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Abstract — The traditional machine learning approach to optimize a particle physics measurement breaks down
in the presence of quantum inference between the signal and background processes. A recently developed family of
physics-aware machine learning techniques that rely on the extraction of additional information from the particle
physics simulator to train the neural network could be adapted to a signal strength measurement problem. The
networks are trained to directly learn the likelihood or likelihood ratio between the test hypothesis and null
hypothesis values of the theory parameters being measured. We apply this idea to a signal strength measurement
in the off-shell Higgs to four leptons analysis for the Vector Boson Fusion production mode from simulations of
the high energy proton-proton collisions at the Large Hadron Collider. Promising initial results indicate that a
model trained on simulated data at different values of the signal strength outperforms traditional approaches in

the presence of quantum interference.

1 Introduction

(b) Background: Vector
Boson Scattering

(a) Signal: Higgs from
Vector Boson Fusion

Figure 1: Feynman Diagrams of the processes under
study, (a) signal Higgs diagram, (b) interfering back-
ground diagram

The Heisenberg uncertainty principle of quantum
mechanics (cgoy > g) allows particles to become “vir-
tual”’, with a mass going far away from the one de-
scribed by special relativity’s mass-energy equivalence
formula E? — [p]?c® = m2c* (where the energy E is
given in terms of the rest mass my and momentum p’
of the particle and ¢ is the speed of light in vacuum).
They and are refereed to as “off-shell” particles. Quan-
tum mechanics also prescribes that given an initial and
final state, all possible intermediate states can and will
occur, and they may interfere with one another.

A study of the off-shell Higgs boson decaying to two
Z bosons that decay to four leptons (henceforth referred
to as “offshell hdl”), such the 2018 study [2| in the AT-
LAS Collaboration [1] is one of the most interesting
studies in high energy particle physics because it allows
to break certain degeneracies between the Higgs cou-
plings, and constrain the Higgs width (under certain
model dependent assumptions) that cannot be disen-
tangled by an on-shell measurement alone. An update
to the previous ATLAS study using the entire Run2

171

data will have develop innovative methodology to deal
with quantum interference between the Higgs Feynman
diagram (referred to as “signal”’) and other standard
model processes (referred to as “background”). While
the previous round used simple cuts to define the region
of interest, we investigate a recently developed family of
physics-aware machine learning techniques to improve
the sensitivity of such an analysis. The two main dia-
grams studied here are shown in Figure 1. Other signal
and background processes will be included in future
studies. The objective of the analysis is to measure the
“signal strength”, u, of the signal, which is a proxy for
measuring how strongly the Higgs interacts with other
fields. Interestingly, the usual notion that the signal
strength corresponds to the ratio of the observed in
data to the expected in Monte Carlo simulation signal
yield breaks down in the presence of quantum interfer-
ence.

This study is performed with data simulated with
MadGraph5_aMC [3], Pythia 8 [4] and Delphes 3 [5].

2 Machine Learning in a signal
strength measurement

Traditionally, in analyses without quantum interfer-
ence, one can train a machine learning classifier (such
as a Boosted Decision Tree) to separate the signal and
background samples (referred to as “events”) that are
simulated separately, and under the assumption that
it is an optimal classifier, due to the Neyman-Pearson
lemma [6], one can get the likelihood ratio [7] between a
test hypothesis and the null hypothesis from the output
of the classifier. The output of the classifier can be used
for a fit to measure the signal strength, p, optimally.
In the presence of quantum interference, this strategy
is no longer optimal. Figure 2 shows how a physics
variable (the invariant mass of the four leptons) that is
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Measurement of off-shell Higgs boson production in
the H* —» ZZ — 4( decay channel using a neural
simulation-based inference technique in 13 TeV pp
collisions with the ATLAS detector

The ATLAS Collaboration

Neural simulation-based inference is a powerful class of machine-.
statistical inference that naturally handles high-dimensional param
need to bin data into low-dimensional summary histograms. Such
a range of measurements, including at the Large Hadron Collider,
may be optimal to scan over the entire theoretical phase space unc
binning data into histograms could result in a loss of sensitivi
neural simulation-based inference framework for statistical infere
to estimate probability density ratios, which enables the applicat
It incorporates a large number of systematic uncertainties, quant
the finite number of events in training samples, develops a meth
intervals, and demonstrates a series of intermediate diagnostic ch
to validate the robustness of the method. As an example, the pr
method are assessed on simulated data for a simplified version o
couplings measurement in the four-lepton final states. This appros
to the standard statistical methodology used by the experiments at
and can benefit many physics analyses.

arXiv:2412.01548v1 [hep-ex] 2 Dec 2024

The ATLAS Collaboration

A measurement of off-shell Higgs boson production in the H* — ZZ — 4¢ decay channel
is presented. The measurement uses 140 fb~! of proton—proton collisions at /s = 13 TeV
collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous
result in this decay channel using the same dataset. The data analysis is performed using
a neural simulation-based inference method, which builds per-event likelihood ratios using
neural networks. The observed (expected) off-shell Higgs boson production signal strength in
the ZZ — 4¢ decay channel at 68% CL is 0.87*%7> (1.00*%%). The evidence for off-shell
Higgs boson production using the ZZ — 4¢ decay channel has an observed (expected)
significance of 2.50 (1.307). The expected result represents a significant improvement relative
to that of the previous analysis of the same dataset, which obtained an expected significance
of 0.50. When combined with the most recent ATLAS measurement in the ZZ — 2{2vy
decay channel, the evidence for off-shell Higgs boson production has an observed (expected)
significance of 3.70 (2.40). The off-shell measurements are combined with the measurement
of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The
observed (expected) value of the Higgs boson width at 68% CL is 4.3’:21'.2 4. 1133'3) MeV.

© 2024 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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ABSTRACT: Neutron stars provide a unique opportunity to study strongly interacting matter
under extreme density conditions. The intricacies of matter inside neutron stars and their
equation of state are not directly visible, but determine bulk properties, such as mass and
radius, which affect the star’s thermal X-ray emissions. However, the telescope spectra of
these emissions are also affected by the stellar distance, hydrogen column, and effective
surface temperature, which are not always well-constrained. Uncertainties on these nuisance
parameters must be accounted for when making a robust estimation of the equation of state.
In this study, we develop a novel methodology that, for the first time, can infer the full
posterior distribution of both the equation of state and nuisance parameters directly from

© 2024 The Author(s). Published by IOP Publishing
[ Ltd on behalf of Sissa Medialab. Original content from

this work may be used under the terms of the Creative Commons https//dOlOIg/l(J1088/1475-7516/2024/09/009

Attribution 4.0 licence. Any further distribution of this work must

maintain attribution to the author(s) and the title of the work,
[T 1 rtbatinm and 1 AT

Brandes et all (incl. Ghosh): JCAP 09(2024)009

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

ATLAS Collaboration: arXiv:2412.01548

ATLAS Collaboration: arXiv:2412.01600



https://hal.science/hal-02971995v3/
https://arxiv.org/abs/2412.01600
https://arxiv.org/abs/2412.01548
https://iopscience.iop.org/article/10.1088/1475-7516/2024/09/009

Some of the oldest questions

What elements make up the universe ?

(5 century BCE)
Nya%;?Stll;ras
How sure are we? Gautama
Theory of Errors & Empirical Knowledge ——=
(6 century BCE)

Mahamahopidhyiva

GANGANATHA JHA




Some of the oldest questions Theorists

What elements make up the universe ?

(5 century BCE)
Nya%?Sm;ras
How sure are we? Gautama
Theory of Errors & Empirical Knowledge ——=
(6 century BCE)

Mahamahopidhyiva

GANGANATHA JHA



https://home.cern/resources/image/physics/higgs-collection-images-gallery

Some of the oldest questions

Theorists

What elements make up the universe ?

(5 century BCE)
Nya%;f's{u;ras
How sure are we? Gautama
Theory of Errors & Empirical Knowledge ——=
(6 century BCE)

Mahamahopidhyiva

GANGANATHA JHA

Experimentalists


https://home.cern/resources/image/physics/higgs-collection-images-gallery
https://home.cern/resources/image/physics/higgs-collection-images-gallery

Questions about the universe ...



Questions about the universe ...

Visible Matter

There’s so much more dark matter than visible
matter 1in the universe. What is it ?



Questions about the universe ...

s Visible Matter
There’s so much more dark matter than visible
matter 1in the universe. What 1s it ? \

Dark Matter
85 %

Why more matter than anti-matter ?



https://irfu.cea.fr/en/Phocea/Vie_des_labos/Ast/ast.php?t=fait_marquant&id_ast=4519

Questions about the universe ...

s Visible Matter
There’s so much more dark matter than visible
matter 1in the universe. What 1s it ? \

Dark Matter
85 %

Why more matter than anti-matter ?

Are there new forces ?


https://irfu.cea.fr/en/Phocea/Vie_des_labos/Ast/ast.php?t=fait_marquant&id_ast=4519

Questions about the universe ...

Visible Matter

There’s so much more dark matter than visible
matter 1in the universe. What is it ?

Dark Matter
85 %

Why more matter than anti-matter ?

Are there new forces ?

