ATLAS highlights from small systems

Location: 4/3-006, CERN Website: cern.ch/lightions

Dominik Derendarz on behalf of the ATLAS collaboration

ATLAS heavy ion datasets

System	Year	sqrt(s _{NN}) [TeV]	Lint
Pb+Pb	2010	2.76	7 μb ⁻¹
Pb+Pb	2011	2.76	0.14 nb ⁻¹
рр	2012	8	19.4 fb ⁻¹
p+Pb	2012	5.02	1 μb ⁻¹
рр	2013	2.76	4 pb ⁻¹
p+Pb	2013	5.02	29 nb ⁻¹
low <µ> pp	2015-16	13	0.9 pb ⁻¹
рр	2015	5.02	28 pb ⁻¹
Pb+Pb	2015	5.02	0.49 nb ⁻¹
p+Pb	2016	5.02	0.5 nb ⁻¹
p+Pb	2016	8.16	0.16 pb ⁻¹
Xe+Xe	2017	5.44	3 µb ⁻¹
рр	2017	5.02	270 pb ⁻¹
Pb+Pb	2018	5.02	1.76 nb ⁻¹
Pb+Pb	2023	5.36	1.63 nb ⁻¹
рр	2024	5.36	425 pb ⁻¹
Pb+Pb	2024	5.36	
0+0	2025		

Bun

 \sim Bun

 \mathcal{O}

Run

ATLAS HI public results: <u>https://</u> twiki.cern.ch/ twiki/bin/view/ <u>AtlasPublic/</u> <u>HeavylonsPublic</u> <u>Results</u>

Chapter 1 Collectivity in small systems

First collectivity results in small system from ATLAS in p+Pb

Phys. Rev. Lett. 110 (2013) 182302

Strength of the long-range component is quantified by the pertrigger yields with the zero-yield-atminimum pedestal estimate.

First collectivity results in small system from ATLAS in p+Pb

Phys. Rev. Lett. 110 (2013) 182302

Measurement with 1μ b-1 of data

recorded in pilot p+Pb run.

v₂ extracted with 4 particle cumulants

Improved 2PC method for peripheral subtraction

Phys. Rev. C 90, 044906

Era of high multiplicity triggers started.

Improved 2PC method for peripheral subtraction

 $Y(\Delta \phi, \Delta \eta)$

.75

.7

1.65

Phys. Rev. C 90, 044906

Era of high multiplicity triggers started.

Improved 2PC method for peripheral subtraction

 $Y(\Delta \phi, \Delta \eta)$

Phys. Rev. C 90, 044906

Era of high multiplicity triggers started.

Subtraction the recoil contribution estimated using the 2PC in low-activity events (but still with ZYAM).

Collectivity in pp - template fit

Phys. Rev. Lett. 116 (2016) 172301

Collectivity in pp - template fit

Phys. Rev. Lett. 116 (2016) 172301

Collectivity in pp - template fit

Phys. Rev. Lett. 116 (2016) 172301

Collectivity in pp - cumulants

Eur. Phys. J. C 77 (2017) 428

4 particle cumulants sensitive to reference event selection.

Collectivity in pp - cumulants

Eur. Phys. J. C 77 (2017) 428

4 particle cumulants sensitive to reference event selection.

<u>QM 2017 J. Jia</u>

Phys. Rev. C 97 (2018) 024904

Sub-event cumulants gives a way to handle remaining non-flow correlation in pp.

Eur. Phys. J. C 80 (2020) 64

v₂ similar in the pp events with Z boson and inclusive pp collisions.

Eur. Phys. J. C 80 (2020) 64

v₂ similar in the pp events with Z boson and inclusive pp collisions.

Phys. Rev. Lett. 131 (2023) 162301

Phys. Rev. C. 104 (2021) 014903

Flow in photo-nuclear (γ +A) could be understood as a consequence of ρ +A collision (even smaller system)

Phys. Rev. C. 104 (2021) 014903

Flow in photo-nuclear (γ +A) could be understood as a consequence of ρ +A collision (even smaller system)

Eur. Phys. J. C 80 (2020) 73

Phys. Rev. Lett. 124 (2020) 082301

decays at low $p_T v_2$, but converge at high p_T .

Phys. Rev. Lett. 124 (2020) 082301

Mass splitting of muons from *charm* and *bottom* decays at low $p_T v_2$, but converge at high p_T .

8

Collectivity across collision systems

Phys. Lett. B 789 (2019) 444

Correlation between v_n and mean p_T in the event.

