The ATLAS ITk Strip Detector System for the Phase-II LHC Upgrade

Ewa Stanecka On behalf of the ATLAS ITk Strip Collaboration

THE HENRYK NIEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

Introduction

- ★ Long Shutdown 3 from 2026 to 2029 will bring major upgrades to LHC and the experiments.
- ★ HL-LHC significantly improves upon LHC and top priority is an exploitation of its full physics potential.
- ★ Complete replacement of Inner Detector with all-Silicon Inner Tracker.
- ★ Highly optimized new tracker layout to minimize the amount of material and maximize the number of hits per charged particle track.

Detector challenges

HL-LHC expected performance:

- Centre of mass energy: $\sqrt{s} = 14 \text{ TeV}$
- Instantaneous L = 5.0 × 10³⁴ cm⁻² s⁻¹
 - Ultimate $L = 7.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Integrated L 3000 fb⁻¹
 - Ultimate integrated L 4000 fb⁻¹
- Average interactions per bunch crossing: <µ> = 200

Detector challenges:

- Higher particle fluxes, larger event sizes, higher trigger rate
 trigger challenge
- Higher detector occupancy
 - readout limitations
 - increasing reconstruction complexity
- Increasing fluences, up to 10¹⁶ 1MeV n_{eq} cm⁻² close to beam pipe
 - increased radiation damage
 - increased activation of materials

Inner Tracker Performance

CERN-LHCC-2017-021

The ITk is expected to have a superior transverse impact parameter

Transverse and longitudinal impact parameter resolution

Inner Tracker Performance

CERN-LHCC-2017-021

b-tagging

vertexing

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

Inner Tracker Strips

Inner Tracker Strips Building blocks

Sensors

Silicon sensors \rightarrow **n+ -in-p float-zone (FZ)**

- collects electrons: more & faster signal, less trapping
- no radiation-induced type inversion
 - single-sided process ⇒ easy production

Sensor shape and strip pitch to maintain hit occupancy below 1 % :

Two types of barrel sensors:

- Inner 2 layers Short-Strip (2.4 cm)
- Outer 2 layers Long-Strip (4.8 cm)
- Active area of 9.7×9.7 cm² ($75.5 \mu m$ pitch)

Six end-cap sensor geometries:

- 1.5-6cm strip length
- 70 80 μm pitch

ATL-ITK-PROC-2022-016.pdf

Hybrids & Power boards

Hybrids: Hosts Binary readout chip ABCStar, Hybrid controller chip HCCStar. 13 (EC) + 2 (Barrel) designs.

Power board: Hosts monitor and control AMACStar, DC-DC converter and HV filter and switch. 4 (EC) + 1 (Barrel) designs.

Modules

- ★ All modules have same electrical architecture but with different geometries :
 - 2 module variants in the barrel: Long strips and short strips
 - 6 module variants in the end-cap
 - New design:
 - low mass PCB's directly glued on sensor
 - Hosting readout electronics
 - Connection to strips by wire-bonds

Modules

- ★ Six Enc-cap module geometries:
 - Sensors for outer rings (R3, R4, R5) cannot be made from a single (6 inch) silicon wafer
 - Modules made from two sensors utilising split hybrids
 - Retains basic architecture with data on LHS and power from RHS

10.1088/1748-0221/19/03/03015

Module production

- ★ ~30 module assembly sites
 - Site qualification process based on a set of agreed-upon procedures
 - Dedicated high-precision tools for different module types
 - Precision assembly: from sensor positioning to glue thickness
- ★ Rigorous QC/QA procedures at every production stage:
 - Visual inspections and metrology
 - IV curves
 - Thermal cycling
 - Hybrid burn-in test
- ★ Nearly all (93%) module sites are now production ready
 - Two technical issues currently under investigation before production can start

10.1088/1748-0221/19/03/C03015

Local support

Detector assembled from intermediate local support objects:

Signal and Power distribution

Each Stave/Petal is a standalone system level object providing:

- \star Mechanical support and location control
- ★ Cooling; Power (LV & HV); Trigger, control, clock signals; CERN Low Power Signalling (CLPS); T, V, I monitoring; Data readout
- ★ Electrical-to-optical conversion at End-of Substructure (EoS)

14

Global support

Global structures are mostly made out of carbon fiber-reinforced plastic (CFRP)

Powering & services

- ★ ~130 m long powering chain including two-stages DC-DC conversion
- ★ Cable plant partially re-used from current detector
- ★ Includes commercial power supplies and custom design electronic

System test

Pre-production staves and petals in system tests to demonstrate full system performance with:

Full power chain • CO2 dual-phase cooling system • Thermal box providing dry air and environmental monitoring • Hardware interlock • Readout chain targeting the final DAQ system

Towards full detector

Summary

- ★ ITk Strip Detector will provide excellent particle tracking in the extremely high density HL-LHC environment, maintaining or improving performance of the present detector
- ★ The ITk Strip detector is in production phase
 - The production takes place in ~60 institutes in 14 countries all over the world
 - Most of the building blocks advancing toward finishing production
 - A couple of technical issues being wrapped up before starting module production
 - Services and Power Supplies pre-production ongoing to serve Integration tests

Backup

LHC and HL-LHC plans

- Long Shutdown 3 from 2026 to 2029 will bring major upgrades to LHC and the experiments
- HL-LHC significantly improves upon LHC and top priority is an exploitation of its full potential

Physics prospects: SM and beyond

• Precise SM and Higgs sector measurements

- Higgs boson μ values , access to rare Higgs processes
- Higgs boson couplings will be measured with precision of 2-10%
- Higgs self-coupling in SM accessible at HL-LHC
- Weak boson scattering

Beyond Standard Model physics

- Searches for new massive states on HL-LHC will extend mass reach by ~20%
- SUSY particles searches significantly extended
- High mass gauge bosons, tt resonances, quark and lepton substructure, extra dimensions, dark matter candidate, ...

Inner Tracker (ITk) Overview

 Current ATLAS Inner Detector designed to operate for 10 years at L=1x10³⁴ cm⁻² s⁻¹ with <µ>=23,
 @25ns, L1=100kHz

Limiting factors at HL-LHC

- Bandwidth saturation (Pixels, SCT)
- Increased occupancies (TRT, SCT)
- Radiation damage (Pixels (SCT) designed for 400 (700) fb⁻¹)

Complete replacement of Inner Detector with all-Silicon Inner Tracker

Inner Tracker Overview

ATL-PHYS-PUB-2021-024

- Acceptance extended from $|\eta| < 2.5$ to $|\eta| < 4.0$
- Number of hits in barrel ~ 13

 (2 hits/strip module)
 In forward regions at least 9 pixel hits
- Minimizes silicon area and material.