New theories often predict new particles yet to be discovered



https://irfu.cea.fr/en/Phocea/Vie_des_labos/Ast/ast.php?t=fait_marquant&id_ast=4519
https://visit.cern/content/famous_particles

Image: CER

The most fundamental constituents of matter

Quorks |

- Higgs boson |

@\ ACCELERATING SCIENCE

N


https://home.cern/resources/image/physics/infographics-gallery

Image: CER

The most fundamental constituents of matter

are made

up of u
~andd

(

Quarks

Higgs boson |

@\ ACCELERATING SCIENCE

S


https://home.cern/resources/image/physics/infographics-gallery

The most fundamental constituents of matter

are made

up of u
~andd

L

Quarks

That’s the
electron
and its
cousins

mage: CERN

Higgs boson |

@\ ACCELERATING SCIENCE

S


https://home.cern/resources/image/physics/infographics-gallery

The most fundamental constituents of matter

are made

up of u
~andd

L

Quarks

That’s the
electron
and its
cousins

mage: CERN

Force
carrier
particles

Higgs boson |

@\ ACCELERATING SCIENCE

S


https://home.cern/resources/image/physics/infographics-gallery

The most fundamental constituents of matter

Protons . ’

WQ

are made _J
up of u Y S
“and d . .
X s
Ququs Grs i
7 'y N\ \f'
That’s the
electron
and its
cousins

nggs boson

- -Higgs field gives
~ other particles
s

-~ Force
- carrier
particles
P / 2
i
m \\\////@
| y A > 5 J
5 AP -
VL
NG >
Forces

@\ ACCELERATING SCIENCE

S


https://home.cern/resources/image/physics/infographics-gallery

Protons
are made
up of u

~and d

That’s the
electron
and its
cousins

The most fundamental constituents of matter

Heavier particles, difficult to create

—»

Q Q“’O
c )| -

L

Quarks

Force
carrier
particles

nggs boson

- -Higgs field gives
~ other particles
mass

@\ ACCELERATING SCIENCE

S


https://home.cern/resources/image/physics/infographics-gallery



https://videos.cern.ch/record/1702939



https://videos.cern.ch/record/1702939

The detectors




The detectors




4

4

Summarise in low dimensions

Detector has O(100 million) sensors

Can’t build 100M dimensional histogram

Reconstruction pipeline, event selection

Design sensitive one-dimensional observable

ATLAS

EXPERIMENT

Run: 279685
Event: 690925592
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(Frequentist) Hypothesis tests

Z(H, | data) Z(H,,r| data)
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(Frequentist) Hypothesis tests

Z(H,|data) = p(data| H,)
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Why we can summarise data down to a single observable for typical analysis
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Why we can summarise data down to a single observable for typical analysis

Neyman—Pearson lemma: Likelihood ratio is the most powerful test statistic

p(D | )
pP(D | po)

We want to compare likelihoods:

p(x; |.S)

A neural network classifier, trained on S vs B, estimates the decision function*: S()Cl-) —

p(x;|S) + p(x;| B)
Which contains all the information required for the likelihood ratio:
px; | p) B 1 - vgp(x;| S) + vpp(x; | B) B M ( s(x;) "y )
— — ) B
pxilu=0) pu-vs+up p(x;| B) M- UsTlp 1 —s5(x;)

Same observable s is optimal to test all 1 hypotheses!
* Equal class weights No need to develop separate analysis per hypothesis u 11



A measurement of the Higgs width

Undiscovered massive particles
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https://cds.cern.ch/record/2814136

A measurement of the Higgs width

- Enables the probe of a wide variety of new massive particles,

other new physics

- Can’t measure directly: SM Higgs width ~4 MeV, resolution

of detector ~1 GeV

- Central topic for future colliders

Undiscovered massive particles

12
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Higgs Width from off-shell Higgs production !

Off-shell production helps probe Higgs width

Hoff-shell FH

SM °
Hon-shell [ I

g
Gon—shell

gg—>H->VYV
Ao g el

g—~H-Z27

arXiv:1405.0285 arXiv:1406.1757

dmyy

878y
myl g

848y 848y
(myy —my)t+my T3 my,y

13
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Higgs Width from off-shell Higgs production !

Off-shell production helps probe Higgs width

Hoff-shell FH

SM -
Hon-shell [ I

Interpretation assumes no new physics

Essential to measure independently in multiple production
modes (ggF, VBF) and final states to verify consistent results

arXiv:1405.0285 arXiv:1406.1757

2,2
g>H>ZZN gng

68
on—shell
myl g
gg—H-VV 2 .2 2,2
AT shell Ny Er8v &by
2 2 22 4
dmyy (myy, =my)? +my Ty my,,

g 7 q z
9g qav v gv
H H*
g 7 p

q
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Count

New challenge: Quantum interference
Non-linear changes in kinematics

M Background-only model

Signal model

Data can no longer be summarised in 1D histogram (see Ghosh et al: hal-02071995(p172)) !
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New challenge: Quantum interference
Non-linear changes in kinematics

=
Background-only model °
o]
3
o | 5
= | S
= o
Q i
O | |
Signal model

8 Kf Ky Z 8 - Z
Quantum interference: z}/\/\' < |
8 Z 8 QOO Z

Data can no longer be summarised in 1D histogram (see Ghosh et al: hal-02071995(p172)) !
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Campbell et al: arXiv:1311.3589

4—lepton production, CMS cuts, Vs=13 TeV
qq - 4leptons

_ 88 2 R~ RLONS
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The problem with one-dimensional summaries...
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Theory 1

The problem with one-dimensional summaries...

B2l ’ = Lo ’ <3 ] S Sl ” — S s e Ol ’ — Lo Ty oy — o g Lo row ” — il S G ’ — A g il ’ = P ’ <3 row \ s
Y
.

Theory 2
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The problem with one-dimensional summaries...

Theory 3

Theory 4

Theory 2

Theory 1

Count

1-D projection

2-D space
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The problem with one-dimensional summaries...

2-D space

Theory 4

- Clearly separable in 2-D

Theory 2
- No 1-D summary statistic may contain all the

information needed to optimally test all theory
hypotheses!

Theory 1

- Valuable to have high-dimensional view of data

Count

1-D projection 15



hal-02971995v3 (p172): Ghosh, Rousseau

No single observable captures all information in Higgs width study

~ Signal-background-inference simulations: MG + Pythia
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hal-02971995v3 (p172): Ghosh, Rousseau

No single observable captures all information in Higgs width study

~ Signal-background-inference simulations: MG + Pythia
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hal-02971995v3 (p172): Ghosh, Rousseau

No single observable captures all information in Higgs width study

~ Signal-background-inference simulations: MG + Pythia_____
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Optimal observable now changes as a function of p: Cannot collapse problem to 1 dimension
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What breaks down?

M, (X)? + [My(X)[? +2Re(A,(X)M, (X))
—— S—— —

P,(X) Py (X) Pi(X)
— (x:]S)
N exp — //t * S + B + «\//7 * I A neural network classifier trained on S vs B, estimates the decision function*: s(xl-) = P |
p(x;|S) + p(x;| B)
Which contains all the information required for the likelihood ratio:
pO;lp) 1 p - vsp(x;|S) + vgp(x; | B) 12 ( s(x;) ‘y >
— — ) B
px;|lu=0) pu-vg+uvp p(x;| B) U-vs+vp 1 — s(x))

Same observable s is optimal to test all u hypotheses!
y No need to develop separate analysis per hypothesis u 1

No longer in this convenient special case: The same observable no longer optimal due to non-linear effects coming from
quantum interference

Also does not generalise to an arbitrary theory parameter 6, (eg. Etfective Field Theory parameters)

Can we modify the LHC analysis methodology to design near-optimal analyse for the general case?

17



But probability density estimation in higher dimensions is hard...

> 1 How many events to populate
: o-D histogram with 62 bins ?

Count

1-D histogram with 6 bins: few
events enough to populate it

How many events for 50-D histogram
with 6°Y bins ?

18



But probability density estimation in higher dimensions is hard...

> How many events to populate
" o-D histogram with 62 bins ?

Count

1-D histogram with 6 bins: few

events enough to populate it Curse Of dimenSionality

How many events for 50-D histogram
with 6°Y bins ?
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Cranmer et al: arXiv:1506.02169

Neural networks can give us the likelihood ratios we need

arX1iv:1506.02169v2 [stat.AP] 18 Mar 2016

Approximating Likelihood Ratios with
Calibrated Discriminative Classifiers

Kyle Cranmer!, Juan Pavez?, and Gilles Louppe!
'New York University
’Federico Santa Maria University

March 21, 2016

Abstract

In many fields of science, generalized likelihood ratio tests are established tools
for statistical inference. At the same time, it has become increasingly common that
a simulator (or generative model) is used to describe complex processes that tie pa-
rameters 6 of an underlying theory and measurement apparatus to high-dimensional
observations x € RP. However, simulator often do not provide a way to evaluate
the likelihood function for a given observation x, which motivates a new class of
likelihood-free inference algorithms. In this paper, we show that likelihood ratios are
invariant under a specific class of dimensionality reduction maps R? — R. As a di-
rect consequence, we show that discriminative classifiers can be used to approximate
the generalized likelihood ratio statistic when only a generative model for the data
is available. This leads to a new machine learning-based approach to likelihood-free
inference that is complementary to Approximate Bayesian Computation, and which
does not require a prior on the model parameters. Experimental results on artifi-
cial problems with known exact likelihoods illustrate the potential of the proposed
method.

Keywords: likelihood ratio, likelihood-free inference, classification, particle physics, surro-
gate model
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Cranmer et al: arXiv:1506.02169

Neural networks can give us the likelihood ratios

Neyman—Pearson lemma: Likelihood ratio is the most powerful test statistic

p(D | p)
p(D | ref)

We want to compare likelihoods:

A neural network classifier trained on simulated samples from y, vs s(x;) = P (xi ‘ /’tl)
simulated samples from ref, estimates the decision function: l p(x;| 1) + p(x; | ref)
l l

Which contains all the information required for the likelihood ratio:

px; | py) _ s(x;)
plx;lref) 1 —s(x)

* Optimal statistic to test each value of u
* We get the LR per event (unbinned)

20
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High-dim data

High-dim data

Cranmer et al: arXiv:1506.02169

A new paradigm: Neural simulation-based inference (NSBI)

Summarisation
to histogram

Neural simulation-based inference framework:

Data / Exp.

