Online track reconstruction with graph neural networks on FPGAs for the ATLAS experiment

Sebastian Dittmeier on behalf of the ATLAS collaboration Physikalisches Institut – Universität Heidelberg CHEP 2024 Krakow, 19. - 25. October 2024

SPONSORED BY THE

ATLAS Upgrade: ITk & TDAQ

- Increase in pileup up to $\langle \mu \rangle \approx 200$ @ HL-LHC
- **New** tracking detector: Inner Tracker (ITk)
 - Extended forward coverage Ο
 - More readout channels 0
- **Upgrade**: Trigger and Data Acquisition
 - L0 trigger rate increase to **1 MHz (× 10)** 0
 - Event Filter accept rate increase to 10 kHz (× 3) Ο
 - **ITk track reconstruction** computationally most expensive \rightarrow power hungry!
 - Potentially **heterogeneous computing** farm with GPUs and/or FPGAs
 - Data center class FPGAs: testbed with AMD Alveo U250 & U55C

[mm]

GNNs for EF Tracking FPGA Pipeline

FPGA

Content of this talk

- Metric Learning: FPGA deployment with a compressed model
- Graph Neural Network: model compression study
- Connected Components: FPGA deployment as a kernel
- Detector regionalization as an overall strategy to reduce graph sizes

Graph Construction

- Graph structure
 - Represent each **hit** as a **node**
 - Edges suggest two consecutive hits of same track
 - Typical ITk event @ pileup $\langle \mu \rangle$ = 200: ~ 300 000 hits
- Goal of graph construction: high efficiency and minimal graph size
- Module Map
 - Map of possible connections between detector modules derived from simulation
- Metric Learning
 - ML approach, trained on simulation
 - Multi-Layer Perceptron (MLP) embedding followed by radius clustering

Graph Construction

- Graph structure
 - Represent each **hit** as a **node**
 - Edges suggest two consecutive hits of same track
 - Typical ITk event @ pileup (μ) = 200: ~ 300 000 hits
- Goal of graph construction: high efficiency and minimal graph size
- Module Map
 - Map of possible connections between detector modules derived from simulation

• Metric Learning

- ML approach, trained on simulation
- **Multi-Layer Perceptron (MLP) embedding** followed by radius clustering

Graph Construction

- Graph structure
 - Represent each **hit** as a **node**
 - Edges suggest two consecutive hits of same track
 - Typical ITk event @ pileup (μ) = 200: ~ 300 000 hits
- Goal of graph construction: high efficiency and minimal graph size
- Module Map
 - Map of possible connections between detector modules derived from simulation

• Metric Learning

- ML approach, trained on simulation
- Multi-Layer Perceptron (MLP) embedding followed by radius clustering

Metric Learning MLP on FPGA Workflow

MLP Definition + Training

MLP architecture

Input features	3
Hidden layers	4
Hidden dimension	512
Normalization	Batch
Activation	ReLU
Output layer	Linear
Output features	12

Training data parameters

ITk simulation sample	$t\bar{t}$ @ (μ) = 200
Target particles	primaries, no e [±]
Target min. $p_{_{T}}$	> 1 GeV
Target num. spacepoints	≥3

Metric Learning MLP on FPGA Workflow

Metric Learning MLP on FPGA Workflow

FINN build targeting 300 kHz inferences @ 300 MHz clock

- Throughput measured @ 385 kHz inferences
- f_{max} > 300 MHz
- Resource utilization of streaming dataflow partition

Resource	Utilization (% of full U280)
LUT	25k (1.9 %)
FF	63k (2.4 %)
BRAM	166 (8.2 %)
URAM	0
DSP	1547 (17 %)

Streaming Dataflow Partition on U280

Sebastian Dittmeier - Heidelberg University

Metric Learning Radius Clustering on FPGA

- Sort data in buckets and compute 12-dim distances
 → create edge list
- HLS kernel implemented with Vitis 2023.1
- Very preliminary resources for sizing of full ITk event
 Heavy on BRAM as MLP output features were not yet optimized for sorting data into buckets
- Timing not yet optimized
- Functionally verified

Resource	Utilization (% of full U280)
LUT	27k (2.1 %)
FF	35k (1.3%)
BRAM	871 (43 %)
URAM	0
DSP	140 (1.6 %)

11

Metric Learning – Physics Performance FPGA vs GPU

- Graphs created with compressed model are ~ 10 % larger for same efficiency
- Differences FPGA vs GPU mostly due to QONNX export

