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ATLAS Upgrade: ITk & TDAQ
● Increase in pileup up to 〈μ〉 ≈ 200 @ HL-LHC
● New tracking detector: Inner Tracker (ITk) 

○ Extended forward coverage
○ More readout channels

● Upgrade: Trigger and Data Acquisition
○ L0 trigger rate increase to 1 MHz (× 10)
○ Event Filter accept rate increase to 10 kHz (× 3)

■ ITk track reconstruction computationally 
most expensive → power hungry!

■ Potentially heterogeneous computing 
farm with GPUs and/or FPGAs

■ Data center class FPGAs: 
testbed with AMD Alveo U250 & U55C 
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GNNs for EF Tracking FPGA Pipeline
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● Metric Learning: FPGA deployment with a compressed model
● Graph Neural Network: model compression study 
● Connected Components: FPGA deployment as a kernel
● Detector regionalization as an overall strategy to reduce graph sizes

Content of this talk
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Graph Construction
● Graph structure

○ Represent each hit as a node
○ Edges suggest two consecutive hits of same track
○ Typical ITk event @ pileup ❬𝜇❭ = 200:  ~ 300 000 hits

● Goal of graph construction:
high efficiency and minimal graph size

● Module Map
○ Map of possible connections between detector 

modules derived from simulation

● Metric Learning
○ ML approach, trained on simulation
○ Multi-Layer Perceptron (MLP) embedding 

followed by radius clustering
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Graph Construction
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Graph Construction
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● Graph structure
○ Represent each hit as a node
○ Edges suggest two consecutive hits of same track
○ Typical ITk event @ pileup ❬𝜇❭ = 200:  ~ 300 000 hits

● Goal of graph construction:
high efficiency and minimal graph size

● Module Map
○ Map of possible connections between detector 

modules derived from simulation

● Metric Learning
○ ML approach, trained on simulation
○ Multi-Layer Perceptron (MLP) embedding 

followed by radius clustering



ITk simulation sample       @ ❬𝜇❭ = 200

Target particles primaries, no e±

Target min. pT > 1 GeV

Target num. spacepoints ≥ 3

Metric Learning MLP on FPGA Workflow
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MLP Definition
+ Training      

Input features 3

Hidden layers 4

Hidden dimension 512

Normalization Batch

Activation ReLU

Output layer Linear

Output features 12

MLP architecture Training data parameters

https://pytorch.org/


Metric Learning MLP on FPGA Workflow
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Brevitas

MLP Definition
+ Training

Iterative Pruning

Quantization 
Aware Training

800k Parameters
Floating-Point 32 bit

< 30k Parameters
Fixed-Point [4, 6] bit

Input features 3

Hidden layers 4

Hidden dimension 512

Normalization Batch

Activation ReLU

Output layer Linear

Output features 12

MLP architecture

https://github.com/Xilinx/brevitas
https://pytorch.org/


Metric Learning MLP on FPGA Workflow
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Brevitas QONNX

MLP Definition
+ Training

Iterative Pruning

Quantization 
Aware Training

Quantized 
Exchange Format

Compiler for 
FPGA Accelerator

FINN build targeting 300 kHz inferences @ 300 MHz clock

● Throughput measured @ 385 kHz inferences

● fmax > 300 MHz

● Resource utilization of 
streaming dataflow partition

Resource Utilization 
(% of full U280)

LUT 25k (1.9 %)

FF 63k (2.4 %)

BRAM 166 (8.2 %)

URAM 0

DSP 1547 (17 %)
Streaming Dataflow Partition on U280

https://github.com/Xilinx/finn/tree/main
https://github.com/Xilinx/brevitas
https://github.com/fastmachinelearning/qonnx
https://pytorch.org/


Metric Learning Radius Clustering on FPGA

● Sort data in buckets and compute 12-dim distances
→ create edge list

● HLS kernel implemented with Vitis 2023.1
● Very preliminary resources for sizing of full ITk event

Heavy on BRAM as MLP output features were
not yet optimized for sorting data into buckets

● Timing not yet optimized
● Functionally verified
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Resource Utilization 
(% of full U280)

LUT 27k (2.1 %)

FF 35k (1.3%)

BRAM 871 (43 %)