Chapter 2 Search of the effect of energy loss in small systems

Setting the stage

Phys. Rev. C 96 (2017) 064908

Measurements of HBT correlations in p+Pb.

All there radii (as well as source volume) show linear scaling with N_{ch}.

Phys. Rev. C 92 (2015) 044915

Nuclear modification factors in p+Pb

JHEP 07 (2023) 074

Nuclear modification factors in p+Pb

JHEP 07 (2023) 074

Nuclear modification factors in p+Pb

JHEP 07 (2023) 074

Phys. Lett. B 748 (2015) 392-413

Closer look at the jet fragmentation

Nucl. Phys. A 978 (2018) 65

Closer look at the jet fragmentation

Nucl. Phys. A 978 (2018) 65

Strong constraints on Eloss scenarios.

Closer look at the jet fragmentation

Nucl. Phys. A 978 (2018) 65

particles

Chapter 3 Nuclear modification of parton densities

Inclusive photons in p+Pb

At forward and central rapidity R_{pPb} consistent with unity. $R_{pPb} < 1$ for $\eta^* < -2$ due to isospin effects.

With the current uncertainties, the data is unable to constraint nPDF.

Jet production in p+Pb

Phys. Lett. B 748 (2015) 392-413

Jet production in p+Pb

Phys. Lett. B 748 (2015) 392-413

0-10% 20-30% 60-90%

> ۲ ۳ ۲

32

Di-jet production in p+Pb

Using dijets to constrain parton kinematics. Can repeat previous mapping but separately for effective x_p, x_{Pb}

 $R_{CP}(x_p)$ is qualitatively described by the colour fluctuations: smaller than average interaction strength at large x_p .

 $y^{\star} \equiv \frac{1}{2} \left| y_1^{\text{CM}} - y_2^{\text{CM}} \right|$

0_3

-2

Di-jet production in p+Pb

Using dijets to constrain parton kinematics. Can repeat previous mapping but separately for effective x_p, x_{Pb}

 $R_{CP}(x_p)$ is qualitatively described by the colour fluctuations: smaller than average interaction strength at large x_p .

 $y^{\star} \equiv \frac{1}{2} \left| y_1^{\text{CM}} - y_2^{\text{CM}} \right|$

0_3

-2

Di-jet production in p+Pb - nuclear break-up

Decreasing UE energy (FCal E_T) and break-up neutrons (ZDC E) with increasing x_p

ttbar production in p+Pb

ttbar cross section measured to be 58.1 +/- 2.0 $^{+4.8}$ -4.4 nb⁻¹

 R_{pA} consistent with unity - nNNPDF slightly overestimate R_{pA}

arXiv:2405.05078

Photo-nuclear production of di-jets

Di-jet kinematics corresponds to the hard scattering kinematics

$$H_{\rm T} \equiv \sum_{i} p_{\rm T\,i} \quad z_{\gamma} \equiv \frac{M_{\rm jets}}{\sqrt{s}} e^{+\gamma_{\rm jets}} \quad x_{\rm A} \equiv \frac{M_{\rm jets}}{\sqrt{s}} e^{-\gamma_{\rm jets}}$$

Unfolded for detector response

Potential to constrain nuclear PDFs! Clean probe to explore poorly constrained region at low-x and intermediate Q²

arXiv:2409.11060

	_	i
		ļ
		ļ
	_	l
		ļ
	_	ļ
_		
	_	
	_	ļ
	_	
		Į
	_	
	_	
	_	ļ
	-	j
		ļ
_		ļ
	_	
		ļ
	_	
	_	
	_	
	-	
-		
	_	
	_	
	_	
•		
•		
•		
•		
•		

Photo-nuclear production of di-jets

Di-jet kinematics corresponds to the hard scattering kinematics

$$H_{\rm T} \equiv \sum_{i} p_{\rm T\,i} \quad z_{\gamma} \equiv \frac{M_{\rm jets}}{\sqrt{s}} e^{+y_{\rm jets}} \quad x_{\rm A} \equiv \frac{M_{\rm jets}}{\sqrt{s}} e^{-y_{\rm jets}}$$

Unfolded for detector response

Potential to constrain nuclear PDFs! Clean probe to explore poorly constrained region at low-x and intermediate Q²

Chapter 1 Collectivity in small systems

Well establish collective behaviour in small system Many developments on the measurements technics that also benefit in large systems.

Chapter 3 Nuclear modification of parton densities

Summary

Chapter 2 Search of the effect of energy loss in small systems

Still no sign of energy loss while we see signs of collectivity at high p_T

