus model size

● Unstructured pruning:
○ Fine tuning allows for

about 83 % sparsity
○ Learning Rate Rewinding

allows for > 98 % sparsity
● Structured pruning may

require different
regularisation

Sebastian Dittmeier - Heidelberg University

[3]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults

Workflow for this study

36

https://indico.cern.ch/event/1283970/contributions/5537711/

Sebastian Dittmeier - Heidelberg University

https://indico.cern.ch/event/1283970/contributions/5537711/

QONNX model export

37Sebastian Dittmeier - Heidelberg University

QuantLinear
BatchNorm
QuantReLU

space points
quantized input data

QONNXBrevitas

…

https://arxiv.org/abs/2206.11791

https://arxiv.org/abs/2206.11791

Workflow for this study

38

https://indico.cern.ch/event/1283970/contributions/5537711/

Sebastian Dittmeier - Heidelberg University

https://indico.cern.ch/event/1283970/contributions/5537711/

39

MLP Translation for FPGAs with FINN

● We can trade throughput vs. resource usage by varying
Processing Elements (PE) and Vectorization (SIMD)

● Sparsity can be exploited by fully parallelizing the model

Sebastian Dittmeier - Heidelberg University

https://github.com/Xilinx/finn/

https://github.com/Xilinx/finn/

40

MLP Translation for FPGAs with FINN

● We can trade throughput vs. resource usage by varying
Processing Elements (PE) and Vectorization (SIMD)

● Sparsity can be exploited by fully parallelizing the model

Sebastian Dittmeier - Heidelberg University

https://github.com/Xilinx/finn/

https://github.com/Xilinx/finn/