Traditional framework:

300 400 500 600 700 800 900 1000
m,, [GeV]

Summary
Histogram Statistical » Likelihood
1

u 1s now arbitrary parameter of interest(s)

Obs Data ——

Hq

Likelihood Ratio

Neural Network

> ( CAVRED )
L(ref | D)
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High-dim data

Cranmer et al: arXiv:1506.02169

A new paradigm: Neural simulation-based inference (NSBI)

Summarisation
to histogram

Neural simulation-based inference framework:

Data / Exp.

Traditional framework:

300 400 500 600 700 800 900 1000
m,, [GeV]

Likelihood
Z (U | D)

Summary
Histogram

ol 'ul

—

Statistical »

Fit

H’M'POJCVICSLS My M 1s now arbitrary parameter of interest(s)

Obs Data ——

Hq

Likelihood Ratio

Neural Network

> ( ZL (| D) )
Z(ref | D)
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High-dim data

High-dim data

Cranmer et al: arXiv:1506.02169

A new paradigm: Neural simulation-based inference (NSBI)

Summarisatz
to histog

Neural simulation-based inference framework:

Traditional framework:

7| Systematic uncertainties
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Cranmer et al: arXiv:1506.02169

A new paradigm: Neural simulation-based inference (NSBI)
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High-dim data

High-dim data

Cranmer et al: arXiv:1506.02169

A new paradigm: Neural simulation-based inference (NSBI)

Summarisatz
to histog

Traditional framework:

7| Systematic uncertainties

¥ 600 700 800 900 1000
m,, [GeV]

Summary
Histogram Statistical » Likelihood
LM

ngotlfnesis /41 W 1s now arbitrary parameter of interest(s)

Neural simulation-based inference framework:

Obs Data ——

i "

Likelihood Ratio

Neural Network

> ( ZL(uy | D) )
ZL(ref | D)

Hypothesis i,

Train on simulations, apply on data 21
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NSBI for Higgs width in proof-of-concept phenomenology study

' EXpected SenSitiVitX | hal-02971995v3 (p172): Ghosh & Rousseau, Thesis: Ghosh

Beyond Standard Model value) 20


https://hal.science/hal-02971995v3/
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NSBI for Higgs width in proof-of-concept phenomenology study

EXpected SenSitiVitX hal-02971995v3 (p172): Ghosh & Rousseau, Thesis: Ghosh
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NSBI for Higgs width in proof-of-concept phenomenology study

' EXpected SenSitiVitX | hal-02971995v3 (p172): Ghosh & Rousseau, Thesis: Ghosh

ol Histogram my; Vs =13Tev, 367!
“Traditional ML” baseline —— e Histogram ML
° NSBI
8% l.o9  « Histogram ptj;
Histogram Anj;;
50 Ji
O 1.0-
ey
|
1.5 - Narrower is better
&;
0041
0 2 4 6 8 10 12 14 16

(Beyond Standard Model value) 4t = 4, without rate 20
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Expected improvement for Standard Model

3.5 - :
Histogram my; Vs =13 Tev, 36!
3.0 - Histogram ML
. NSBI
Histogram ptj;
2.0 A :
Histogram An;;
1.5 -
(mprovement _
1.0 -
054 £
=
0.0 - :
i éll €IS EIS 1IO 1|2 1|4 1|6

SM, without rate

Exciting gains promised!

 hal-02071995v3 (p172): Ghosh & Rousseau, Thesis: Ghosh
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Open problems to extend to full ATLAS analysis:
- Robustness: Design and validation
- Systematic Uncertainties: Incorporate them in likelihood (ratio) model

- Neyman Construction: Throwing toys in a per-event analysis

24



Open problems to extend to full ATLAS analysis:
- Robustness: Design and validation
- Systematic Uncertainties: Incorporate them in likelihood (ratio) model

- Neyman Construction: Throwing toys in a per-event analysis

N

How frequentists ensure coverage
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EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

ATLAS ~7

EXPERIMENT

Submitted to: Rep. Prog. Phys. CERN-EP-2024-305
December 3, 2024

An implementation of neural simulation-based
inference for parameter estimation in ATLAS

Solved!

The ATLAS Collaboration

Neural simulation-based inference is a powerful class of machine-learning-based methods for
statistical inference that naturally handles high-dimensional parameter estimation without the
need to bin data into low-dimensional summary histograms. Such methods are promising for
a range of measurements, including at the Large Hadron Collider, where no single observable
may be optimal to scan over the entire theoretical phase space under consideration, or where
binning data into histograms could result in a loss of sensitivity. This work develops a
neural simulation-based inference framework for statistical inference, using neural networks
to estimate probability density ratios, which enables the application to a full-scale analysis.
It incorporates a large number of systematic uncertainties, quantifies the uncertainty due to
the finite number of events in training samples, develops a method to construct confidence
intervals, and demonstrates a series of intermediate diagnostic checks that can be performed
to validate the robustness of the method. As an example, the power and feasibility of the
method are assessed on simulated data for a simplified version of an off-shell Higgs boson
couplings measurement in the four-lepton final states. This approach represents an extension
to the standard statistical methodology used by the experiments at the Large Hadron Collider,
and can benefit many physics analyses.

Open problems to extend to full ATLAS

arXiv:2412.01600v1 [hep-ex] 2 Dec 2024

© 2024 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Presented at CHEP 2024, Higgs 2024



https://indico.cern.ch/event/1338689/contributions/6015960/
https://indico.cern.ch/event/1391236/

Solved!

Open problems to extend to full ATLAS

AppLied on Run data, supersediwg Pre\/iou.s
ATLAS paper on same data !

Presented at CHEP 2024, Higgs 2024

arXi1v:2412.01548v1 [hep-ex] 2 Dec 2024

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

£ )

ATLAS ~7

EXPERIMENT

Submitted to: Rep. Prog. Phys. CERN-EP-2024-305
December 3, 2024

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

ATLAS 7%

EXPERIMENT

Submitted to: Rep. Prog. Phys. CERN-EP-2024-298
December 3, 2024

Measurement of off-shell Higgs boson production in
the H* —» ZZ — 4¢ decay channel using a neural
simulation-based inference technique in 13 TeV pp
collisions with the ATLAS detector

The ATLAS Collaboration

A measurement of off-shell Higgs boson production in the H* — ZZ — 4¢ decay channel
is presented. The measurement uses 140 fb~! of proton—proton collisions at /s = 13 TeV
collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous
result in this decay channel using the same dataset. The data analysis is performed using
a neural simulation-based inference method, which builds per-event likelihood ratios using
neural networks. The observed (expected) off-shell Higgs boson production signal strength in
the ZZ — 4¢ decay channel at 68% CL is 0.87*07 (1.00*{9%). The evidence for off-shell
Higgs boson production using the ZZ — 4¢ decay channel has an observed (expected)
significance of 2.50 (1.307). The expected result represents a significant improvement relative
to that of the previous analysis of the same dataset, which obtained an expected significance
of 0.50. When combined with the most recent ATLAS measurement in the ZZ — 2{2v
decay channel, the evidence for off-shell Higgs boson production has an observed (expected)
significance of 3.70 (2.407). The off-shell measurements are combined with the measurement
of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The
observed (expected) value of the Higgs boson width at 68% CL is 4.?>J:21'_79 4. 1’:%‘.54) MeV.

© 2024 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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ATLAS methods paper: arXiv:2412.01600

Big picture of full solution developed in ATLAS

Obs Data Likelihood Ratio

Core >
H A 4 Networks (H/‘I vs H, ef )

O(16) observables
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ATLAS methods paper: arXiv:2412.01600

Big picture of full solution developed in ATLAS

Obs Data —— Likelihood Ratio

th 4 Networks / (H'“l VS H’” ef )

/

Syst_o Syst_1 Syst_N Networks adjust likelihood for
Network Network e Network each systematic uncertainty
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ATLAS methods paper: arXiv:2412.01600

Big picture of full solution developed in ATLAS

Obs Data —— Likelihood Ratio

(Hm VS Href)

Ensemble; Statistical
uncertainty on density = H, 4 Networks /

: 14|
ratios

/

Syst_o Syst_1 Syst_N Networks adjust likelihood for
Network Network e Network each systematic uncertainty
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ATLAS methods paper: arXiv:2412.01600

Big picture of full solution developed in ATLAS

Likelihood Ratio
(H VS Href)

- Obs Data —
Ensemble; Statistical Core
uncertainty on density = H, 4 Networks
ratios /

Syst_o Syst_1 Syst_N Networks adjust likelihood for
Network Network e Network each systematic uncertainty

Training details

y /£
+ Train O(10%) networks on TensorFlow "“
+ Computing resources provided by Go«gle, SMU, other HPC clusters

L AV W
! Gt 249 48
A\ \ \ARA A
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Open problems to extend to full ATLAS analysis:
- Robustness: Design and validation
- Systematic Uncertainties: Incorporate them in likelihood (ratio) model

- Neyman Construction: Throwing toys in a per-event analysis

Next 2 slides gets a bit technical
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ATLAS methods paper: arXiv:2412.01600

Search-Oriented Mixture Model

x; 1s one individual event General Formula

1 C
p(xilp) = () ;fj(u) v pj(x;)

J runs over different physics process
(Eg.gg —» H* - 4l,gg —> ZZ — 4l)

Example use case
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Search-Oriented Mixture Model

x; 1s one individual event General Formula

1 C
p(xilp) = () ;fj(/«l) v pj(x;)

J runs over different physics process
(Eg.gg —» H* - 4l,gg —> ZZ — 4l)

Example use case

: (1 — V) vs ps(x) + Vi vser, pser, (x) + (1 — V) ve pe(x) |

VooF (ﬂ)

P ggF (x‘ﬂ) —
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ATLAS methods paper: arXiv:2412.01600

