LHCb highlights

DISCRETE 2024 Ljubljana, 2-6 December 2024

Adam Szabelski

3rd December 2024

National Centre for Nuclear Research On behalf of the LHCb collaboration

Outline

LHCb

CKM parameters

CPV

Summary

LHCb

- Forward spectrometer
- Designed to measure heavy-flavour decays
- Run 1 and 2 great success: an unprecedented sample of *b* and *c* decays
- The "old" data is still being analysed
- Undergone the upgrade I in 2019-2021
- First results from Run 3 coming soon

CKM parameters

2010

sin 2
$$\beta$$
 from $B^0 \rightarrow \Psi(\rightarrow \ell^+ \ell^-) K^0_S(\rightarrow \pi^+ \pi^-)$

PRL132 (2024) 021801

 $\begin{array}{l} {\sf Run \ 2:} \ \ S_{\Psi {\cal K}^0_S} = 0.717 \pm 0.013 ({\sf stat}) \pm 0.008 ({\sf syst}) \\ C_{\Psi {\cal K}^0_S} = 0.008 \pm 0.012 ({\sf stat}) \pm 0.003 ({\sf syst}) \end{array}$

 γ from $B
ightarrow D^*K$

JHEP12(2023)013

$$\gamma = (69^{+13}_{-14})$$

 D^* is reconstructed through the decay chains $D^* \rightarrow D\pi^0/\gamma; \ D \rightarrow K^0_S \pi^+ \pi^-/K^0_S K^+ K^-$

Signal yields variation analysis across the D decay phase-space

Final states need to be accessible to both D^0 and \overline{D}^0 to have an interference

LHCb highlights

)0

$$\gamma = (63 \pm 13)^{\circ}$$

 $B^{\pm} \rightarrow D^0 K^{*\pm}$

Using self-conjugate decays $D^0\to K^0_S h^+ h^-$ and $K^{*\pm}\to K^0_S\pi^\pm$

Interference

CP in $B^0 \rightarrow D^0 K^{0*}$

 $0.031 \pm 0.017 \pm 0.015$

Ακπ

JHEP 05(2024) 025

Interference between
$$B^0 \to D^0 K^{0*}$$
 and $B^0 \to \overline{D^0} K^{0*}$ enables to measure
 $\gamma = (63.2^{+6.9}_{-8.1})^{\circ}$

$$\frac{D^0 \to K^{\mp} \pi^{\pm} (\pi^+ \pi^-)}{V_{\text{alue}}}, D^0 \to \pi^+ \pi^- (\pi^+ \pi^-) \text{ and } D^0 \to K^+ K^- \text{ final states}$$

Search for CP violation in $D^+ \rightarrow K^- K^+ \pi^+$

D⁺ 135M D_s 181M Significance $S_{\Delta_{CP}} = \frac{\Delta A_{CP}}{\sigma_{\Delta A_{CP}}}$ test statistics $\chi^2 = \sum_{i}^{N_{bins}} (S^i_{\Delta_{CP}})^2$ In the phase-space region dominated by $D^+ \to \phi \pi^+$ and $\phi \to \overline{K}^{0*} K^+$: $A^{\phi\pi^+}_{CP|S} =$ (0.95 \pm 0.43stat \pm 0.26syst) imes 10⁻³ $A_{CP|S}^{\overline{K}^{0*}K^+} = (-0.26 \pm 0.56 \text{stat} \pm 0.18 \text{syst}) \times 10^{-3}$

The most sensitive search performed through the phase-space of a multi-body decay No evidence of CP violation For more CPV in charm \implies Luca Balzani's talk tomorrow A. Szabelski (NCBJ)

arXiv:2409.01414

LHCb highlights

LHCb

Evidence for direct CP-violation in baryons

 $\Lambda_b^0 \to \Lambda K^+ K^- (3.1\sigma)$:

 $\Delta A_{CP}(\Lambda_b^0 \to \Lambda K^+ K^-) = 0.083 \pm 0.023 \pm 0.016$ $\Delta A_{CP}(\Lambda_b^0 \to \Lambda \pi^+ \pi^-) = -0.013 \pm 0.053 \pm 0.018$ $\Delta A_{CP}(\Lambda_b^0 \to \Lambda K^+ \pi^-) = -0.118 \pm 0.045 \pm 0.021$ $\Delta A_{CP}(\Xi_b^0 \to \Lambda K^- \pi^+) = 0.27 \pm 0.12 \pm 0.05$

Beauty to charmonium

arXiv:2411.12178

Evidence for direct CPV

LHCb highlights

Summary

LHCb remains an important player in the game in

- CKM parameters
- CP violation in beauty and charm

Didn't fit in this talk

- Lepton Flavour universality
- Hadron spectroscopy
- SMOG program
- Heavy Ion program
- Search for CPT violation

THANK YOU & STAY TUNED

BACKUP

CPT violation search in $D^0 \rightarrow K^- \pi^+$

In the search for time-dependent CP asymmetry in $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+K^ D^0 \rightarrow K^-\pi^+$ was used as a control channel.

Sample of 519 imes 10⁶ D^0 candidates from $D^{*+}
ightarrow D^0 \pi_s^+$

from the slope new limits on CPTV have been extracted (outside of LHCb) Phys.Rev.D 110 (2024) 5

Flavour universality test with $B_s \rightarrow \phi \ell \ell$

$$R_{\phi} = \left(\frac{\mathcal{B}(B_{s} \to \phi \mu \mu)}{\mathcal{B}(B_{s} \to \phi J/\Psi(\to \mu \mu))}\right) / \left(\frac{\mathcal{B}(B_{s} \to \phi ee)}{\mathcal{B}(B_{s} \to \phi J/\Psi(\to ee))}\right)$$

$q^2 \; [\mathrm{GeV}^2\!/c^4]$	R_{ϕ}^{-1}	${\rm d}{\cal B}(B^0_s \! \to \phi e^+ e^-)/{\rm d}q^2 ~[10^{-7}{\rm GeV}^{-2}c^4]$
$0.1 < q^2 < 1.1$	$1.57^{+0.28}_{-0.25} \pm 0.05$	$1.38 {}^{+0.25}_{-0.22} \pm 0.04 \pm 0.19 \pm 0.06$
$1.1 < q^2 < 6.0$	$0.91^{+0.20}_{-0.19} \pm 0.05$	$0.26 \pm 0.06 \pm 0.01 \pm 0.01 \pm 0.01$
$15.0 < q^2 < 19.0$	$0.85{}^{+0.24}_{-0.23}\pm 0.10$	$0.39 \pm 0.11 \pm 0.04 \pm 0.02 \pm 0.02$

results consistent with the SM