Computing Performance Optimizations

FINN build targeting **300 MHz inferences** @ 300 MHz clock requires higher sparsity (here ~ 15k Parameters) Resource Util

- Throughput measured @ 20 MHz (f_{max} = 201 MHz), most likely limited by under-sized FIFOs
- Model was trained on old samples, even smaller model has been trained, FINN build pending

	Resource	Utilization (% of full U280)
	LUT	352k (27 %)
'	FF	107k (4.1 %)
	BRAM	0
	URAM	0
	DSP	133 (1.5 %)

Streaming Dataflow Partition on U280 for a fully unrolled model

- Metric Learning optimized for sorting data into buckets by additional loss term: uncorrelated and wide uniform distributions for 3 dimensions used for sorting
- This will reduce bucket size → expect significant speed-up and BRAM utilization reduction by more than a factor of 10 for the radius clustering kernel

Edge Labeling with Graph Neural Network

Geometric deep learning algorithm to classify edges as true or false

Sebastian Dittmeier - Heidelberg University

Graph Neural Network – Model Compression

Graph Segmentation – Connected Components on FPGA

- Remove edges scored below threshold
- Store remaining edges in a memory efficient edge table
- Compute connected components
- HLS Kernel implemented with Vitis 2023.1
- Measured preliminary execution time:
 193 ms for a realistic full detector event
- Identified future optimizations
 - In- and output data structures
 - Full event-pipeline
 - Arbitrary precision data types

17k (0.7%)

181 (9%)

0

0

FF

BRAM

URAM

DSP

Sebastian Dittmeier - Heidelberg University

Detector Regionalization

- Strategy to fit graphs into FPGA on-chip memory
- <u>Region Definitions</u>
 - \circ 0.2 η x 0.2 φ with z/φ spread and overlap to account for track curvature
 - 1353 regions with deep overlap
 → each true track inside at least one region
- **Regional graph construction** implementation with Module Map > 99.5 % edge-wise efficiency
- Results in **average graph size reduction** by a **factor** of **100** compared to full detector

Detector Regionalization – Track Technical Efficiency

- Interaction Network trained on full detector events
- No significant difference in efficiency for inference regional vs full detector
- Overlaps lead to significant increase of duplicate tracks \rightarrow duplicate removal

Summary

- Heterogeneous online computing farm under consideration for the ATLAS Event Filter at HL-LHC
- Development of **GNN-based track finding on FPGAs**
- Preliminary standalone implementations of FPGA algorithms for graph construction and segmentation available and functionally verified
- Started compression and FPGA implementation of Interaction Network
- Validated detector regionalization as an approach to fit graphs into on-chip memory

Sebastian Dittmeier - Heidelberg University

References

- [1] ATLAS Inner Tracker Layout 03-00-00 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2023-001/
- [2] Track finding performance plots for a Graph Neural Network pipeline on ATLAS ITk Simulated Data https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/
- [3] ATLAS Experiment Public Results: Approved plots for the EF Tracking project <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults</u>

Related contributions @ CHEP

- Development of an FPGA based track reconstruction pipeline for the ATLAS Event Filter [<u>Thursday, 14:24 (track 2)</u>]
- Performance of the ATLAS GNN4ITk Particle Track Reconstruction GPU pipeline [Monday, (poster)]
- Improving Computational Performance of ATLAS GNN Track Reconstruction Pipeline [<u>Thursday, 16:33 (track 3)</u>]
- High Performance Graph Segmentation for ATLAS GNN Track Reconstruction [<u>Thursday, 16:51 (track 3)</u>]
- Energy-efficient graph-based algorithm for tracking at the HL-LHC [Thursday, 17:45 (track 3)]

Upgrade of the ATLAS Experiment for the HL-LHC

New Muon Chambers

High Granularity

Timing Detector (HGTD)

Upgraded Trigger and Data Acquisition (TDAQ) System

Electronics Upgrades for Calorimeters & Muon

https://cds.cern.ch/record/1095924

Inner Tracker (ITk)

ATLAS ITk material

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2023-001/

Sebastian Dittmeier - Heidelberg University

Tracking for the ATLAS Trigger

- **Tracking** is a **crucial** element of the ATLAS **trigger**
- Leptons (isolation), b-physics:
 Regions of Interest (100 kHz)
- Jets and Missing p_T:
 Full detector (14 kHz)

Kalman Filter at Trigger Level

- Very well suited for precision track fitting
- Using full material and magnetic field information takes CPU time
 → approximations for track finding
- Even then: biggest CPU consumer in ATLAS trigger system by far!
- Execution time scales worse than linearly with number of simultaneous interactions

G. Aad et al 2024 JINST 19 P06029

Importance of Tracking in the Trigger @ HL-LHC

Edge Labeling with Graph Neural Network

Goal: classify edges as "True" or "False" – could they belong to a track?