Search-Oriented Mixture Model

x; 1s one individual event General Formula

1 ¢
p(xi|lp) =
v(p) Z]: y

J runs over different physics process
(Eg.gg —» H* - 4l,gg —> ZZ — 4l)

Comes from theory model chosen to interpret data

Example use case

1% Fl(,u) [M) Vs Ps(x) +m\/EVSBI1 pser, (x) + (1 —+/u)ve PB(X)]
ag AR L N~ L= VA

P ggF (x‘ﬂ) —
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ATLAS methods paper: arXiv:2412.01600

Search-Oriented Mixture Model

x; 1s one individual event General Formula

C
peiln) = == ) L)) P ()

N >
0 >
RS . T

J runs over different physics process

Eg. oz o H* - 41, og - ZZ — 41
Event rates estimabted from simulabions ™ (Eg. 88 58 )

Comes {rom Ekeorv modei chosem %c::v m&aryre& d&%a

Example use case

: [(,U Vi) Vs ps(X) + Vi VsB, pSBll(x)+(1_\/_)VBPB(x)]

ggF( )

P ggF (x‘:u) —
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Search-Oriented Mixture Model

x; 1s one individual event General Formula
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p(xilu) = ~ )Z ( u) -

J runs over different physics process
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28


https://arxiv.org/abs/2412.01600

ATLAS methods paper: arXiv:2412.01600

Search-Oriented Mixture Model

x; 1s one individual event General Formula

pEsli) = ¢ )Z O

plily) 1 <, o Pid)
//];ref(xi) - v(u) Zf] (1) ! Pref(X;)
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Comes ﬂfro-m Ekeorj modet ckosem %cr:r m%@.rpre& d&%a

Example use case

: [(,U Vi) Vs ps(X) + Vi VsB, pSBll(x)+(1_\/_)VBPB(x)]

ggF( )

P ggF (x‘:u) —
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Search-Oriented Mixture Model

x; 1s one individual event General Formula
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S~ - Q@fer@.v\@e kvpa%hésus j runs over different physics process

E H* = 4], 00 - /7 — 4]
E;'vev\% rates estimated from sinmulations ™ (Eg. 8¢ = — thE8 )

Comes ffm-m Ekeorj modet chasem %c::v m&erpre& d&%a

Example use case

: [(,U Vi) Vs ps(X) + Vi VsB, pSBll(x)+(1_\/_)VBPB(x)]

ggF( )

P ggF (x‘:u) —

p(xlpg) 1 | psaI, (x)
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(L= Vi)ve ps(x)
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Search-Oriented Mixture Model

x; 1s one individual event General Formula

Estimated using an amsambte oﬂf Me%wo-rws
p(xilu) = ~ ) Z (u) :f’ -

f (lu ) Vi
Pref (x ] ) 14 (:u) Z J

o

~— - Q@f@_réhae hypothesis jruns over different physmsrocess

Efvev\% rates estimated from simulations
Comes ffm-m Ekeorj modet &kosem %c::r m%erpre& d&%a

Example use case

: [(,U Vi) Vs ps(X) + Vi VsB, pSBll(x)+(1_\/_)VBPB(x)]

ggF( )

>

P ggF (x‘:u) —

psBI, (X)
ps(x)

oy PO
(L= Vi)ve ps(x)

28
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Robust, parameterised classifier without parameterising
H, . : Reference hypothesis

pxilp) _ 1 chf-( Vv,
Pret(xi)  v(p) &4 e

Hﬂ

Hypothesis |

VS

H,.of

re

Reference
hypothesis

A separate classifier per physics process j
(Eg.gg - H* — 41, gg — ZZ — 4l)

pj(x;)
pref(xi)




Robust, parameterised classifier without parameterising
H, . : Reference hypothesis

Hﬂ

Hypothesis |

VS

H,of

re

Pref(x;) - v(u) Pref(X;)

A separate classifier per physics process j
(Eg.gg —> H* - 41, gg —> ZZ — 4l) 29

Reference
hypothesis

C . ]
pxilp) _ 1 ij(u)-vj° pj(xi)
-




Robust, parameterised classifier without parameterising
H, . : Reference hypothesis

Hﬂ

Hypothesis |

V Qo e 7 ’

H,of

re

Reference
hypothesis

pxilw) 1 < oo i)
Pref(X;) B 1400 ;fj (k) g

A separate classifier per physics process j
(Eg.gg —> H* - 41, gg —> ZZ — 4l) 29




Robust, parameterised classifier without parameterising
H, . : Reference hypothesis

¢ QO z
— Y A
g QQQ—> Z
Hﬂ ‘
Hypothesis ﬂ f ( _ 5 ﬁi-:{{ Z
| (1) = p o
VS Qa8 ’
hw) =/u O T
Href

F
N

C
T plalt) _ Ly pj(xi)
Analytically parameterised in y, allows to get Pref\Xi, I Pref(X;)

LR for any hypothesis u without training
parameterised networks !

A separate classifier per physics process j
(Eg. gg = H* — 4l,88 —» ZZ — 4l) 29



Robust, parameterised classifier without parameterising
H, . : Reference hypothesis

" 70 will depend on morphing bases points (which values of
1 were used to simulate samples)

F QOO ‘

‘fo(/,t) — Y A

g8 QQQ —> Z

Jilp) = :m,;;f(i

Hw) = fu @ T

Hﬂ

Hypothesis |

VS

H,.of

re

F
N

C
T plalt) _ Ly pj(xi)
Analytically parameterised in y, allows to get Pref\Xi, I Pref(X;)

LR for any hypothesis u without training
parameterised networks !

A separate classifier per physics process j
(Eg. gg = H* — 4l,88 —» ZZ — 4l) 29



Open problems to extend to full ATLAS analysis:
- Robustness: Design and validation
- Systematic Uncertainties: Incorporate them in likelihood (ratio) model

- Neyman Construction: Throwing toys in a per-event analysis

30



Validate quality of LR estimation with re-weighting task

Reweighting: Calculate weights w, for events x; in blue sample to match green sample
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Validate quality of LR estimation with re-weighting task

Reweighting: Calculate weights w, for events x; in blue sample to match green sample

px; | o)

w; = 1r(x;, Uy, H1) =
a DT p )

Already estimated using an ensemble of networks

31
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(ggF from MCFM)

ATLAS methods paper: arXiv:2412.01600

High-Dim Classifier Test:
Train independent classifier on RW vs Target,
AUC=0.5 = LRs well estimated
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Binned estimate

MC estimate log [p(u = 0.3)/Pref]

Pull

| I I
0¢] (0)) ~ )\ (@) N ~

2.5

0.0

ATLAS Higgs width analysis paper: arXiv:2412.01548

Calibration curves of probability density ratios

Pu=03(X;)
14 ref (xi)

- ATLAS Simulation !
— vVs =13 TeV

p(u =0.3)/pret calibration test

NN predi cted log [p(,u 0.3)/Pre]

Ensemble prediction

MC estimate log [p(u = 1.7)/Prei]

Pull

I I I I
0¢] (0)) ~ N (@) N ~

2.5

0.0

—2.5

p,u=1.7(xi)
pref(xi)

- ATLAS Simulation -
— Vs=13TeV | WE

p(u =1.7)/pret calibration test

NN predi cted log [p(,u 1.7)/Pret]

Ensemble prediction

1 Perfect calibration would give y = x
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Maximum likelihood

estimate (/1)

Difference

Maximum Likelihood Estimator post.shell |

1.5

1.0

0.5

0.0
0.2

0.0

-0.2

ATLAS Higgs width analysis paper: arXiv:2412.01548

Testing full analysis on samples from different values of u

. ATLAS Simulation -
- Vs =13TeV . 7
N . -
i . |
i ‘ |
— * -
: + :
:_o + * + + ? ¢ O _:
0 05 10 15 20 35

Asimov dataset true Uo-shell

True u

S g g < e ST g g < ¥ S s e S g 2 < e — g s < AP S g 2 < BB S g e — g 3 < ~ar S Y Gor—s s e S v S g e ST ~ o g g s -
e e facr e o T T A P gy e i T N Y ey i S o e P et N T H e e S e I e P e e N M A T LU o o T e T = - A . Sy ) — e o2 o — e IS Y 27 P
2-5

No bias: Method recovers correct value of ¢ on average

(Correct value when tested on the median ‘Asimov
dataset’)

And many more diagnostics (see backup)
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|

0.5)

p(xi|u)

(xi|

-2 log {p

Interpretability:

ATLAS methods paper: arXiv:2412.01600

Which phase space favours one hypothesis over another?

—2-log —2 - log
P(xjlu=1) P(xjlu=1)

1 :_ ATLAS Simulation _: o] ; ATLAS Simulation
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_ 0.5)]
p(xil Q)
[ [ | [ [ [ [ | [ [ [ [ | [ l

(xi|

-2 log {p

Interpretability:
Which phase space favours one hypothesis over another?
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ATLAS methods paper: arXiv:2412.01600

—2 - log
P(x;|p=1)
- ATLAS Simuaton - '
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0.5)]

p(xi|u)

(xi|

-2 log {p

Interpretability:
Which phase space favours one hypothesis over another?
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ATLAS methods paper:
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» Systematic Uncertainties: Incorporate them in likelihood (ratio) model



Number of Events

Experimental uncertainties:

Systematic uncertainties

Eg. Inaccuracies in the calibration of our detector

30000 +

20000 -

10000 -

[ 1 2=0.9
2=1.0
. z=11
L Z/'Y* — TlepThad,
LI_ tt, W + jets
'—-,_‘ HiggsML Dataset
0 50 100 150 200 250

mffp MET (GeV)

Image: arXiv:2105.08742

Theory uncertainties:

Eg. Inability to compute QFT to infinite order

s
wn®
Y
P
.
.
o
.
.
.
.
.
o
.

