Recent Advances in the GAN-Based Fast Calorimeter Simulation of the ATLAS Experiment

LHCC Student Poster Session 18 November 2024

We need **solutions to ease** this burden!

/6016136

Detector simulation takes the largest part of ATLAS computing resources [1], of which ~80% is just taken by calorimeter simulation [2]

5% 11% 18% MC event generation MC reconstruction Data processing Analysis Group production Other CPU hours taken by ATLAS activities [1]

Simulators to simulate calorimeter response fast and precisely. Also based on Machine Learning (ML). ML systems need large resources for training!

Expected to increase

with HL-LHC!

Distribute the heaviest part to additional resources.

AtlFast3

- AtlFast3 is the ATLAS fast simulation tool, already in production for Run 3 [2]. It combines two fast simulation systems:
 - **FastCaloSim**, based on parametrisations;
 - **FastCaloGAN**, based on **GANs** (Generative Adversarial Networks). -
- The **reference** for performance evaluation is the "traditional" simulation system -**Geant4** (full simulation). Depending on particle type and energy, AtlFast3 employs the fast simulation system returning the most accurate simulation with respect to Geant4 (image below [3]).
- Performance: **3-15 times faster** than Geant4 (depending on the process)! [4]

	Inner Detector	Calorimeters		Muon Spectrometer
Electrons Photons		FastCaloGAN V2 <i>E_{kin}</i> < 8 GeV && η < 2.4, Except [0.9< η <1.1, 1.35< η <1.5]	FastCaloSim V2 $E_{kin} > 16 \text{ GeV } \& \eta < 2.4,$ All $E_{kin} \& [0.9 < \eta < 1.1, 1.35 < \eta < 1.5, \eta > 2.4]$	

FastCaloGANtainer

- Usage of FastCaloGAN requires its GANs to be trained, which requires large **resources**!
- FastCaloGANtainer makes it possible to **train** FastCaloGAN **on unpledged** resources outside CERN (thus without using e.g. the CERN batch system LXBATCH).

- **Resource saving + further performance improvement!**

- Based on an Apptainer **container** with the standard ATLAS software environment and CentOS 7 operating system.
 - Requires libraries CUDA-11 and CuDNN for GPU usage.
 - Additional software required for running is installed in the container, making it **independent** of the system where it runs.

Performance

Training runs **3-4x faster** on Leonardo (**A100** GPUs) and 2-3x faster on CNAF-HPC with respect to LXBATCH at CERN. **Supercomputers give a great**

FastCaloGAN

- Fast simulation system based on **Wasserstein GANs** [5].
- Simultaneous training of two neural networks:
 - **Generator**: aims to generate Geant4-like showers; -
 - **Discriminator**: aims to distinguish between generated and Geant4 showers;
 - Once equilibrium between the two is reached, FastCaloGAN is ready to simulate calorimeter response, which it does **much faster than Geant4** with good accuracy.

performance boost!

To do: run on other resources (also cloud), architectures (ARM) and for more particle types, code optimisation (both general and to take even more advantage of multi-CPU/GPU nodes).

The Leonardo supercomputer at CINECA in Bologna [6]						
Resource	Type and Owner	Hardware and Software	Pion Results One GAN for all energies	Photon Results Two GANs, one for energies ≤ 4 GeV, one for greater energies		
_XBATCH	CERN batch system. Reference cluster	CentOS 7 (for used nodes), CVMFS, HTCondor, V100 GPUs	Runtime: 12 h χ²/NDF ~ 2	Runtime: 30-31 h χ²/NDF ~ 5		
_eonardo	The 7 th most powerful cluster in the TOP500 ranking [7], at CINECA	RHEL 8.7, no CVMFS, SLURM, A100 GPUs, isolated nodes	Runtime: 3.5 h χ²/NDF ~ 2	Runtime: 6.5-7.5 h χ²/NDF ~ 5		
CNAF- HPC	INFN-CNAF HPC cluster (close to WLCG INFN-T1)	CentOS 7, no CVMFS, SLURM, V100 GPUs	Runtime: 6 h χ²/NDF ~ 2	Runtime: 9-10 h χ²/NDF ~ 5		

References

- Work in progress for final part of Run 3/Run 4:

- **Improved** and finer voxelisation that reduces bias due to calorimeter geometry (fineness actually not that easy to handle!)
- **Good GAN results** (good χ^2 vs Geant4): **GANs can be further improved!**
- Research **diffusion** models and Invertible Neural Networks (**INNs**), to be added if results are good.

[1] The ATLAS Coll., ATLAS HL-LHC Computing Conceptual Design Report, CERN-LHCC-2020-015 (2020) [2] The ATLAS Coll., AtlFast3: The Next Generation of Fast Simulation in ATLAS, Comput Softw Big Sci 6, 7 (2022)

[3] Public plots: atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2024-004

[4] Public plots: atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2023-005

[5] The ATLAS Coll., Fast simulation of the ATLAS calorimeter system with Generative Adversarial Networks, ATL-SOFT-PUB-2020-006

[6] leonardo-supercomputer.cineca.eu [7] TOP500 Ranking - June 2024, top500.org/lists/top500/2024/06

Federico Andrea Guillaume Corchia, University and INFN, Bologna, Italy Lorenzo Rinaldi, University and INFN, Bologna, Italy Matteo Franchini, University and INFN, Bologna, Italy On Behalf of ATLAS Computing Activity