URAM 0

DSP 140 (1.6 %) Radius Clustering on U280



Metric Learning – Physics Performance FPGA vs GPU
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● Graphs created with compressed model are ~ 10 % larger for same efficiency
● Differences FPGA vs GPU mostly due to QONNX export
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults
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Computing Performance Optimizations
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FINN build targeting 300 MHz inferences @ 300 MHz clock
requires higher sparsity (here ~ 15k Parameters)

● Throughput measured @ 20 MHz (fmax = 201 MHz), 
most likely limited by under-sized FIFOs

● Model was trained on old samples, even smaller
model has been trained, FINN build pending

● Metric Learning optimized for sorting data into buckets by additional loss term: 
uncorrelated and wide uniform distributions for 3 dimensions used for sorting

● This will reduce bucket size → expect significant speed-up and BRAM utilization reduction 
by more than a factor of 10 for the radius clustering kernel 

Resource Utilization 
(% of full U280)

LUT 352k (27 %)

FF 107k (4.1 %)

BRAM 0

URAM 0

DSP 133 (1.5 %) Streaming Dataflow Partition on U280
for a fully unrolled model



Edge Labeling with Graph Neural Network
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Geometric deep learning algorithm to classify edges as true or false
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Graph Neural Network – Model Compression
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Brevitas

GNN Definition
+ Training

Iterative Pruning

Quantization 
Aware Training

● GNN with 48 hidden dim + 8 message passing steps
● For pruning: quantization fixed to 6 bits
● Great potential for model compression

PyG
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https://github.com/Xilinx/brevitas
https://pytorch.org/
https://pyg.org
https://pyg.org
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults


● Remove edges scored below threshold
● Store remaining edges in a memory efficient edge table 
● Compute connected components
● HLS Kernel implemented with Vitis 2023.1
● Measured preliminary execution time: 

193 ms for a realistic full detector event
● Identified future optimizations

○ In- and output data structures
○ Full event-pipeline 
○ Arbitrary precision data types

Graph Segmentation – Connected Components on FPGA
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Resource Utilization 
(% of full U280)

LUT 13k (1%)

FF 17k (0.7%)

BRAM 181 (9%)

URAM 0

DSP 0

Connected Components on U280



Detector Regionalization
● Strategy to fit graphs into FPGA on-chip memory
● Region Definitions

○ 0.2 η x 0.2 ɸ with z/ɸ spread and overlap 
to account for track curvature

○ 1353 regions with deep overlap 
→ each true track inside at least one region

● Regional graph construction implementation 
with Module Map > 99.5 % edge-wise efficiency

● Results in average graph size reduction by 
a factor of 100 compared to full detector
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Detector Regionalization – Track Technical Efficiency
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● Interaction Network trained on full detector events
● No significant difference in efficiency for inference regional vs full detector
● Overlaps lead to significant increase of duplicate tracks → duplicate removal 

[3] [3]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults


● Heterogeneous online computing farm under 
consideration for the ATLAS Event Filter at HL-LHC 

● Development of GNN-based track finding on FPGAs
● Preliminary standalone implementations of FPGA 

algorithms for graph construction and segmentation
available and functionally verified

● Started compression and FPGA implementation 
of Interaction Network

● Validated detector regionalization as an 
approach to fit graphs into on-chip memory

Summary
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Backup
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● Development of an FPGA based track reconstruction pipeline for the 
ATLAS Event Filter [Thursday, 14:24 (track 2)]

● Performance of the ATLAS GNN4ITk Particle Track Reconstruction GPU 
pipeline [Monday, (poster)]

● Improving Computational Performance of ATLAS GNN Track 
Reconstruction Pipeline [Thursday, 16:33 (track 3)]

● High Performance Graph Segmentation for ATLAS GNN Track 
Reconstruction [Thursday, 16:51 (track 3)]

● Energy-efficient graph-based algorithm for tracking at the HL-LHC 
[Thursday, 17:45 (track 3)]

Related contributions @ CHEP
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Upgrade of the ATLAS Experiment for the HL-LHC
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https://cds.cern.ch/record/1095924

Inner Tracker (ITk)

High Granularity 
Timing Detector (HGTD)

New Muon Chambers

Electronics Upgrades for 
Calorimeters & Muon

Upgraded Trigger and Data 
Acquisition (TDAQ) System 

Sebastian Dittmeier - Heidelberg University

https://cds.cern.ch/record/1095924


ATLAS ITk material 
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● Tracking is a crucial element of 
the ATLAS trigger 

● Leptons (isolation), b-physics: 
Regions of Interest (100 kHz)

● Jets and Missing pT: 
Full detector (14 kHz)

Tracking for the ATLAS Trigger

25G. Aad et al 2024 JINST 19 P06029
2016 J. Phys.: Conf. Ser. 762 012029
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Kalman Filter at Trigger Level

● Very well suited for 
precision track fitting

● Using full material and magnetic 
field information takes CPU time
→ approximations for track finding

● Even then: biggest CPU consumer
in ATLAS trigger system by far!