Sherpa

Next year’s
generator

Image: arXiv:2109.08159

Estimated Uncertainty

el N | 4

rns

SHERPA 2.2
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Systematic uncertainties

- We only have simulations at 3 variations of each nuisance parameter o,
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Known interpolation strategies

See formula used in backup

Image: arXiv:1503.07622

/-\2.4 __I' 1 | L | L | L | L | L | L | 1 ‘I__

32_2 - piecewise linear
A - - piecewise exponential -
2% 20 quadratic-interp, linear extrap 7
18 - poly-interp, expo extrap -
! 161 /
< & = @ > 12— . E
o 1 ;
. 0.8 =
0.6 =
0.41 -
' 0.2F =
O : | I I | | I I | L1 1 1 | L1 1 1 | | I I | | I I | L1 1 1 | L1 1 1 :
2 15 -1 05 0 05 1 15 2
o

= Combine these traditional interpolation with neural network estimation of per-event likelihood ratios
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Probability density ratio including nuisance parameters (a)

x; 1s one individual event

p(xi ‘ /’taﬂ) o
pref(xi)

See details of vertical interpolation for Gi(ay), 8/(x;, o) v
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Probability density ratio including nuisance parameters (a)

x; 1s one individual event

P (xi ‘/’taﬂ) - | ¢ p ( Syst
pref(xi) - v(p, a) ;f](ﬂ) o pref(x) 1;[ “ (ak) gJ(xl’ ak)
™ ( ) pj(xia ak)
| 8i\Xi» Op) = o)

See details of vertical interpolation for Gi(ay), 8/(x;, o) v
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Probability density ratio including nuisance parameters (a)

x; 1s one individual event

pxilp.a) 1
P ref(-xi) U (//ta Ot’)

See details of vertical interpolation for Gi(ay), 8/(x;, o) v
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Probability density ratio including nuisance parameters (a)

x; 1s one individual event

px;|p. )

Estinmate from simulations and existing ———1———
interpolation mebhods :

See details of vertical interpolation for Gi(ay), 8/(x;, o) v
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Probability density ratio including nuisance parameters (a)

x; 1s one individual event

px; | pu, a) _
Pref (x;)

We have bhis already

APer-event terms estimaked using ancther
ensemble of networks and interpolation

methods
X pj(xia )
o ey =
! pi(x;)
Estimate from simulations and existing 1~
interpolation methods -

See details of vertical interpolation for Gi(ay), 8/(x;, o) Y 39



ATLAS methods paper: arXiv:2412.01600

Final test statistic

x; 1s one individual event

Nata
Liun(p. @|D) Pois(Ndata|v (1, @)) ﬁ p it 3 HGaus(ak\ak,5k)
LI’Gf(Z)) i pref(xi k
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Final test statistic

x; 1s one individual event

L (u, a|D)
Lref(D)
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ATLAS methods paper: arXiv:2412.01600

Final test statistic

x; 1s one individual event

L (u, a|D)
Lref(D)

Prod over evewnks
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Final test statistic

x; 1s one individual event
Liun(u, D)

Lref(ﬂ)

f?;a&é Eerm

Prod over evewnks

40
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Final test statistic

L (u, a|D) | b(x;
- = Pois(Naawa|v (1, @)) l_[ \\
\

Leer (D) S \Prer(xi
Rote kterm Constrain term

Prod over evewnks
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ATLAS methods paper: arXiv:2412.01600

Final test statistic

x; 1s one individual event
Liun(u, D)

Lyt (@ )
) g T e
~ - ATLAS Simulation A
-~ - Vs =13 TeV, 140 fb™’ A
P folo t . 2 ln Lfl.l].]. (M’ O{) /% | III/.:.' —
roHlng. L L (A /\) //L/ 6~ — — Unbinned NSBI Stat+Syst 'I,:l" ]
full ref - —— Unbinned NSBI Stat Only il -
| ——-—- Binnedlog [ps/ p(1.0)] Stat Only /I/:"[. |
4 e Binned log [ps / p(1.0)] Stat+Syst /7 = B

This is kj we define p, to be independent of
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ATLAS methods paper: arXiv:2412.01600

Final test statistic

x; 1s one individual event
Liun(u, D)

Lref (D )
2 g/ RE
~ - ATLAS Simulation A
- - Vs =13TeV, 140 fb" -
Profil; f— _91n Lea(p, @) [ Lser I pE
TOLUNE. 2 L (A /\) /L/ 6~ — — Unbinned NSBI Stat+Syst 'I,:l:' N
full ref - —— Unbinned NSBI Stat Only L -
| ——-—- Binnedlog [ps/ p(1.0)] Stat Only /I/:"[. |
4 | Binned log [ps / p(1.0)] Stat+Syst /7 B

This is kj we define p, to be independent of

Non-parabolic shape due to non-linear effects from quantum interference 40
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Estimating the variance on mean: Bootstrapping

Want to estimate mean of population

o PMLQ&LOM

e-Sample S AR S N
Re=Samp Sample 5 '
wikh !
Meain 3
replaaemen&

Eskimate variance o
Fhe mwean
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ATLAS methods paper: arXiv:2412.01600

Quantifying uncertainty on estimated density ratio

w; = w, - Pois(1)

Train an ensemble of networks, each on a Poisson fluctuated version of
the training dataset

Ensemble average used as final prediction, estimate the variance on
mean from bootstrapped ensembles

Neural Network #1

OO

INPUT

Neural Network #2

Neural Network #3

QOO
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https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3
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ATLAS methods paper: arXiv:2412.01600

Quantifying uncertainty on estimated density ratio

w; = w, - Pois(1)

Train an ensemble of networks, each on a Poisson fluctuated version of
the training dataset

Ensemble average used as final prediction, estimate the variance on
mean from bootstrapped ensembles

Neural Network #1

OO

Neural Network #3

43
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ATLAS methods paper: arXiv:2412.01600

Quantifying uncertainty on estimated density ratio

w; = w, - Pois(1)

Train an ensemble of networks, each on a Poisson fluctuated version of

the training dataset

Ensemble average used as final prediction, estimate the variance on

mean from bootstrapped ensembles

Ensemble members

Neural Network #1

O

Neural Network #2

Neural Network #3

\

Distribution of NN predictions for example events

—
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o
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~
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N
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NN predicted score
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ATLAS methods paper: arXiv:2412.01600

Quantifying uncertainty on estimated density ratio

w; = w, - Pois(1)

Neural Network #1 Neural Network #2 Neural Network #3

Train an ensemble of networks, each on a Poisson fluctuated version of %%% %%% %&8
the training dataset %% %% %%
O

Ensemble average used as final prediction, estimate the variance on Eé% @82/(

mean from bootstrapped ensembles — ]
Distribution of NN predictions for example events m/

Propagate with spurious signal method

ATLAS Simulation
Vs =13 TeV

—
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o

125

Jiw) = fip + o - Api(p))

Constraint term: Gauss(0,1)

100
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Open problems to extend to full ATLAS analysis:
v/ Robustness: Design and validation
v/ Systematic Uncertainties: Incorporate them in likelihood (ratio) model

» Neyman Construction: Throwing toys in a per-event analysis

44



Generating event-level pseudo-experiments

Need to generate random possible datasets we could collect at the LHC

Traditionally: NSBI:
0.35
3 N=10000
0.30 - —
025 - / Poisson per event
e Poisson per bin
0.15 - N - N
0.05 -
0.00 —F—1—1, : T
-3 -2 -1 0 1 2 3
Asimov Histogram
. toy - Asimov
to . Asimo LT = :
N; Y = Poisson(NA$mov) w Poisson(w; )

‘Unweighted’ events, 1.e. integer weights

Negative weights? See backup 45




Neyman Construction

- To build confidence intervals, we need to ‘invert the hypothesis test’
- Generate pseudo-experiments (‘toys’) and determine 68 % & 95 % CI as a function of parameter of interest

0.0/’ =0.0)

p(t,

10

10°

10~

1072

1073

ATLAS Simulation —— Pseudo-experiments (u’ = 0.0)-

Vs =13 TeV, 140 fb!

—-— 95% Cl (t,-00 < 4.46)

ATLAS methods paper: arXiv:2412.01600

True u =
............... . = 1 =—""""—""=
— - ATLAS Simulaton —— Pseudo-experiments (u’=1.0)>
68% Cl (t, -0, < 0.66) i \i - Vs=13TeV, 140 b’ 68% Cl (t,-1.0 < 1.37) 2
_ _S 100 - —-— 95% Cl (tp=1_o < 4.21) |
s v = ! s
] = - | ]
1 % | ]
— 101 | —
s = I s
] - ! ]
i i | i
— 10-2 | —
s - | s
] - 68% | 95% ]
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ATLAS methods paper: arXiv:2412.01600

Confidence belts

- ATLAS Simulation
- Vs =13 TeV, 140 fb’

61— —— Unbinned NSBI
i ---- Binned log [ps/ p(u =1.0)]

Similar to structure seen in histogram analysis

47
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Confidence belts
5~ 8 . . ——
- ATLAS Simulation / -
- Vs =13TeV, 140 fb™ -
6. —— Unbinned NSBI L

i ---- Binned log [ps/ p(u =1.0)] ! -

- Similar to structure seen in histogram analysis

’——~~

0.0\ 05 1.0 15 20 25

Significant improvement in QI impacted region
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ATLAS methods paper: arXiv:2412.01600

Confidence belts
S8 ' ——=
- ATLAS Simulation / -
- Vs =13TeV, 140 fb™ -
6. —— Unbinned NSBI L

i ---- Binned log [ps/ p(u = 1.0)] ! -

- Similar to structure seen in histogram analysis

L

0.0/ 05 1.0

Significant improvement in QI impacted region

Expect a dramatic improvement in ability to reject null hypothesis
47
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Why does NSBI work better than traditional analyses?