Results of GNN tracking for ATLAS ITk

Efficiency

- GNN track finding $\rightarrow \chi^2$ fit to extract track parameters
- Comparison against ATLAS default tracking: Combinatorial Kalman Filter (CKF)
- GNN efficiency close to CKF
- **Comparable resolution** on impact parameters

- Application of **Quantization** and **Pruning**:
 - Single largest MLP in whole pipeline
 - GNN also heavily relies on MLPs
- Trained on ITk Geant4 simulation of $t\bar{t}$ (μ) = 200
- Target particles
 - Primaries except electrons
 - $\circ p_{T} > 1 \text{ GeV}$
 - $\circ \geq 3$ space points
- BatchNorm instead of LayerNorm for FPGA study
- Performance metric

Purity of constructed graphs evaluated

@ 98 % edge-wise graph construction efficiency

Workflow for this study

[Public]

JFINN Framework: From DNN to FPGA Deployment

- · Quantization-aware training for DNNs
- · Library of common quantized layers
- Includes pre-trained examples
- · Quantized NN exchange format + toolkit
- · Perform optimizations
- Assemble parameterized HLS/RTL modules
- · Generate a DNN hardware IP
- · Run RTL testbenches to simulate IP
- System-level integration in Vivado IPI
- Rapid prototyping with PYNQ

All open source & actively maintained

AMD

https://indico.cern.ch/event/1283970/contributions/5537711/

Quantization Aware Training Results

- Fully quantized
 - Linear layers: weights & bias
 - ReLU activations
 - Input data
- Heterogeneous quant.
 - Bit widths $b_i = [x,y,z]$ bit
 - b_w : weights
 - *b_a:* activations
 - x: first layer
 - y: hidden layers
 - z: last layer

• Model size evaluated in **Bit Operations**: BOP $\propto (1 - f_p) b_a b_w, f_p$: pruning fraction (or sparsity)

L1 Regularisation Results

- L1 loss weighting factor λ highly model dependent
- A well chosen weight can even **enhance accuracy**
- Creates sparsity → reflects in bit operations for quantized networks

Iterative Pruning Results

- Best performance for every pruning step versus model size
- Unstructured pruning:
 - Fine tuning allows for about 83 % sparsity
 - Learning Rate Rewinding allows for > 98 % sparsity
- Structured pruning may require different regularisation

Iterative Pruning Results

- Best performance for every pruning step versus model size
- Unstructured pruning:
 - Fine tuning allows for about 83 % sparsity
 - Learning Rate Rewinding allows for > 98 % sparsity
- Structured pruning may require different regularisation

Workflow for this study

[Public]

JFINN Framework: From DNN to FPGA Deployment

- Quantization-aware training for DNNs
- · Library of common quantized layers
- Includes pre-trained examples
- · Quantized NN exchange format + toolkit
- Perform optimizations
- Assemble parameterized HLS/RTL modules
- · Generate a DNN hardware IP
- · Run RTL testbenches to simulate IP
- System-level integration in Vivado IPI
- Rapid prototyping with PYNQ

All open source & actively maintained

AMD

https://indico.cern.ch/event/1283970/contributions/5537711/

Sebastian Dittmeier - Heidelberg University

Workflow for this study

[Public]

JEANN Framework: From DNN to FPGA Deployment

- Quantization-aware training for DNNs
- · Library of common quantized layers
- Includes pre-trained examples
- · Quantized NN exchange format + toolkit
- Perform optimizations
- Assemble parameterized HLS/RTL modules
- · Generate a DNN hardware IP
- · Run RTL testbenches to simulate IP
- System-level integration in Vivado IPI
- Rapid prototyping with PYNQ

All open source & actively maintained

AMD

https://indico.cern.ch/event/1283970/contributions/5537711/

Sparsity can be exploited by **fully parallelizing** the model

1 (512×12)

1×12

MatMul_4_out0