● Execution time scales worse 
than linearly with number of 
simultaneous interactions
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Importance of Tracking in the Trigger @ HL-LHC
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ATLAS-TDR-029

https://cds.cern.ch/record/2285584


Edge Labeling with Graph Neural Network
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MLP Edge
Block

MLP Node
Block

MLP Edge
Decoder

MLP Node
Encoder

MLP Edge
Encoder

Encoders Interaction 
Network Decoder

Number of Message Passing step

Embeds graph input features into 
a D-dimensional latent space

Learns geometric 
patterns of tracks

Transforms the latent features of 
each edge into a classification score

Input Graph

Node Features

Edge Features

Edge Scores

Goal: classify edges as “True” or “False” – could they belong to a track?
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● GNN track finding → 𝜒2 fit 
to extract track parameters

● Comparison against ATLAS 
default tracking: Combinatorial 
Kalman Filter (CKF)

● GNN efficiency close to CKF
● Comparable resolution on 

impact parameters

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-06/
https://cds.cern.ch/record/2882507

Results of GNN tracking for ATLAS ITk
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https://cds.cern.ch/record/2882507


Metric Learning: Model Compression 

● Application of Quantization and Pruning: 
○ Single largest MLP in whole pipeline
○ GNN also heavily relies on MLPs

● Trained on ITk Geant4 simulation of     , ❬𝜇❭ = 200
● Target particles

○ Primaries except electrons
○ pT > 1 GeV
○ ≥ 3 space points

● BatchNorm instead of LayerNorm for FPGA study
● Performance metric

Purity of constructed graphs evaluated
@ 98 % edge-wise graph construction efficiency 
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Workflow for this study
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https://indico.cern.ch/event/1283970/contributions/5537711/
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● Fully quantized
○ Linear layers: weights & bias
○ ReLU activations
○ Input data

● Heterogeneous quant.
○ Bit widths bi= [x,y,z] bit

■ bw: weights
■ ba: activations 
■ x: first layer
■ y: hidden layers
■ z: last layer
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Quantization Aware Training Results

● Model size evaluated in Bit Operations:
BOP ∝ (1 - fp ) ba bw ,  fp: pruning fraction (or sparsity)

Sebastian Dittmeier - Heidelberg University
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● L1 loss weighting factor λ 
highly model dependent

● A well chosen weight can 
even enhance accuracy

● Creates sparsity → 
reflects in bit operations 
for quantized networks

33

L1 Regularisation Results
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● Best performance for 
every pruning step
versus model size

● Unstructured pruning:
○ Fine tuning allows for 

about 83 % sparsity
○ Learning Rate Rewinding 

allows for > 98 % sparsity
● Structured pruning may 

require different 
regularisation

34

Iterative Pruning Results

FT = Fine Tuning
LRR = Learning Rate Rewinding

Sebastian Dittmeier - Heidelberg University
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Iterative Pruning Results

FT = Fine Tuning
LRR = Learning Rate Rewinding

sparsity in %

● Best performance for 
every pruning step
versus model size

● Unstructured pruning:
○ Fine tuning allows for 

about 83 % sparsity
○ Learning Rate Rewinding 

allows for > 98 % sparsity
● Structured pruning may 

require different 
regularisation
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Workflow for this study
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QONNX model export
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QuantLinear
BatchNorm
QuantReLU

space points
quantized input data

QONNXBrevitas

…

https://arxiv.org/abs/2206.11791 

https://arxiv.org/abs/2206.11791


Workflow for this study
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MLP Translation for FPGAs with FINN

● We can trade throughput vs. resource usage by varying 
Processing Elements (PE) and Vectorization (SIMD)

● Sparsity can be exploited by fully parallelizing the model

Sebastian Dittmeier - Heidelberg University
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MLP Translation for FPGAs with FINN

● We can trade throughput vs. resource usage by varying 
Processing Elements (PE) and Vectorization (SIMD)

● Sparsity can be exploited by fully parallelizing the model
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