ATLAS methods paper: arXiv:2412.01600

Why does it work better than traditional analyses?

e PSOD o
/Ofixed = log : Similar to histogram analysis

- ATLAS Simulation
- Vs=13TeV, 140 fb™’

6 | —— Unbinned NSBI
—== Binned log [ps/ p(u =1.0)] 15 bins
+ Binned p(u = Uscan)/p(u =1.0) 15 bins
Binned p(U = Ugscan)/p(u =1.0) 20 bins
Binned p(u = Uscan)/P(u =1.0) 30 bins
41— Binned p(U = Uscan)/p(1 = 1.0) 90 bins

1—— NSBI: Parameterised, unbinned
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Why does it work better than traditional analyses?

6_

- ATLAS Simulation
- Vs=13TeV, 140 fb™’

—  Unbinned NSBI

Binned log [ps/ p(u =1.0)] 15 bins

Binned p(u = Uscan)/P(u =1.0) 15 bins
Binned p(u = Uscan)/p(u = 1.0) 20 bins
Binned p(u = Uscan)/P(u =1.0) 30 bins
Binned p(u = Uscan)/P( =1.0) 90 bins

|
- ‘N

P S(xi)

/Ofixed = log : Similar to histogram analysis

PSBI(X;)

X
O, = PO ) : Parameterised observable, histogram fit

1" pllu=1

Significant improvement in QI impacted region

— NSBI: Parameterised, unbinned
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ATLAS methods paper: arXiv:2412.01600

Why does it work better than traditional analyses?

6_

- ATLAS Simulation
- Vs=13TeV, 140 fb™’

—  Unbinned NSBI

Binned log [ps/ p(u =1.0)] 15 bins

Binned p(u = Uscan)/P(u =1.0) 15 bins
Binned p(u = Uscan)/p(u = 1.0) 20 bins
Binned p(u = Uscan)/P(u =1.0) 30 bins
Binned p(u = Uscan)/P( =1.0) 90 bins

ps(x;)

/Ofixed = log : Similar to histogram analysis

PSBI(X;)

X
O, = PO ) : Parameterised observable, histogram fit

1" pllu=1

]
- ‘N

Significant improvement in QI impacted region

— NSBI: Parameterised, unbinned

O, approaches NSBI as nBins — oo
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ATLAS Higgs width analysis paper: arXiv:2412.01548

Final results: Apply on real data and supersede previous Run2 paper!

NSBI vs histogram analysis

: | ATLAS -
S 12 /513 Tev, 140 fo — Obs NSBI —
ST ~—~ Exp NSBI -
10— —-= Obs Histogram _

- Heony -~ =+ Exp Histogram ]

81— _

|\|||||

N

PSRN
|||||\}‘

M off-shell

Observed data happens to provide stronger than
expected constrains for both hist and NSBI (consistent) 50
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ATLAS Higgs width analysis paper: arXiv:2412.01548

Final results: Apply on real data and supersede previous Run2 paper!

NSBI vs histogram analysis

: | ATLAS -
S 12 /513 Tev, 140 fo — Obs NSBI —
ST ~—— Exp NSBI 3
10— —-= Obs Histogram _

: seony -~ —-  Exp Histogram i

M off-shell
Unprecedented improvement in ability to reject null

hypothesis! (2.6x gain over previous method)
Observed data happens to provide stronger than
expected constrains for both hist and NSBI (consistent) 50
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ATLAS Higgs width analysis paper: arXiv:2412.01548

Final results: Apply on real data and supersede previous Run2 paper!

NSBI vs histogram analysis

: [ ATLAS -
S 12 /513 Tev, 140 fo — Obs NSBI —
ST ~—— Exp NSBI 3
10— —-= Obs Histogram _

: seony -~ —-  Exp Histogram i

~25 3.0

M off-shell
Unprecedented improvement in ability to reject null

hypothesis! (2.6x gain over previous method)
Observed data happens to provide stronger than
expected constrains for both hist and NSBI (consistent)

Stat-only vs Stat+Syst uncertainties

: [ ATLAS ]

S 120 Vs-13Tev, 1401t — OPsNSBI /-
=t ——— Exp NSBI ;

10— — = QObs NSBI stat-only ,” _

i 4¢only -+ =+ Exp NSBI stat—only/~/ |

8 / /

M off-shell

Nuisance parameters decrease sensitivity, as expected
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ATLAS Higgs width analysis paper: arXiv:2412.01548

Final results: Apply on real data and supersede previous Run2 paper!

NSBI vs histogram analysis

: [ ATLAS -
S 12 /513 Tev, 140 fo — Obs NSBI —
ST ~—— Exp NSBI 3
10— —-= Obs Histogram _

: seony -~ —-  Exp Histogram i

~25 3.0

M off-shell
Unprecedented improvement in ability to reject null

hypothesis! (2.6x gain over previous method)
Observed data happens to provide stronger than
expected constrains for both hist and NSBI (consistent)

Stat-only vs Stat+Syst uncertainties

: [ ATLAS ]

S 120 Vs-13Tev, 1401t — OPsNSBI /-
=t ——— Exp NSBI ;

10— — = QObs NSBI stat-only ,” _

i 4¢only -+ =+ Exp NSBI stat—only/~/ |

8 / /

M off-shell

Full results in backup

Nuisance parameters decrease sensitivity, as expected
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Summary

Quantum interference breaks assumptions in traditional statistical methods
at LHC Obs Data —

Hq >

Likelihood Ratio
< A (uy | D) )
ZL(ref | D)

Neural inference can optimally handle these challenges:

Shown in phenomenology study
ATLAS developed method for deployment including systematics

Re-analysed Run 2 data and achieved a dramatic improvement in
sensitivity (H — 41)

beyond!

A
NSBI has wide-ranging applications, in particle physics, astrophysics and s 3 4 \N{
1

Weaknesses: Same as traditional analyses (systematics, training statistics) % A

Developed diagnostic tools to identify issues






Positron discovery (1930s)

Single event



Positron discovery (1930s)

Single event

Top quark discovery (1990s)

Channel: SVX

observed 27 tags

expected background 6.7 4

- 2.1

background probability 2 x 107°

Multiple events:
Cut-and-count




Positron discovery (1930s) Top quark discovery (1990s) Higgs boson
discovery (2010s)

> T SRR
o [ e Daa . ATLAS
ge Wowomart’
. G>J 20—_ D Signal (mH=125 GeV) N
\, . ‘ H E 77 Syst.Unc. ]
) ' \ PRIl | . Channel: VX 15[-/s =7 TeV:[Ldt = 4.8 fo” ]
- \ : ey (Vs =8 TeV:[Ldt =5.8 fb 1 i
| AP R A observed 27 tags o et '
expected background 6.7+ 2.1 ;
2 background probability 2 x 107° oy
| .
. | 0
| .Q\ 3 100 150 200 m, [Ge\2/]50
Single event Multiple events: Shape information:

Cut-and-count Histogram



Positron discovery (1930s) Top quark discovery (1990s) Higgs boson Future discovery
discovery (2010s) (2020s ?)

e Data | ATLAS
25_— - Background zz" *)

- _ H—ZZ "—4l
i - Background Z+jets, tt
- D Signal (mH=125 GeV)

\ " 7/ Syst.Unc. ]
| ' \s 45 : :_ =7 TeV:[Ldt=4.8 fb™ _:
| \ZE ¥ Channel: SVX 15_; © j | 1

: N [Vs=8TeV:[Ldt=5.8fb ? i

| | o s observed 27 tags 10F :

Events/5 GeV

expected background 6.7+ 2.1 ;
background probability 2 x 107° °Hy

., 100 150 200 250

Single event Multiple events: Shape information: High-dim shape information,
Cut-and-count Histogram continuous (i.e. unbinned):
Neural inference



Positron discovery (1930s) Top quark discovery (1990s) Higgs boson Future discovery
discovery (2010s) (2020s ?)

e Data | ATLAS
25_— - Background zz" *)

- _ H—ZZ "—4l
i - Background Z+jets, tt
- D Signal (mH=125 GeV)

\ " 7/ Syst.Unc. ]
2 ' A 45 g :_ =7 TeV:[Ldt=4.8 fb™ _:
| \ZE ¥ Channel: SVX 15_; © j | 1

: 2 [Vs=8TeV:[Ldt=5.8fb ? i

| | o s observed 27 tags 10F :

Events/5 GeV

expected background 6.7+ 2.1 ;
background probability 2 x 107° °Hy

., 100 150 200 250

Single event Multiple events: Shape information: High-dim shape information,
Cut-and-count Histogram continuous (i.e. unbinned):
Neural inference

Thank you !


https://en.wikipedia.org/wiki/Positron#/media/File:PositronDiscovery.png
https://arxiv.org/abs/hep-ex/9503002
https://arxiv.org/abs/1207.7214

Reference Sample

A combination of signal samples, to ensure non-zero probability in entire region of analysis
Does not have to be physical!

Csi nals
1 g
X:) = Vi Xi
pref( l) Zk Vi Ek’ k pk( l)

= In our dataset, p,,ef( - ) = PS( )

Choice of p,/( - ) can be made purely on numerical stability of training, as it drops out in profile step

t, =

_91n qull(,uaa\)/%
qull(//za a)/ ref
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Dealing with negative weighted events

Wiy =

AsimOV)
l

Poisson(w;

Simulated samples include events with negative weights due to the way we calculate QFT
higher order effects

Use a positive weighted sample instead:
1. Start from a positive weighted reference sample
2. Re-weight it to intended parameter point in i, a

3. Throw toys from this sample

rwt-ref Asimov
W — W, (u, a)

_ V(M’a) . p(xi‘ll't’a) . lewt—ref
Viwt-ref  Prwt-ref (X i ) l
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9
NN L
A q Y
<
ResSS
gg Background

Non-linear problem

"~ hal-02971995v3: Ghosh et al.

PSS .

This term is negative

goF Signal

Scale by signal strength pu:
M(X)|* = [/ My(X)],

Pscaled(X) :/L'PS(X) _|_Pb(X) _|_\/EPZ(X)

S5


https://hal.science/hal-02971995v3/

Combination with histogram analyses

Lcomb(,ua a’) _ qull(ﬂa CV)

Lref Lref

LhiSt (lu ’ CL’)



Hessian:

Pulls:

Post-fit Impact:

Calculating pulls and impacts in JAX

1
. 1 0°2 7@
— .
=2 dada,

021

92 Ouday

A, a) =

(ﬁaa) X VCk )

— 2In(Ly(pt, @)/L, )

o7



Vertical interpolation

+ Tk
(Vj(a’g)) ar > 1

vi(a;)
Gi(ag) = 1+Z jcna) —l<ap <1
95
(Vj.iagi) o < 1

With some continuity requirements

(8j (i, CVZ)) o

gi(xi,ar) =41+ Z CnQ),

n=1

(8 (xis ;)"



More diagnostics
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103

10!

Fraction of events / 100 GeV

1.5
D
O
m 1.0
E
@ 0.5

ATLAS methods paper: arXiv:2412.01600

Re-weight closures for B

ATLAS Simulation
Vs =13 TeV -4-- B Original

- | SOriginaI —]
—— S — B Reweighted

i
I
I
:
] | I I -|_|T| | | |

500 1000 1500
my, [GeV]

My

sSource
Target

RW

o [
S 1021 ATLAS Simulation _
> _
2 Vs =13TeV -4-- B Original
o -]+ S Original
_5 100 —— S — B Reweighted _
©
©
L
102
10—4#.. _
1.5 -
@) N i
@) C ]
0 1.0p e i
= - -
o 0.5_— H

20 25 30
-log(MCFM ME HZZ)

Matrix-Element-based Observable
(ggF from MCFM)
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Events / 0.01

Data / Exp.(u =0)

ATLAS Higgs width analysis paper: arXiv:2412.01548

Data-MC validation

NN observable My,
p=
107 ATLAS aq - ZZ — 2 107+ ATLAS aq - 2Z —
Vs =13 TeV, 140 b’ g9 — 27 %) Vs =13 TeV, 140 fb! gg — 27

B Other Backgrounds qc) Bl Other Backgrounds
105 — B g > Z7+2] — 1 10° B g > ZZ+2] —

—— Exp. Best Fit — Exp. Best Fit

¢ Data ® Data
277 Uncertainty — 103 | 227 Uncertainty —

1071

i . o

— - I | R _
1.5F9 — 3 2 —— Exp.(u=[)Exp.(u=0) I\

=1 Vs ol O AnldA e, S s ko ANASY N _
1.0f E £1.00 A A A
05/ t- S 0.75- —

T 0950 0975 1.000 1.025 1.050 1.075 1.100 0O 550 300 400 600 1000

p(x|u =0.0, &)/p(x|u =1.0, ) Map [GeV]
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ATLAS Higgs width analysis paper: arXiv:2412.01548

Data-MC validation

Different NN observables

L() ! | ! ! ! | ! ! ! | ! ! ! | L() ! ! | ! ! ! ! | ! ! |
3 10°— ATLAS 0q — 22 S ATLAS 0q - 22
e Vs =13 TeV, 140 fb a9 = (H* =27 © (o5l Vs =13 TeV, 140 fb qg = (H* —)ZZ 3
% 107 B Other Backgrounds  — % Bl Other Backgrounds
0 Bl gqg-> H* -5)Z2Z+2] o Bl gqg-> H* -5)Z2Z+2]
LI 50 — Exp. (1=0.3) B LI — Exp. (u=1.7)
10 ¢ Data 10°— o ¢ Data -
. ©27. Uncertainty ~2. Uncertainty
10°— —
101 "_‘_'_‘_'_‘T\_‘_‘_‘_‘ﬂ_‘—_
101 t
10" 10
g. T.Si— —i % 7.5; — Exp.(u=1.7)/Exp.(u = H) l l | —i
LL] - - LL] - -
~ - An ~ = — o= = A= = = = - — = ol —-:
SWOE ; ETO+ 7—+/‘4 7+//-|/7/-|74 7 E
S o05F t ¢ S o5F =
096 098 100 102 100 105 110 ]
p(x|u =0.3, &)/p(x|]u =1.0, &) p(x|u=1.7,a)/p(x|u =1.0, &)
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Physics analysis results



Impact of nuisance parameters

Systematic Uncertainty Fixed

Uoft-shell Yalue at which 7

HMoff-shell

NSBI analysis  Histogram-based
All (stat-only) 1.96 2.13
Parton shower uncertainty for gg — ZZ (normalization) 2.07 2.26
Parton shower uncertainty for gg — ZZ (shape) 2.12 2.29
NLO EW uncertainty for gg — ZZ 2.10 2.27
NLO QCD uncertainty for gg — ZZ 2.09 2.29
Parton shower uncertainty for gg — ZZ (shape) 2.12 2.29
Jet energy scale and resolution uncertainty 2.11 2.26
None (full result) 2.12 2.30

ATLAS Higgs width physics analysis note: CDS


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-016/

ATLAS Higgs width physics analysis note: CDS

Full probability model, input variables

1

p(x |l“off-she11’ Hoft-shel) = ——

V('uoff—shell’ M ot-shell

ggk gg ggk ggF gg
Hogt-shentV's ps (x)+\/“oﬁ-she11 |6 (%) + vy pB H(x) +

ﬂoff-sheuvs (x) + \/ 'uoﬂ“-shell o (x) + VEW EW (x) + vnipni(x) |
Variable Definition

o quadruplet mass

mxz1 /1 mass

myz» /> mass
cos 0™ cosine of the Higgs boson decay angle [q; - n,/|q]|]
cos 0 cosine of the Z; decay angle [—(q2) - q11/(|q2] - |q11])]
cos 6, cosine of the Z, decay angle [—(q1) - qo1/(|q1] - |q21])]

D A decay plane angle [COS_I(nl ) nsc) (ql ) (111 X nsc)/(lqll ) |Il1 X nsc|)]

o angle between Z;, Z, decay planes [cos™'(n; - n2) (q; - (n; X n)/(|q1] - [m; X ma|)]

p‘}f quadruplet transverse momentum

y* quadruplet rapidity ®
Riets number of jets in the event

mj; leading dijet system mass

An;; leading dijet system pseudorapidity

A ; leading dijet system azimuthal angle difference 65



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-016/

Network architecture

Feed-forward dense networks

- 5 hidden layers with 1000 nodes

- Swish activation

- Single node output layer with sigmoid activation

Loss: Weighted binary cross-entropy

0(10*) networks takes approx 4000 GPU hours to train

ATLAS methods note: CDS
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Events/ 0.15

Data / Exp.

D e (x) = log

ATLAS Higgs width analysis paper: arXiv:2412.01548

Pre-selection region definition

F
Sﬁrge, g(X)+s

pre S (x)

ggF

pre
2
108 ATLAS qq — ZZ ] @
Vs =13 TeV, 140 fo™ 99 - (H* -)2Z 2 108
106 |- B Other Backgrounds
Bl qgg->H* »)Z2Z+2j 6
. 10
— Signal
104+ ¢ Data —
7«77 Uncertainty 104
o o -
102_ . ./,.,/.‘ .‘l.'.‘.l., B
s ®° .o .
- S
] >
- —— 1.0+Signal/Exp. ++E %
0.5 :_ ------u- I1:Oﬁ-|nt|er-lf./|EX|p|. ] ] ] ] ] ] ] ] |_: D 0-5
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
Dpre

B(X) T Sp B(X) T Spre, qgZZ (X)

ATLAS
Vs =13 TeV, 140 b~

— 1.0+Signal/Exp.
------- | 1.0+Interf./Exp.

qq - ZZ

gg - H* »)ZZ
Other Backgrounds
aqq - H* »)ZZ+2]
Signal

Data

Uncertainty

7

0

1
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t M ofi-shell

ATLAS Higgs width analysis paper: arXiv:2412.01548

Result after combination with /lvr

- ATLAS I
o[ Vs=13Tev, 140" — O0S NSBI E
- - == Exp NSBI _
- — = Obs NSBI stat-only -
20— --—-  Exp NSBI stat-only —
: /-
15 /0/0/.__
| ey
10} 7 s S
i vl ///:
; /‘//" 7L
5 ;_‘\._ I " T T 7 5.0/2 T = :)&' - ",')’- ..... _:
A ~ ’/’ —
;\.*;'.'" ------ 6-80/,? I --‘—’Jc’. ............ ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0
M off-shell

[lvv dominates sensitivity
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ATLAS Higgs width analysis paper: arXiv:2412.01548

Width interpretation

s00F ATLAS . =
= V/s=13TeV, 140 fb~’ Obs NSBI -
7 5F - -~ Exp NSBI -
_ —-— Obs NSBI stat-only ]
15.0 -~ =+ Exp NSBI stat-only —4
/-

12.5| / s CI obtained from Neyman construction
l /A
i - p—
100 ’/ ’./
i / 7 |
7.5F < 73
- /‘/"/ /// :
5 O T 9%5% =, 4 woms -/- -‘/ . -/-/- == -_:-
j ) ST * g /// _
2.5 /‘/ -7 —
RN 68% uw s . .
RSN I == e n

T M . L |
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Ky = FH/F,E,M


https://arxiv.org/abs/2412.01548

IR 99

14

12

10

ATLAS Higgs width analysis paper:

Width sensitivity in ggF and VBF

ATLAS
Vs =13 TeV, 140 fb~’

— (Obs NSBI

~—— Exp NSBI

—-= (Obs NSBI stat-only
-+ =+ Exp NSBI stat-only

Ko on-shell

/ g ,off-shell

arXiv:2412.01548

- ATLAS :
[ Vs=-13TeV, 1400t — Obs NSBI -
- — = Obs NSBI stat-only /Z
- = ExpNSBlstatonly

’\||

2
Ryy = Ky, on—shell/ V .off-shell
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ATLAS Higgs width analysis paper: arXiv:2412.01548

Comparison to previous result in same data

68% CL interval 95% CL interval
Parameter Value Observed Expected Observed Expected
NSBI analysis
Uof-shell (4€ only) 0.87 [0.33,1.62] [0.05,2.04] [0.05, 2.38] < 2.38
Moff-shell 1.06 [0.61,1.67] [0.17,1.83] [0.21,2.24] [0.01, 2.42]
I'mg [MeV] (40 only) 3.43  [1.37,6.71] [0.20, 8.25] :0.18, 9.98 < 12.09
'y [MeV] 4.29 :2.41, 6.95i 0.66,7.61] [0.76,9.66] [0.12, 10.50]
Ry, 1.19  [0.53,2.07] [0.02,1.92] <2.96 <2.73
Ryvy 0.95 [0.61,1.39] [0.31,1.70] [0.30,1.86] [0.06,2.14]
Histogram-based analysis
Uof-shell (4€ only) 0.79  [0.02, 2.00 <2.14 < 2.97 < 3.10
Moff-shell 1.09 [0.54,1.81] [0.08,1.90] [0.10,2.41] [0.01,2.52]
'y [MeV] (4€ only) 3.43 [0.10, 8.42 < 8.89 < 12.48 < 12.89
Ty [MeV] 437 [2.13,743] [0.35,7.94] [0.39,10.14] < 10.79
Ry, 1.23  [0.00, 2.20] < 1.98 < 3.15 < 2.84
Ryv 0.95 [0.60,1.43] [0.27,1.74] [0.26,1.90] [0.02,2.18]
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Number of Events

Uncertainty-aware analysis optimisation

Experimental uncertainties: - Current analyses strategies optimised while ignoring
Eg. Inaccuracies in the calibration of our detector . . L
systematic uncertainties

- Added in post-facto

2=0.9 - Leads to loss in sensitivity compared to uncertainty-
30000 - »=10 aware optimisation (see details)
1 z=11
20000 -
|- Z]v* — TlepThad:
10000 - '-L tt, W + jets
| "L HiggsML Dataset
0 : . . ﬂﬁ”’““*‘."‘-*---— . .
0 50 100 150 200 250

P MET (Gey)
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~ PRD.104.056026: Aishik Ghosh, Benjamin Nachman, and Daniel Whiteson
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Number of Events

Uncertainty-aware analysis optimisation

Experimental uncertainties: - Current analyses strategies optimised while ignoring
Eg. Inaccuracies in the calibration of our detector . . L
systematic uncertainties

- Added in post-facto

2=0.9 - Leads to loss in sensitivity compared to uncertainty-
30000 - »=10 aware optimisation (see details)
T o z=11
20000 -
) — Uncertainty Aware Data Augmentation
|_;"é Z[Y* = TiepThad, Baseali ’ g-
10000 - K _ — Baseline — Adversarial
LL tt, W + jets 10
:—.H HiggsML Dataset
M 8 -
0 - ————— - =
0 50 100 150 200 250 =
E 6 1 Narrower is better

P MET (Gev)

NLL -\m
N

N

Difference b/w post-facto and uncertainty-aware

o

0.50 0.75 1.00 1.25 1.50 1.75

~ PRD.104.056026: Aishik Ghosh, Benjamin Nachman, and Daniel Whiteson


https://doi.org/10.1103/PhysRevD.104.056026

Avoids binning data into histograms, which is another lossy compression

Information on individual events lost!

! !
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Avoids binning data into histograms, which is another lossy compression

Information on individual events lost!

! !




Image: NASA


https://svs.gsfc.nasa.gov/13832



https://www.nasa.gov/mission/chandra-x-ray-observatory/

2.5

Mass (Mgyn)

0.5

Telescope measurements of energy spectra of neutron stars

‘Mass-radius curves created by different equation of state (EoS)

1models

. Horizontal bars show massive neutron star observations used

'to “rule out” EoS models.

Two communities:
- Astrophysicists measure mass/radius from telescope
- Nuclear theorists measure EoS from mass/radius

MPA1
aRs3 PAL1 |
> AP4 ENG MS2 MSO
SLy4 H4
AY AY AN \ e — AY
—\ WY AN WYY S\
3417 ap1 AP2 WFF3 \2 ‘\ \ GM1
PAL6 PCL2 A \\ CS2
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GM3
S
T ——
SQM2
SQM1
SQM3
1 | 1 L ] ] | 1 1 L 1 | 1 1 L L | L L 1 L | | 1 1 1 | 1 L | 1 | 1 | | 1 1
8 9 10 11 12 13 14 15 16
Radius (km)

Figure from Lattimer J. M., Prakash M., 2001, The Astrophysical Journal, 550, 426—442



Telescope measurements of energy spectra

Probe the interior:

Equation of State parameters Mass Hydrogen Column

A« A« - —— M=1.05M
1 ? 2 0.00025 _ > 0.00025 - —— Ny = 1.28 x10%Y/cm?
—— M= 1.15 Mg,
_ —— Ny = 1.58 x10?%Y/cm?
0.00020 - ~mm M= 1.25 Maun 212
) —— M= 1.35 M, 0.00020 1 — Ny =1.68 x1021/cm2
Z —— M= 1.45 Mg, w ———- Ny = 1.78 x10%Y/cm
g 0.00015 1 2 0.00015 - —— Ny =1.88 x1021/cm2
= % —— Ny = 1.98 x10%Y/cm?
& 0.00010 & 0.00010 - Ny = 2.28 x10%t/cm?
0.00005 A 0.00005 A
0.00000 0.00000 .
1 2 3
, Energy [keV]
0.00025 - —— R=14.5 km 0.00025 A —— 10g(Tefr) = 6.25
| —— R=13.5km —— 10g(Ter) = 6.20
| ---- R=12.5 km ] ---- |0g(Tes) = 6.15
0.00020- 0.00020 o
—— R=11.5 km " —— log(Ter) = 6.10
(V)]
~ —— R=10.5 km a | log(Tesr) = 6.05
£ 0.00015 ¢ 0-00015
3 2
= £ 0.00010
a 0.00010- '
0.00005 -
0.00005 A
0.00000 - -
= 0.00000 1 2 3
Energy [keV]

Image: Wikimedia/NASA

JCAP12(2023)022: Farrell, Baldi, Ott, Ghosh, et al

Energy [keV]

Radius

Effective Temperature

Dist
0.00025 - —— dist = 5.0 kpc
—— dist = 6.5 kpc
— dist = 7.0 kpc
000020 ---- dist = 7.5 kpc
Z —— dist = 8.0 kpc
Ué 0.000151 —— dist = 8.5 kpc
<£*5’ dist = 10.0 kpc
a2 0.00010
0.00005 1
0.00000

Energy [keV]
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https://upload.wikimedia.org/wikipedia/commons/a/a4/PIA23863-NeutronStarTypes-20200624.jpg

Traditional method: Two-step inference

Mass

W,

- _Energy _Radius

Photons / s
Pressure

-

lEnefgy Density
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Traditional method: Two-step inference
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[Leak some information on uncertainties in the handover
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Traditional method: Two-step inference

SOTA collapsed information into 2 numbers + assumed uncorrelated Gaussian 200

uncertainties 17.5 -

Real uncertainties look quite different
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Inferring neutron star EoS parameters with NSBI

Recover the likelihood of EoS + NPs directly from the raw high-dimensional telescope spectra!

Astrophysicists Nuclear physicists
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Nuisance parameters

Direct estimation of likelihood from high-dimensional raw data allows
more reliable uncertainty propagation and better measurements!

CAP09(2024)009: Brandes, Modi, Ghosh, et al JCAP12(2023)022: Farrell, Baldi, Ott, Ghosh, et al JCAP02(2023)016: Farrell, Baldi, Ott, Ghosh, et al
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Meaningful posteriors, most sensitive method!

Bayesian Posteriors and credible intervals
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CAP09(2024)009: Brandes, Modi, Ghosh, et al
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Enhanced Interpretability: Effect of nuisance parameters

[ 1 loose
| tight

loose Prior knowledge on nuisance parameters
tight

true

Only possible to visualise these due to the fast and differentiable
likelihood from networks

CAP09(2024)009: Brandes, Modi, Ghosh, et al
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Most sensitive method for EoS inference to date!

CAP09(2024)009: Brandes, Modi, Ghosh, et al

NP priors A1 pred — A1 truth A2 pred — A2 truth Combined
p(v) Method v o v o Ttot
Pretend that nuisance ML-Likelihoodsos -0.02 0.066 0.01  0.070 0.096
parameters known NN(Spectra) 20.02 0.066 0.01  0.075 0.099
exactly > |
NN(M, R via XSPEC) -0.03 0.065 0.01  0.055 0.085
NLE 0.00 0.056 -0.01 0.070 0.090
tight ML-Likelihoodgos -0.02 0.078 0.03 0.081 0.112
NN(Spectra) 0.02 0.085 -0.02 0.077 0.115
NN(M, R via XSPEC) -0.03 0.081 0.01  0.056 0.098
Realistic scenarios: NLE 0.00 0.066 -0.02 0.071 0.097
\loose ML-Likelihoodgos -0.04 0.089 0.03 0.081 0.120
NN(Spectra) -0.03 0.131 -0.01 0.078 0.152
NN(M, R via XSPEC) -0.03 0.123 0.01  0.058 0.136
NLE 0.00 0.085 -0.01 0.074 0.113
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Which neutron stars should we measure next ?

Test potential improvement in sensitivity coming from new
measurements

Could inform decisions on which stars to measure next!
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